电气间隙与爬电距离区别

合集下载

电气间隙和爬电距离

电气间隙和爬电距离

电气间隙和爬电距离电气间隙是在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。

即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。

电气间隙的大小和老化现象无关。

电气间隙能承受很高的过电压,但当过电压值超过某一临界值后,此电压很快就引起电击穿,因此在确认电气间隙大小的时候必须以设备可能会出现的最大的内部和外部过电压(脉冲耐受电压为依据)。

在不同场合使用同一电气设备或运用过电压保护器时所出现的过电压大小各不相同。

因此根据不同的使用场合将过电压分为I至W四个等级。

爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。

即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。

此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离。

在绝缘材料表面会形成泄漏电流路径。

若这些泄漏电流路径构成一条导电通路,则出现表面闪络或击穿现象。

绝缘材料的这种变化需要一定的时间,它是由长时间加在器件上的工作电压所引起的,器件周围环境的污染能加速这一变化。

因此在确定端子爬电距离时要考虑工作电压的大小、污染等级及所运用的绝缘材料的抗爬电特性。

根据基准电压、污染等级及绝缘材料组别来选择爬电距离。

基准电压值是从供电电网的额定电压值推导出来的随着科学技术的迅猛发展,人们的生活水平的不断提高,越来越多的电子产品进入我们的家庭,为保证使用者的人身安全,世界各国均有相关法规以约束电器产品对人身造成的各种伤害。

因此,安全性设计在产品的整个设计过程中有着至关重要的作用,其中安全距离是在产品设计中最重要的部分之一。

在电气间隙、爬电距离实际测量中往往有不同的结果差异、本篇结合自身实际工作,就电气间隙,爬电距离的安全标准要求做一下概括总结,谈谈以下几点理解。

1名词解释1、安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离。

2、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。

电气间隙与爬电距离关系

电气间隙与爬电距离关系

电气间隙与爬电距离关系(最新版)目录1.电气间隙和爬电距离的定义2.电气间隙和爬电距离的计算方法3.电气间隙和爬电距离的关系4.电气间隙和爬电距离在电气设备中的应用5.电气间隙和爬电距离的安全意义正文电气间隙和爬电距离是电气设备设计中非常重要的两个概念。

它们在保证设备的安全运行和防止火灾事故方面具有重要作用。

电气间隙是指在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。

这个距离通常以空气绝缘的最短距离来计算。

在保证电气性能稳定和安全的情况下,电气间隙可以通过空气实现绝缘。

爬电距离是指由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电的现象。

此带电区的半径,即为爬电距离。

爬电距离通常以污秽等级来计算,其中零级污秽的爬电距离为 14.8mm/KV,一级污秽的爬电距离为16mm/KV,二级污秽的爬电距离为 20mm/KV。

电气间隙和爬电距离之间的关系是密切相关的。

电气间隙是保证电气设备安全的基本距离,而爬电距离则是在实际使用中,由于绝缘材料的带电现象而导致的最小安全距离。

在设计电气设备时,必须保证电气间隙大于等于爬电距离,否则设备可能存在安全隐患。

电气间隙和爬电距离在电气设备中的应用非常广泛。

它们可以用于评估设备的安全性能,确定设备的最小尺寸,以及选择合适的绝缘材料。

对于设计人员来说,了解电气间隙和爬电距离的关系,能够有效地提高设备的安全性和可靠性。

电气间隙和爬电距离的安全意义非常重要。

它们可以有效地防止设备间或设备与地之间的打火现象,从而避免火灾事故的发生。

同时,电气间隙和爬电距离也是电气设备安全标准的重要内容,必须得到严格的遵守和执行。

总的来说,电气间隙和爬电距离是电气设备设计中非常重要的两个概念。

它们在保证设备的安全运行和防止火灾事故方面具有重要作用。

电气间隙和爬电距离

电气间隙和爬电距离

电气间隙和爬电距离电气间隙是在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。

即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。

电气间隙的大小和老化现象无关。

电气间隙能承受很高的过电压,但当过电压值超过某一临界值后,此电压很快就引起电击穿,因此在确认电气间隙大小的时候必须以设备可能会出现的最大的内部和外部过电压(脉冲耐受电压为依据)。

在不同场合使用同一电气设备或运用过电压保护器时所出现的过电压大小各不相同。

因此根据不同的使用场合将过电压分为Ⅰ至Ⅳ四个等级。

爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。

即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。

此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离。

在绝缘材料表面会形成泄漏电流路径。

若这些泄漏电流路径构成一条导电通路,则出现表面闪络或击穿现象。

绝缘材料的这种变化需要一定的时间,它是由长时间加在器件上的工作电压所引起的,器件周围环境的污染能加速这一变化。

因此在确定端子爬电距离时要考虑工作电压的大小、污染等级及所运用的绝缘材料的抗爬电特性。

根据基准电压、污染等级及绝缘材料组别来选择爬电距离。

基准电压值是从供电电网的额定电压值推导出来的。

随着科学技术的迅猛发展,人们的生活水平的不断提高,越来越多的电子产品进入我们的家庭,为保证使用者的人身安全,世界各国均有相关法规以约束电器产品对人身造成的各种伤害。

因此,安全性设计在产品的整个设计过程中有着至关重要的作用,其中安全距离是在产品设计中最重要的部分之一。

在电气间隙、爬电距离实际测量中往往有不同的结果差异、本篇结合自身实际工作,就电气间隙,爬电距离的安全标准要求做一下概括总结,谈谈以下几点理解。

1 名词解释1、安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离。

2、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。

电气间隙与爬电距离

电气间隙与爬电距离

电气间隙与爬电距离一、电气间隙和爬电距离1爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。

即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。

此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离。

在绝缘材料表面会形成泄漏电流路径。

若这些泄漏电流路径构成一条导电通路,则出现表面闪络或击穿现象。

绝缘材料的这种变化需要一定的时间,它是由长时间加在器件上的工作电压所引起的,器件周围环境的污染能加速这一变化。

因此在确定端子爬电距离时要考虑工作电压的大小、污染等级及所运用的绝缘材料的抗爬电特性。

根据基准电压、污染等级及绝缘材料组别来选择爬电距离。

基准电压值是从供电电网的额定电压值推导出来的。

2电气间隙:在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。

即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。

电气间隙的大小和老化现象无关。

电气间隙能承受很高的过电压,但当过电压值超过某一临界值后,此电压很快就引起电击穿,因此在确认电气间隙大小的时候必须以设备可能会出现的最大的内部和外部过电压(脉冲耐受电压为依据)。

在不同场合使用同一电气设备或运用过电压保护器时所出现的过电压大小各不相同。

因此根据不同的使用场合将过电压分为Ⅰ至Ⅳ四个等级。

可见,爬电距离和电气间隙实际是两个相关参数,都是针对电气绝缘性而来。

特别是在继电器、开关等工控产品的选用中,需要遵守相关标准的同时,还要按实际的使用环境要求(气压、污染等),设定合适的爬电距离及电气间隙,以保障人民生命财产安全和电气性能的稳二、设定爬电距离及电气间隙一般选型是按以下步骤进行:1、确定电气间隙步骤确定工作电压峰值和有效值;确定设备的供电电压和供电设施类别;根据过电压类别来确定进入设备的瞬态过电压大小;确定设备的污染等级(一般设备为污染等级2);确定电气间隙跨接的绝缘类型(功能绝缘、基本绝缘、附加绝缘、加强绝缘)。

电气间隙和爬电距离

电气间隙和爬电距离

接线端子的设计中电气间隙和爬电距离至关重要,决定接线端子的安全性能。

现介绍一下接线端子中电气间隙和爬电距离。

电气间隙:两个导电部件之间在空气中最短的距离。

爬电距离:两个导电部件之间沿绝缘材料表面测得的最短距离。

总则:
1、选用合适大小的电气间隙和爬电距离在很大程度上取决于多种可变因素,诸如大气条件,所用绝缘的类型、爬电途径的布局以及使用接线端子块的系统情况等,因此,选择合适大小的电气间隙和爬电距离是制造商的职责。

2、建议将绝缘件的表面设计成带筋的表面以阻断导电沉积物可能形成的通道。

3、从电气间隙和爬电距离的观点来看,仅仅涂有清漆或珐琅的导电件,或仅用氧化层或类似方法保护的导电件均不认为是绝缘的。

4、在以下情况下,仍必须保持推荐的电气间隙和爬电距离:
1)在既无外部电气连接,又是按制造商说明书的规定,用接线端子块所规定的型式和尺寸的绝缘导线或裸导线安装时;
2)考虑到由于温度、老化、冲击、振动的影响,或由于接线端子块预期承受的短路条件所产生的可能的变形。

确定电气间隙和爬电距离时,建议考虑以下几点:
1、确定爬电距离时,凡宽度和深度不小于2mm的槽可以沿其轮廓线来测量,宽度和深度小于2mm的槽和容易堆积污物的槽应忽略不计,只测量其直线距离。

2、确定爬电距离时,高度小于2mm的筋应忽略不计,对高度不小于2mm的筋;如果筋是绝缘村料件整体中的一部分(例如用模压或焊接方法形成的筋),则沿其轮廓线来测量;如时筋不是绝缘材料件整体中的一部分,则沿其接缝长度或轮廓线(两条途径中取其较短者)进行测量。

可接受的最小安全距离:。

电气间隙和爬电距离

电气间隙和爬电距离

安全距离包括电气间隙(空间距离),爬电距离(表面距离)和绝缘穿透距离。

1.电气间隙:两个相邻导体或一根导体与相邻电动机外壳表面之间沿空气测得的最短距离。

2.爬电距离:沿着两条相邻导体或一条导体与相邻电动机壳体表面之间的绝缘表面测得的最短距离电气间隙的确定:根据测得的工作电压和绝缘水平,要求该电气线路的电气间隙可以确定主要方面。

参见表3和表4。

次级侧线路电气间隙的尺寸要求如表5所示。

通常:初级侧AC部分:保险丝LN≥2.5mm之前,Ln PE(接地)≥2.5mm之后,之后对于保险丝装置,没有要求,但要保持一定距离,以免短路损坏电源。

初级侧AC到DC部分≥2.0mm,初级侧DC到地面≥2.5mm(初级侧浮地接地)如果初级侧部分到次级侧部分大于或等于4.0 mm,则间隙一次侧和二次侧之间的距离大于或等于0.5毫米,二次侧和地面之间的距离大于或等于1.0毫米爬电距离的确定:根据工作电压和绝缘等级,爬电距离可参照表6来确定。

但通常:(1)一次侧交流部分:保险丝前LN≥2.5mm,Ln 接地≥2.5mm,保险丝后无要求,但应保持一定距离,以免短路损坏电源。

(2)初级侧的AC到DC部分≥2.0mm(3)例如,如果初级侧到地面的DC接地≥4.0mm,例如初级侧到大地(4),则初级侧到次级侧≥6.4mm,例如光耦合器,y电容器和其他元件,应将脚间距开槽。

(5)二次侧应≥0.5mm1.在质量上有所不同爬电距离:沿着绝缘5261的表面测得的两个导电部分之间的距离4102。

在不同的使用条件下,导体周围的绝缘材料1653带电,这会导致绝缘材料带电区域中的带电现象。

电气间隙:测量两个导电部件之间或导电部件与设备保护接口之间的最短距离。

换句话说,在确保电气性能的稳定性和安全性的前提下,空气可以获得最短的绝缘距离。

2.设置步骤不同电气间隙:(1)确定工作电压的峰值和有效值;(2)确定设备的供电电压和供电设施的类型;(3)设备的暂态过电压根据过电压类别确定;(4)确定设备的污染等级(普通设备的污染等级为2);(5)确定电气间隙交叉的绝缘类型(功能绝缘,基本绝缘,附加绝缘,加强绝缘)。

电气间隙和爬电距离

电气间隙和爬电距离

电气间隙和爬电距离的区别
1、本质不同爬电距离:沿绝缘表面测量的两个导电部件之间,在不同使用条件下,导体周围的绝缘材料带电,导致绝缘材料的带电区域出现带电现象。

电气间隙:测量两个导电部件之间或导电部件与设备保护接口之间的最短距离。

也就是说,在保证电气性能的稳定性和安全性的前提下,空气可以达到最短的绝缘距离。

2、设置步骤不同电气间隙:(1)确定工作电压的峰值和有效值;(2)确定设备的供电电压和供电设施的类型;(3)设备的暂态过电压按过电压类别确定;(4)确定设备的污染等级(一般设备为污染等级2);(5)确定电气间隙跨越的绝缘类型(功能绝缘、基本绝缘、附加绝缘、加强绝缘)。

简单的说,爬电距离是要一步步爬过去的,而电气间隙是不用的,直接穿过去的,电气间隙是指带电导体在空间的最短距离,爬电距离是指带电导体沿绝缘表面的最短距离.爬电距离是指沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。

因此在确定端子爬电距离时要考虑工作电压的大小、污染等级及所运用的绝缘材料的抗爬电特性。

根据基准电压、污染等级及绝缘材料组别来选择爬电距离。

基准电压值是从供电电网的额定电压值推导出来的。

电气间隙与爬电距离关系

电气间隙与爬电距离关系

电气间隙与爬电距离关系摘要:一、电气间隙与爬电距离的基本概念1.电气间隙2.爬电距离二、电气间隙与爬电距离的测量与应用1.测量方法2.应用领域三、电气间隙与爬电距离的关系1.相互替代性2.设计原则四、电气间隙与爬电距离在实际工程中的重要性1.保证电气性能稳定2.确保安全防护五、结论正文:一、电气间隙与爬电距离的基本概念1.电气间隙:电气间隙是指在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。

即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。

2.爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。

即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。

此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离。

二、电气间隙与爬电距离的测量方法与应用1.测量方法:电气间隙和爬电距离的测量方法主要包括电阻法、电容法、电感法等。

根据不同的应用场景和测量精度要求,选择合适的测量方法。

2.应用领域:电气间隙和爬电距离在电力系统、电气设备、开关电源等领域具有重要应用价值。

它们用于保证设备的安全运行,提高电气性能,降低故障率。

三、电气间隙与爬电距离的关系1.相互替代性:在某些情况下,电气间隙可以替代爬电距离,例如在设计高压输电线路时,通过增加绝缘子的爬电距离来提高其耐压性能。

然而,在另一些情况下,电气间隙和爬电距离不能相互替代,如在低压电气设备中,需要保证足够的电气间隙以防止击穿。

2.设计原则:在设计电气设备时,应根据工作电压、环境条件等因素,合理选择电气间隙和爬电距离。

一般情况下,电气间隙应大于等于爬电距离,以确保绝缘性能稳定和安全。

四、电气间隙与爬电距离在实际工程中的重要性1.保证电气性能稳定:合适的电气间隙和爬电距离可以确保设备的电气性能稳定,降低故障率。

2.确保安全防护:在高压电气设备中,足够的电气间隙和爬电距离可以防止电弧闪络、击穿等事故,保障人身和设备安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电气间隙与爬电距离
由于煤矿井下空气潮湿、粉尘较多、环境温度较高,严重影响电气设备的绝缘性能
为了避免电气设备由于绝缘强度降低而产生短路电弧、火花放电等现象,对电气设备的爬电距离和电气间隙作出了规定。

电气间隙和爬电距离是既有区别又有联系的两个不同概念。

电气间隙是指两个裸
露的导体之间的最短距离,即:电气设备中有电位差的金属导体之间通过空气的最短距离。

电气间隙通常包括:
(1)带电零件之间以及带电零件与接地零件之间的最短空气距离;
(2)带电零件与易碰零件之间的最短空气距离。

电气间隙应符合表8-1-4 的规定。

只有满足电气间隙的要求,裸露导体之间和它们对地之间才不会发生击穿放电,才
能保证电气设备的安全运行。

爬电距离是指两个导体之间沿其固体绝缘材料表面的最短距离。

也就是在电气设
备中有电位差的相邻金属零件之间,沿绝缘表面的最短距离。

爬电距离是由电气设备的
额定电压、绝缘材料的耐泄痕性能以及绝缘材料表面形状等因素决定的。

额定电压越
高,爬电距离就越大,反之,就越小。

绝缘材料表面施加污染液或污垢杂质之后,在两个电极之间的电场作用下,这些导电液体或污垢杂质将产生微小的火花放电,使绝缘材料
发生局部破坏,那么绝缘材料抵抗这种破坏的能力就称为耐泄痕性能。

防爆电气设备是
在有爆炸危险的场所使用的,环境中含有各种污染液和污垢杂质,设备绝缘材料的耐泄
痕性能是十分重要的。

绝缘材料的耐泄痕性能通常是用耐泄痕指数来表示。

耐泄痕指
数是指固体绝缘材料能够承受50 滴或100 滴以上的电解液而没有形成漏电的最高电
压。

绝缘材料根据相对泄痕指数分为a、b、c、d 个级,a 级最高,d 级最低。

常用绝缘材料耐泄痕指数分级见表8-1-5 。

由此可见,绝缘材料耐泄痕性能越好,爬电距离就越
小,反之越大。

防爆电气设备的最小爬电距离见表8-1-4 。

相关文档
最新文档