电气间隙和爬电距离规定
说说爬电距离和电气间隙

说说爬电距离和电气间隙爬电距离(漏电距离)是在两个导电体之间沿绝缘表面的最短距离要求,而电气间隙是不同带电体之间或带电体与机壳(大地)之间不会发生击穿的安全距离,这两个参数如考虑不周,将会引起电路击穿,绝缘失效。
在确定电气间隙和爬电距离时,应考虑额定电压、污染状况、绝缘材料,表面形状、位置方向、承受电压时间长短等多种使用条件和环境因素,在先进的设备与产品标准中有此规定值。
如低压电器电控设备有以下规定:额定电压“大于300V小于660V”爬电距离为14MM,电气间隙为8MM——摘录自《电气设计禁忌手册》(P576页)主编李辛(李辛:中国电机工业协会秘书长高级工程师)1992。
4。
副主编薜钦琳柴富修机械工业出版社责任编辑:李振标王琳责任校对:丁丽丽1995年9月第一版:1996年9月第二次印刷咱们再看看,有一种低压电器就敢大大地违反这个规定:它是一个“4扁孔三相四线”插座,规格为380V16A上标:CHNT(R)AC30模数化插座A007217浙江囗囗囗囗电器有限公司白色塑料壳绝缘为左右开式(外壳可分为左右两瓣或叫两半儿)不是上下开式或叫上盖下底儿式左右两瓣的连结有的一批用自攻丝螺钉;或有一批使用空心铝管铆钉铆住……外形:上扁孔——竖(长)孔——为零(地)线;下扁孔——横(长)孔——为一个火线(B相);左扁孔——竖孔——为火线(A相);右扁孔——竖孔——为火线(C相)。
打开塑壳,看看内部结构就发现问题了:“左扁孔——A相火线”,与“下扁孔——B相火线”的连结到A、B接线柱的二个铜条之间的距离小得惊人!猜猜它敢小成什么样儿?它才仅仅有4MM!这就是说:它这个“380V16A”的插座的A、B两相间的电气间隙和爬电距离才仅有4MM。
这与上述规定中说的“大于300V小于660V”的电压(380V当在这个范围内)爬电距离应为14MM,电气间隙应为8MM,4MM——→14MM4MM——→8MM,差得多么悬殊!它这样违反规定的后果是什么呢?我曾见到过两例这样的插座在插上插头时爆炸起火团的事例。
电路板的爬电距离和电气间隙是怎么规定的?

一般来说,爬电距离要求的数值比电气间隙要求的数值要大,布线时须同时满足这两者的要求(即要考虑表面的距离,还要考虑空间的距离),开槽(槽宽应大于1mm)只能增加表面距离即爬电距离而不能增加电气间隙,所以当电气间隙不够时,开槽是不能解决这个问题的,开槽时要注意槽的位置、长短是否合适,以满足爬电距离的要求。
4.2.2元件及PCB的电气隔离距离:(电气隔离距离指电气间隙和爬电距离的综合考虑)对于Ⅰ类设备的开关电源(本公司的大部分开关电源均为Ⅰ类设备),在元件及PCB板上的隔离距离如下:(下列数值未包括裕量)a、对于AC—DC电源(以不含有PFC电路及输入额定电压范围为100-240V~为例)电气间隙爬电距离L线-N线(保险管之前) 2.0mm 2.5mm输入-地(整流桥前) 2.0mm 2.5mm输入-地(整流桥后) 2.2mm 3.2mm输入-输出(变压器) 4.4mm 6.4mm输入-输出(除变压器外) 4.4mm 5.5mm输入-磁芯、输出-磁芯 2.0mm 2.5mmb、对于AC—DC电源(以含有PFC电路及输入额定电压范围为100-240V~为例)电气间隙爬电距离L线-N线(保险管之前) 2.0mm 2.5mm输入-地(整流桥前) 2.0mm 2.5mm输入-地(整流桥后) 2.2mm 3.2mm输入-输出(变压器) 5.2mm 9.0mm输入-输出(除变压器外) 4.4mm 6.4mm输入-磁芯、输出-磁芯 2.2mm 3.2mmc、对于DC—DC电源(以输入额定电压范围为36-76V 为例)电气间隙爬电距离(DC+)-(DC-)(保险管之前) 0.7mm 1.4mm输入-地(保险管之前) 0.7mm 1.4mm输入-地(保险管之后) 0.9mm 1.4mm输入-输出(考虑为基本绝缘) 0.9mm 1.4mm输入-输出(考虑为加强绝缘) 1.8mm 2.8mm输入-磁芯、输出-磁芯 0.7mm 1.4mm4.2.3变压器内部的电气隔离距离:变压器内部的电气隔离距离是指变压器两边的挡墙宽度的总和,如果变压器挡墙的宽度为3mm,那么变压器的电气隔离距离值为6mm(两边的挡墙宽度相同)。
爬电距离 电气间隙

爬电距离电气间隙爬电距离与电气间隙概述:在电力系统中,爬电距离和电气间隙都是非常重要的参数。
它们直接影响着设备的安全性能和运行可靠性。
本文将从定义、计算方法、影响因素等方面进行详细介绍。
一、爬电距离1.定义爬电距离是指两个导体之间在空气或其他介质中的最小安全距离,以防止因介质击穿而引起的火花放电。
它通常用于评估设备的安全性能,如开关柜、绝缘子等。
2.计算方法(1)空气介质下的爬电距离:D = K × U^1.2 / F其中,D为爬电距离;K为系数,取决于环境温度和湿度;U为工频交流电压;F为频率。
(2)其他介质下的爬电距离:D = K × U^1.2 / F × k其中,k为介质比值系数。
3.影响因素(1)环境温度和湿度:环境温度越高、湿度越大,导致空气中水分含量增加,从而降低了爬电距离。
(2)介质类型:不同介质的介电常数不同,从而影响爬电距离。
(3)导体形状和表面状态:导体的形状和表面状态会影响放电路径的长度和形状,从而影响爬电距离。
二、电气间隙1.定义电气间隙是指两个导体之间的物理距离,它与爬电距离有所不同。
它通常用于评估设备的可靠性能,如断路器、接触器等。
2.计算方法(1)空气介质下的电气间隙:L = K × U / F其中,L为电气间隙;K为系数,取决于环境温度和湿度;U为工频交流电压;F为频率。
(2)其他介质下的电气间隙:L = K × U / F × k其中,k为介质比值系数。
3.影响因素(1)环境温度和湿度:环境温度越高、湿度越大,导致空气中水分含量增加,从而降低了电气间隙。
(2)导体形状和表面状态:导体的形状和表面状态会影响放电路径的长度和形状,从而影响电气间隙。
(3)介质类型:不同介质的介电常数不同,从而影响电气间隙。
三、爬电距离和电气间隙的比较1.定义上的区别爬电距离是指两个导体之间在空气或其他介质中的最小安全距离,以防止因介质击穿而引起的火花放电。
爬电距离和静电距离的要求

电气间隙和爬电距离(爬电间隙一般被称作电气间隙,因电气间隙决定了爬电情况的发生与否,所以电气间隙也常被称作爬电间隙。
)此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离;电气间隙:在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。
即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。
可见,爬电距离和电气间隙实际是两个相关参数,都是针对电气绝缘性而来。
特别是在继电器、开关等工控产品的选用中,需要遵守相关标准的同时,还要按实际的使用环境要求(气压、污染等),设定合适的爬电距离及电气间隙,以保障人民生命财产安全和电气性能的稳定。
一般选型是按以下步骤进行:1,确定电气间隙步骤确定工作电压峰值和有效值;确定设备的供电电压和供电设施类别;根据过电压类别来确定进入设备的瞬态过电压大小;确定设备的污染等级(一般设备为污染等级2);确定电气间隙跨接的绝缘类型(功能绝缘、基本绝缘、附加绝缘、加强绝缘)。
2,确定爬电距离步骤确定工作电压的有效值或直流值;确定材料组别(根据相比漏电起痕指数,其划分为:Ⅰ组材料,Ⅱ组材料,Ⅲa组材料, Ⅲb组材料。
注:如不知道材料组别,假定材料为Ⅲb组)确定污染等级;确定绝缘类型(功能绝缘、基本绝缘、附加绝缘、加强绝缘)。
3,确定电气间隙要求值根据测量的工作电压及绝缘等级,查表(4943:2H 和2J和2K,60065-2001表:表8和表9和表10)检索所需的电气间隙即可决定距离;作为电气间隙替代的方法,4943使用附录G替换,60065-2001使用附录J替换。
GB 8898-2001:电器间隙考虑的主要因素是工作电压,查图9来确定。
(对和电压有效值在220-250V范围内的电网电源导电连接的零部件,这些数值等于354V峰值电压所对应的那些数值:基本绝缘3.0mm ,加强绝缘6.0mm)4,确定爬电距离要求值根据工作电压、绝缘等级及材料组别,查表(GB 4943为表2L,65-2001中为表11)确定爬电距离数值,如工作电压数值在表两个电压范围之间时,需要使用内差法计算其爬电距离。
ul2231关于爬电距离和电气间隙的标准

一、概述在电气设备的设计、安装和运行过程中,爬电距离和电气间隙是非常重要的指标。
它们直接影响着设备的安全性和可靠性。
制定相关的标准对于保障电气设备的安全运行至关重要。
二、爬电距离的标准1.1 爬电距离的定义爬电距离是指两个导电体之间在一定电压下不发生放电或击穿的最小距离。
它是衡量电气设备绝缘性能的重要指标。
1.2 爬电距离的国际标准国际电工委员会(IEC)制定了《IEC xxx 高电压试验技术空气和气体绝缘的爬电和液体的电气击穿试验》标准,其中规定了不同情况下的爬电距离要求。
1.3 爬电距离的国家标准我国《电气设备爬电距离和电气间隙》标准GB 2423.5-1995对爬电距离做出了详细的规定,包括了不同电压等级下的爬电距禿要求、测量方法等内容。
三、电气间隙的标准2.1 电气间隙的定义电气间隙是指两个导电体之间安装设备时所预留的间距。
合理的电气间隙能够有效防止因接触而引起的放电和击穿现象,保障设备的安全运行。
2.2 电气间隙的国际标准《IEC xxx-3 绝缘配合标准第3部分:耐电压》以及《IEC xxx-4 绝缘的协调-第4部分:在电气设备中所选取的绝缘标准》对于电气间隙的要求做出了规范。
2.3 电气间隙的国家标准我国《含硅树脂零件通用技术条件》GB/T1695-2005中对于电气间隙做出了详细的规定,包括了材料、尺寸等要求。
四、标准的重要性3.1 保障设备的安全性符合爬电距离和电气间隙标准的设备能够有效地防止因接触而导致的放电和击穿现象,从而保障设备在运行过程中的安全性。
3.2 保障设备的可靠性合理的爬电距离和电气间隙能够有效地提高设备的绝缘性能,降低因绝缘失效而引起的故障率,提高设备的可靠性和稳定性。
3.3 促进电气设备的发展制定合理的爬电距禿和电气间隙标准能够推动电气设备领域的技术进步和发展,促进产品质量的提高,为行业的健康发展打下坚实的基础。
五、结论爬电距禿和电气间隙作为电气设备安全性和可靠性的重要指标,其标准制定对于保障设备的安全运行、提高设备的可靠性、促进行业的发展具有重要意义。
电气间隙和爬电距离

安全距离包括电气间隙(空间距离),爬电距离(表面距离)和绝缘穿透距离。
1.电气间隙:两个相邻导体或一根导体与相邻电动机外壳表面之间沿空气测得的最短距离。
2.爬电距离:沿着两条相邻导体或一条导体与相邻电动机壳体表面之间的绝缘表面测得的最短距离电气间隙的确定:根据测得的工作电压和绝缘水平,要求该电气线路的电气间隙可以确定主要方面。
参见表3和表4。
次级侧线路电气间隙的尺寸要求如表5所示。
通常:初级侧AC部分:保险丝LN≥2.5mm之前,Ln PE(接地)≥2.5mm之后,之后对于保险丝装置,没有要求,但要保持一定距离,以免短路损坏电源。
初级侧AC到DC部分≥2.0mm,初级侧DC到地面≥2.5mm(初级侧浮地接地)如果初级侧部分到次级侧部分大于或等于4.0 mm,则间隙一次侧和二次侧之间的距离大于或等于0.5毫米,二次侧和地面之间的距离大于或等于1.0毫米爬电距离的确定:根据工作电压和绝缘等级,爬电距离可参照表6来确定。
但通常:(1)一次侧交流部分:保险丝前LN≥2.5mm,Ln 接地≥2.5mm,保险丝后无要求,但应保持一定距离,以免短路损坏电源。
(2)初级侧的AC到DC部分≥2.0mm(3)例如,如果初级侧到地面的DC接地≥4.0mm,例如初级侧到大地(4),则初级侧到次级侧≥6.4mm,例如光耦合器,y电容器和其他元件,应将脚间距开槽。
(5)二次侧应≥0.5mm1.在质量上有所不同爬电距离:沿着绝缘5261的表面测得的两个导电部分之间的距离4102。
在不同的使用条件下,导体周围的绝缘材料1653带电,这会导致绝缘材料带电区域中的带电现象。
电气间隙:测量两个导电部件之间或导电部件与设备保护接口之间的最短距离。
换句话说,在确保电气性能的稳定性和安全性的前提下,空气可以获得最短的绝缘距离。
2.设置步骤不同电气间隙:(1)确定工作电压的峰值和有效值;(2)确定设备的供电电压和供电设施的类型;(3)设备的暂态过电压根据过电压类别确定;(4)确定设备的污染等级(普通设备的污染等级为2);(5)确定电气间隙交叉的绝缘类型(功能绝缘,基本绝缘,附加绝缘,加强绝缘)。
电气间隙和爬电距离要求

电气间隙和爬电距离设计要求1电气间隙和爬电距离在理论上由承受冲击电压来确定。
一般按电场条件、污染等级、海拔、承受额定电压或冲击电压规定绝缘配合的最小电气间隙和爬电距离。
注:实际上,各种电气设备由于各自的结构特点,运行的微观环境、使用条件不同而情况较为复杂,不同专业的安全标准或产品标准规定的电气间原和爬电距离都有不同程度的差异,但各自在长期的实践中都十分行之有效。
所以电气间除和爬电距离在某种意义上来说,是实践经验的积累。
2 电气间隙应以承受所要求的冲击耐受电压来确定。
对于直接接至低压电网供电的设备,应在综合考虑冲击耐受电压、稳态有效值电压、暂态过电压和再现峰值电压之后,选择最大的电气间隙,电气间隙以承受冲击电压来考核,其优先值为:330V、500V、800V、1500V、2500V4000V、6000V、8000V、1200V。
影响电气设备电气间隙的因素有额定电压和瞬态电压、电场条件、海拔、污秽等级和绝缘的功能。
③确定爬电距离以作用在跨接爬电距离两端的长期电压有效值为基础。
此电压为实际工作电压、额定绝缘电压或额定电压。
瞬态过电压通常不会影响电痕化现象,因此可忽略不计,然而对暂态过电压和功能过电压,如果它们的持续时间和出现的频度对起痕有影响的话,则必须考虑。
④影响电气间隙的环境因素主要有气压和温度(如果变化较大)。
⑤影响爬电距离的环境因素主要有污染、相对湿度和冷凝作用。
2)过电压类别:设计者应确定电气设备的过电压类别。
过电压类别的划分为:过电压类别I的设备是连接至具有限制瞬时过电压至相当低水平措施的电路的设备。
过电压类别Ⅱ的设备是由固定式配电装置供电的耗能设备。
注:此类设备包含如器具、可移动式工具及其他家用和类似用途负载。
③过电压类别Ⅲ的设备是固定式配电装置中的设备,以及设备的可靠性和适用性必须符合特殊要求者。
注:此类设备包含如安装在固定式配电装置中的开关电器和永久连接至固定式配电装置的工业用设备④过电压类别Ⅳ的设备是使用在配电装置电源端的设备;注:此类设备包含如测量仪和前级过电流保护设备。
爬电距离和电器间隙

爬电距离和电器间隙概要:1、爬电距离:两导电部件之间沿绝缘材料表面的最短距离(爬电距离是沿表面计算的,如果是孔的话要绕过去);2、电气间隙:两导电部件之间在空气中的最短距离(空间直线距离)。
黄色路径是爬电距离,蓝色是电气间隙爬电距离和电气间隙:普通灯具交流(50/60HZ)正弦电压的最小距离(GB7000.1—2007表11.1)(普通灯具的爬电距离)工作电压有效值/V 不超过距离/mm 50 150 250 500 750 1000 爬电距离——基本绝缘PTI ?600 0.6 1.4 1.7 3 4 5.5<600 1.2 1.6 2.5 5 8 10 ——附加绝缘PTI ?600 — 3.2 3.6 4.8 6 8 <600 — 3.2 3.6 5 8 9 加强绝缘— 5.5 6.5 9 12 14 电气间隙——基本绝缘 0.2 1.4 1.7 3 4 5.5 ——附加绝缘— 3.2 3.6 4.8 6 8 ——加强绝缘— 5.5 6.5 9 12 14 1)PTI(耐起痕指数)按照IEC60112.IPX1或以上灯具交流(50/60HZ)正弦电压的最小距离(GB7000.1—2007表11.2)(普通灯具的爬电距离和IPX1或更高的灯具)工作电压有效值/V 不超过距离/mm 50 150 250 500 750 1000 爬电距离——基本绝缘PTI ?600 1.5 2 3.2 6.3 10 12.5175?PTI ,600 1.9 2.5 4 8 12.5 16 ——附加绝缘PTI ?600 — 3.2 4 8 12.5 16 加强绝缘— 5.5 6.5 9 12.5 16 电气间隙——基本绝缘 0.8 1.5 3 4 5.5 8 ——附加绝缘— 3.2 3.6 4.8 6 14 ——加强绝缘— 5.5 6.5 9 12 14 1)PTI(耐起痕指数)按照IEC60112.正弦或非正弦脉冲电压的最小值(GB7000.1—2007表11.3)(普通灯具的爬电距离和IPX1或更高的灯具)额定脉冲电压峰值/KV2.0 2.53.04.05.06.0 8.0 10 12 最小电气间隙/mm 1 1.5 2 3 4 5.5 8 11 14额定脉冲电压峰值/KV15 20 25 30 40 50 60 80 100 最小电气间隙/mm 18 25 33 40 60 75 90 130 170 耐起痕指数:指按照规定的方法试验,材料表面能经受住50滴电解液而没有形成漏电痕迹的最高电压值(在绝缘材料商滴氯化铵溶液的同时施加一定的电压值V,在50滴溶液滴完前,电极之间没有出现闪络或击穿现象,此时的电压值V就是耐起痕指数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
12.5
6
420<U<=550
10
12.5
16
8
550<U<=750
12
16
20
10
750<U<=1100
20
25
32
14
1100<U<=2200
32
36
40
30
2200<U<=3300
40
45
50
36
3300<U<=4200
50
56
63
44
4200<U<=5500
63
71
80
50
5500<U<=6600809010060
6600<U<=8300
100
110
125
80
8300<U<=11000
125
140
160
100
注:I类电气设备额定电压1140V的最小爬电距离和最小电气间隙可用线性内插法计算。
电击防护设备分类
类别
设备特征
安全措施
0类
没有保护
使用环境与地绝缘
Ⅰ类
有保护接地
接地线与固定面中的保护(接地)线连接
工作电压U
V
最小爬电距离mm
最小电气间隙mm
材料级别
I II IIIa
U<=15
1.6
1.6
1.6
1.6
15<U<=30
1.8
1.8
1.8
1.8
30<U<=60
2.1
2.6
3.4
2.1
60<U<=110
2.5
3.2
4
2.5
110<U<=175
3.2
4
5
3.2
175<U<=275
5
6.3
8
5
275<U<=420
Ⅱ类
有附加绝缘,不需保护接地
双重绝缘或加强绝缘
Ⅲ类
设计成安全特低压供电
安全特低供电
注:设备防触电保护采用的方式并不反映安全措施。