无机化学知识点归纳
无机化学知识点归纳

第一篇:化学反应原理第一章:气体第一节:理想气态方程1、气体具有两个基本特性:扩散性和可压缩性。
主要表现在:⑴气体没有固定的体积和形状。
⑵不同的气体能以任意比例相互均匀的混合。
⑶气体是最容易被压缩的一种聚集状态。
2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为R =8.31411--⋅⋅K mol J3、只有在高温低压条件下气体才能近似看成理想气体。
第二节:气体混合物1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。
2、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。
3、(0℃=273.15K STP 下压强为101.325KPa = 760mmHg = 76cmHg)第二章:热化学第一节:热力学术语和基本概念1、 系统与环境之间可能会有物质和能量的传递。
按传递情况不同,将系统分为:⑴封闭系统:系统与环境之间只有能量传递没有物质传递。
系统质量守恒。
⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。
⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。
2、 状态是系统中所有宏观性质的综合表现。
描述系统状态的物理量称为状态函数。
状态函数的变化量只与始终态有关,与系统状态的变化途径无关。
3、 系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任何均匀部分叫做相。
相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。
4、 化学计量数()ν对于反应物为负,对于生成物为正。
5、反应进度νξ0)·(n n sai k e t -==化学计量数反应前反应后-,单位:mol 第二节:热力学第一定律0、 系统与环境之间由于温度差而引起的能量传递称为热。
热能自动的由高温物体传向低温物体。
系统的热能变化量用Q 表示。
若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。
无机化学-知识点总结

无机化学-知识点总结关键信息项:1、化学元素周期表周期和族的特点元素的性质规律2、化学键离子键共价键金属键3、化学热力学热力学第一定律热力学第二定律热力学函数4、化学平衡酸碱平衡沉淀溶解平衡氧化还原平衡配位平衡5、化学反应速率影响反应速率的因素反应速率理论6、无机化合物酸碱盐配合物氧化物和氢氧化物7、主族元素碱金属和碱土金属卤素氧族元素氮族元素8、过渡金属元素铬、锰、铁、铜等元素的性质配合物的形成和性质11 化学元素周期表111 周期的特点周期表中的周期是指具有相同电子层数的元素按照原子序数递增的顺序排列的横行。
同一周期的元素从左到右,原子半径逐渐减小,金属性逐渐减弱,非金属性逐渐增强。
112 族的特点族是指具有相似化学性质的元素纵列。
主族元素的族序数等于最外层电子数,副族元素的族序数与价电子排布有关。
113 元素的性质规律包括原子半径、电离能、电子亲和能、电负性等性质在周期表中的变化规律。
原子半径一般随原子序数的增大而呈现周期性变化;电离能反映元素原子失去电子的难易程度,呈周期性递增;电子亲和能表示原子获得电子的倾向,也有一定的周期性;电负性用于衡量原子在化合物中吸引电子的能力,同样具有周期性。
12 化学键121 离子键离子键是由阴阳离子之间的静电引力形成的化学键。
通常在活泼金属与活泼非金属之间形成。
离子键的特点是无方向性和饱和性。
122 共价键共价键是原子之间通过共用电子对形成的化学键。
分为极性共价键和非极性共价键。
共价键具有方向性和饱和性。
123 金属键金属键是金属阳离子与自由电子之间的相互作用。
金属键使得金属具有良好的导电性、导热性和延展性。
13 化学热力学131 热力学第一定律即能量守恒定律,在任何热力学过程中,能量的总量保持不变。
表达式为△U = Q + W,其中△U 为内能的变化,Q 为吸收或放出的热量,W 为做功。
132 热力学第二定律指出在孤立系统中,自发过程总是朝着熵增加的方向进行。
大一无机化学重要知识点

大一无机化学重要知识点一、原子结构和元素周期表1. 原子的组成和结构1.1 常见粒子:质子、中子、电子1.2 质子和中子位于原子核中,电子绕核运动1.3 原子的电荷相互平衡,整体为中性2. 元素和原子序数2.1 元素由同种原子组成,每种元素具有唯一的原子序数 2.2 元素周期表按原子序数排列2.3 周期性表现:周期性重复性质3. 元素的电子排布3.1 电子排布遵循能级、亚能级和配位数规律3.2 主层、次层和轨道的概念3.3 主量子数和角量子数决定电子的能级二、化学键和分子结构1. 化学键的类型1.1 离子键:电子转移形成离子1.2 共价键:电子共享形成分子1.3 金属键:金属离子形成金属结晶 1.4 杂化键:共价键和离子键的混合2. 分子结构的确定2.1 分子式和化学式的区别2.2 利用共价键和亲电性确定分子结构 2.3 氢键和范德华力对分子结构的影响三、化学反应和化学平衡1. 化学反应的基本概念1.1 反应物、生成物和化学方程式1.2 反应物摩尔比和反应物的相对分子质量 1.3 反应的热力学和动力学过程2. 化学平衡和平衡常数2.1 平衡的定义和特征2.2 反应速率和反应速率常数2.3 平衡常数和化学平衡表达式3. 影响化学平衡的因素3.1 温度、压力和浓度的影响3.2 Le Chatelier原理的应用3.3 平衡常数与化学反应的倾向性四、氧化还原反应1. 氧化还原反应的基本概念1.1 氧化和还原的定义1.2 氧化态和还原态的变化1.3 氧化还原反应的氧化数法和电子转移法2. 氧化还原反应的应用2.1 电化学反应和电池2.2 腐蚀和防腐蚀措施2.3 氧化还原反应在工业上的应用五、酸碱中和反应1. 酸碱的概念和性质1.1 酸和碱的定义1.2 酸碱的强度和pH值1.3 酸性、碱性和中性溶液的判断2. 酸碱中和反应2.1 酸碱强度对中和反应的影响2.2 阻滞力和酸碱中和滴定原理2.3 酸碱中和反应在生活和工业中的应用六、配位化合物1. 配位化合物的基本概念1.1 配位键和配体的定义1.2 配位数和配体的选择1.3 配位生活和配位离子的形成2. 配位化合物的性质和应用2.1 配位化合物的颜色和磁性2.2 配位反应和配位化学计量法2.3 配位化合物在医学和生物学中的应用以上是大一无机化学的重要知识点,通过对这些知识的深入学习和理解,能够为后续的学习打下坚实的基础。
无机化学知识点归纳

无机化学知识点归纳1、常见酸、碱、盐的溶解性规律:限于中学常见范围内,不全面① 酸:只有硅酸H2SiO3或原硅酸h4sio4是不溶的,而其他是可溶的;②碱:只有naoh、koh、baoh2可溶,caoh2微溶,其它均难溶。
③ 盐:钠盐、钾盐、铵盐和硝酸盐可溶;硫酸盐:仅硫酸钡、硫酸铅难溶、硫酸钙、硫酸银微溶,其它均可溶;氯化物:只有氯化银是不溶的,其他的是可溶的;碳酸盐、亚硫酸盐、硫化物:仅它们的钾、钠、铵盐可溶。
④ 磷酸二氢几乎可溶,而磷酸氢和磷酸的正盐只溶于钾、钠和铵。
⑤碳酸盐的溶解性规律:正盐若易溶,则其碳酸氢盐的溶解度小于正盐如碳酸氢钠溶解度小于碳酸钠;正盐若难溶,则其碳酸氢盐的溶解度大于正盐如碳酸氢钙的溶解度大于碳酸钙。
2.气体的溶解度:①极易溶于水的气体:hx、nh3② 溶于水但不易溶解的气体:O2微溶,co21:1,cl21:2h2s1:2.6、so21:40③ 不溶于水的常见气体:H2、N2、no、Co、CH4、C2H4、C2H2④氯气难溶于饱和nacl溶液,因此可用排饱和nacl溶液收集氯气,也可用饱和nacl 溶液吸收氯气中的氯化氢杂质。
3.硫磺和白磷P4不溶于水,微溶于乙醇,易溶于二硫化碳。
4、卤素单质cl2、br2、i2在水中溶解度不大,但易溶于酒精、汽油、苯、四氯化碳等有机溶剂,故常用有机溶剂来萃取水溶液中的卤素单质注意萃取剂的选用原则:不互溶、不反应,从难溶向易溶;酒精和裂化汽油不可做萃取剂。
5.大多数有机化合物不溶于水,但溶于有机溶剂。
它在水中的溶解度很小:碳氢化合物、卤代烃、酯类和多糖不溶于水;醇、醛、羧酸和低聚糖可溶于水。
乙醇、乙醛和乙酸可与水以任何比例混溶,但其溶解度随分子中烃基的增加而降低;苯酚在低温下不易溶于水,但其溶解度随温度升高而增加。
当温度高于70℃时,可与水以任何比例混溶。
6、相似相溶原理:极性溶质易溶于极性溶剂,非极性溶质易溶于非极性溶剂。
1.有色气体的元素物质:F2浅黄绿、Cl2黄绿、O3浅蓝色2、其他有色单质:br2深红色液体、i2紫黑色固体、s淡黄色固体、cu紫红色固体、au金黄色固体、p白磷是白色固体,红磷是赤红色固体、si灰黑色晶体、c黑色粉未3.无色气体单质:N2、O2、H2、稀有气体单质4、有色气体化合物:no25.黄色固体:s、FeS2、傻瓜金、黄金、Na2O2、Ag3PO4、AgBr、AGI6、黑色固体:feo、fe3o4、mno2、c、cus、pbs、cuo最常见的黑色粉末为mno2和c7.红色固体:feoh3、Fe2O3、Cu2O、Cu8、蓝色固体:五水合硫酸铜胆矾或蓝矾化学式:9.绿色固体:七水硫酸亚铁绿色明矾化学式:10、紫黑色固体:kmno4、碘单质。
无机化学知识点归纳

无机化学知识点归纳无机化学是无机化合物化学的总称,是化学的一个分支。
它研究的内容包括元素周期律、原子结构、分子结构、化学键、化合物的性质和反应等。
无机化学的知识点非常多,下面我将详细介绍其中的一些重要知识点。
一、元素周期律元素周期律是无机化学的基础,它是指元素性质的周期性变化与元素原子序数的周期性变化之间的关系。
元素周期律的主要内容包括元素周期表、元素周期律的类型、元素周期律的解释等。
1.元素周期表元素周期表是元素周期律的具体表现形式,它将元素按照原子序数从小到大排列,并按照元素性质的周期性变化分为周期和族。
元素周期表中,周期是指元素原子核外电子层数相同的横行,族是指元素原子核外最外层电子数相同的纵列。
2.元素周期律的类型元素周期律主要有四种类型:原子半径周期律、电负性周期律、离子半径周期律和熔点、沸点周期律。
3.元素周期律的解释元素周期律的实质是元素原子结构与元素性质之间的关系。
原子结构包括原子核的电荷数、电子层数、最外层电子数等,元素性质包括原子半径、电负性、离子半径、熔点、沸点等。
元素周期律的周期性变化是由于元素原子核外电子排布的周期性变化所引起的。
二、原子结构与化学键1.原子结构原子结构是指原子核和核外电子的排布。
原子核由质子和中子组成,质子数决定了元素的原子序数,核外电子的排布决定了元素的化学性质。
2.化学键化学键是指原子之间通过共享或转移电子而形成的相互作用。
化学键的主要类型有离子键、共价键、金属键和氢键。
三、化合物的性质和反应1.化合物的性质化合物的性质包括物理性质和化学性质。
物理性质包括颜色、状态、密度、熔点、沸点等,化学性质包括氧化性、还原性、酸碱性、稳定性等。
2.化学反应化学反应是指物质在化学变化过程中所发生的一系列变化。
化学反应的主要类型有合成反应、分解反应、置换反应、复分解反应等。
四、无机化合物的分类无机化合物可以根据其结构和性质分为多种类型,如氧化物、酸、碱、盐、氢氧化物、硫化物等。
无机化学 基本知识点总结

无机化学基本知识点总结一、原子结构1. 原子的组成原子是由质子、中子和电子组成的。
质子和中子位于原子核中,电子围绕原子核运动。
2. 元素的原子序数和质量数原子序数表示元素的质子数,而质量数表示元素的质子数和中子数之和。
原子序数决定了元素的化学性质,而质量数决定了元素的同位素。
3. 电子结构原子的电子结构决定了元素的化学性质。
电子在原子内的分布遵循一定的规律,即电子遵循能级分布,并且填充规律是按照“2-8-18-32”规则进行填充。
二、元素周期表1. 周期表的性质元素周期表是根据元素的化学性质和原子结构而排列的。
周期表中的元素按照原子序数排列,具有周期性。
2. 元素的周期性规律元素周期表中的元素具有周期性规律,即元素的周期表现出周期性变化。
这种周期性变化可以通过元素的原子结构和电子的排布规律来解释。
三、化学键1. 化学键的形成化学键是由原子之间的相互作用形成的。
化学键的形成使得原子之间形成更加稳定的结构,从而形成化合物。
2. 化学键的类型化学键主要包括离子键、共价键和金属键。
离子键是正负离子之间的电荷吸引力,共价键是原子间电子的共享,金属键是金属原子之间的电子云共享。
3. 极性与非极性化学键化学键可以分为极性和非极性两种。
极性化学键是由于原子电负性差距所产生的电荷分布不均匀的现象,而非极性化学键则是由于原子电负性相等而产生的电荷分布均匀的现象。
四、晶体结构1. 晶体结构的定义晶体结构是指晶体中原子、离子或者分子的排列规律和空间结构。
不同的元素或化合物在晶体中具有不同的晶体结构。
2. 晶体结构的分类晶体结构主要可以分为离子晶体、共价分子晶体和金属晶体。
离子晶体是由正负离子通过离子键结合而形成的,共价分子晶体是由共价键结合而形成的,而金属晶体则是由金属键结合而形成的。
五、酸碱性质1. 酸碱的定义酸是指能够释放出H+离子的物质,而碱则是指能够释放出OH-离子的物质。
酸碱的定义主要有布朗斯特德理论和劳里亚-布隆斯特德理论。
无机化学经典知识点

一,含氧酸强度1,R-O-H规则:含氧酸在水溶液中的强度决定于酸分子中质子转移倾向的强弱,质子转移倾向越大,酸性越强,反之则越弱。
而质子转移倾向的难易程度,又取决于酸分子中R吸引羟基氧原子的电子的能力,当R的半径较小,电负性越大,氧化数越高时,R吸引羟基氧原子的能力强,能够有效的降低氧原子上的电子密度,使O-H键变弱,容易放出质子,表现出较强的酸性,这一经验规律称为R-O-H 规律。
1)同一周期,同种类型的含氧酸(如HnRO4),其酸性自左向右依次增强。
如:HClO4>H2SO4>H3PO4>H4SiO42)同一族中同种类型的含氧酸,其酸性自上而下依次减弱。
如:HClO>HBrO>HIO 3)同一元素不同氧化态的含氧酸,高氧化态含氧酸的酸性较强,低氧化态含氧酸的酸性较弱。
如:HClO4>HClO3>HClO2>HClO2,Pauling规则:含氧酸的通式是RO n(OH)m,n为非氢键合的氧原子数(非羟基氧),n值越大酸性越强,并根据n值把含氧酸分为弱酸(n=0),中强酸(n=1),强酸(n=2),极强酸(n=3)四类。
因为酸分子中非羟基氧原子数越大,表示分子中R→O配键越多,R的还原性越强,多羟基中氧原子的电子吸引作用越大,使氧原子上的电子密度减小的越多,O-H键越弱,酸性也就越强。
注意:应用此规则时,只能使用结构式判断,而不能使用最简式。
3,含氧酸脱水“缩合”后,酸分子内的非氢键合的氧原子数会增加,导致其酸性增强,多酸的酸性比原来的酸性强。
二,含氧酸稳定性1,同一元素的含氧酸,高氧化态的酸比低氧化态的酸稳定。
如:HClO4>HClO3>HClO2>HClO2,氧化还原性:1)同一周期主族元素和过渡元素最高价含氧酸氧化性随原子序数递增而增强。
如:H4SiO4<H3PO4<H2SO4<HClO4,V2O5<Cr2O72-<MnO4-2)相应价态,同一周期的主族元素的含氧酸氧化性大于副族元素。
无机化学知识点归纳

无机化学知识点归纳无机化学是研究无机物质的性质、组成、结构和反应等方面的科学。
在化学的多个分支中,无机化学基础知识是非常重要的,它涵盖了许多不同的知识点。
本篇文章将对常见的无机化学知识点进行归纳和总结,包括元素周期表、化学键、酸碱中和、氧化还原反应和无机物质的性质等。
一、元素周期表元素周期表是无机化学知识的基础,它将元素按照原子序数的增加顺序进行排列,使得元素的周期性规律得以展现。
根据元素周期表,我们可以获得元素的周期性趋势,如原子半径的变化、电离能的变化以及元素化合价的规律等。
二、化学键在无机化学中,化学键是连接原子的重要概念。
根据原子之间电子的转移和共享,化学键可以分为离子键、共价键和金属键等。
离子键是通过电荷吸引力连接正负离子的键,共价键是共享电子对的键,而金属键则是由金属原子之间电子云的重叠形成的。
三、酸碱中和酸碱中和是无机化学中的核心内容之一。
酸碱中和反应是指酸和碱反应生成盐和水的化学反应。
在酸碱中和反应中,通常可以观察到酸的氢离子与碱的氢氧根离子结合形成水,同时生成盐。
酸碱指示剂可以用于判断酸碱中和的程度,常见的指示剂包括酚酞、甲基橙和溴酚蓝等。
四、氧化还原反应氧化还原反应,简称红ox反,是无机化学中重要的反应类型。
氧化还原反应指物质中发生电子的转移过程,其中电子的失去被称为氧化,而电子的获得则被称为还原。
在氧化还原反应中,氧化剂是获得电子的物质,而还原剂是失去电子的物质。
氧化还原反应也是许多能量转化过程的基础,如电池和燃烧等。
五、无机物质的性质无机物质具有多种不同的性质,其中包括物理性质和化学性质。
物理性质包括颜色、熔点、沸点和硬度等,而化学性质则涉及其与其他物质进行反应的能力。
无机物质的酸碱性质、溶解性和晶体结构都是无机化学中的重要性质。
在无机化学的学习过程中,我们需要理解这些基本概念和知识点,才能更好地理解无机化学的各种现象和反应。
同时,无机化学还与其他学科相互联系,如有机化学、物理化学和生物化学等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇:化学反应原理第一章:气体第一节:理想气态方程1、气体具有两个基本特性:扩散性和可压缩性。
主要表现在:⑴气体没有固定的体积和形状。
⑵不同的气体能以任意比例相互均匀的混合。
⑶气体是最容易被压缩的一种聚集状态。
2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为R =8.31411--⋅⋅K mol J3、只有在高温低压条件下气体才能近似看成理想气体。
第二节:气体混合物1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。
2、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。
3、(0℃=273.15K STP 下压强为101.325KPa = 760mmHg = 76cmHg)第二章:热化学第一节:热力学术语和基本概念1、 系统与环境之间可能会有物质和能量的传递。
按传递情况不同,将系统分为:⑴封闭系统:系统与环境之间只有能量传递没有物质传递。
系统质量守恒。
⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。
⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。
2、 状态是系统中所有宏观性质的综合表现。
描述系统状态的物理量称为状态函数。
状态函数的变化量只与始终态有关,与系统状态的变化途径无关。
3、 系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任何均匀部分叫做相。
相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。
4、 化学计量数()ν对于反应物为负,对于生成物为正。
5、反应进度νξ0)·(n n sai k e t -==化学计量数反应前反应后-,单位:mol 第二节:热力学第一定律0、 系统与环境之间由于温度差而引起的能量传递称为热。
热能自动的由高温物体传向低温物体。
系统的热能变化量用Q 表示。
若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。
1、 系统与环境之间除热以外其他的能量传递形式,称为功,用W 表示。
环境对系统做功,W>O ;系统对环境做功,W<0。
2、 体积功:由于系统体积变化而与环境交换的功称为体积功。
非体积功:体积功以外的所有其他形式的功称为非体积功。
3、 热力学能:在不考虑系统整体动能和势能的情况下,系统所有微观粒子的全部能量之和称为热力学能,又叫能。
4、 气体的标准状态—纯理想气体的标准状态是指其处于标准压力θP 下的状态,混合气体中某组分气体的标准状态是该组分气体的分压为θP 且单独存在时的状态。
液体(固体)的标准状态—纯液体(或固体)的标准状态时指温度为T ,压力为θP 时的状态。
液体溶液中溶剂或溶质的标准状态—溶液中溶剂可近似看成纯物质的标准态。
在溶液中,溶质的标准态是指压力θP P =,质量摩尔浓度θb b =,标准质量摩尔浓度11-⋅=kg mol b θ,并表现出无限稀释溶液特性时溶质的(假想)状态。
标准质量摩尔浓度近似等于 标准物质的量浓度。
即11-⋅=≈L mol c b θθ5、 物质B 的标准摩尔生成焓θm f H ∆(B,相态,T )是指在温度T 下,由参考状态单质生成物质B (1+=B ν)反应的标准摩尔焓变。
6、 参考状态一般指每种物质在所讨论的温度T 和标准压力θP 时最稳定的状态。
个别情况下参考状态单质并不是最稳定的,磷的参考状态是白磷4P (s,白),但白磷不及红磷和黑磷稳定。
O 2(g)、H 2(g)、Br 2(l)、I 2(s)、Hg(l)和P 4(白磷)是T=298.15K ,θP 下相应元素的最稳定单质,即其标准摩尔生成焓为零。
7、 在任何温度下,参考状态单质的标准摩尔生成焓均为零。
8、 物质B 的标准摩尔燃烧焓θm c H ∆(B ,相态,T )是指在温度T 下,物质B(1-=B ν)完全氧化成相同温度下指定产物时的反应的标准摩尔焓变。
第四节:Hess 定律1、 Hess 定律:化学反应不管是一步或分几步完成,其总反应所放出或吸收的热总是相等的。
其实质是化学反应的焓变只与始态和终态有关,而与途径无关。
2、 焓变基本特点:⑴某反应的θm r H ∆(正)与其逆反应的θm r H ∆(逆)数值相等,符号相反。
即θm r H ∆(正)=-θm r H ∆(逆)。
⑵始态和终态确定之后,一步反应的θm r H ∆等于多步反应的焓变之和。
3、 多个化学反应计量式相加(或相减),所得化学反应计量式的θm r H ∆(T )等于原各计量式的θm r H ∆(T )之和(或之差)。
第五节:反应热的求算1、 在定温定压过程中,反应的标准摩尔焓变等于产物的标准摩尔生成焓之和减去反应物的标准摩尔生成焓之和。
θm r H ∆=θm f H ∆(总生成物)-θm f H ∆(总反应物){如果有参考状态单质,则其标准摩尔生成焓为零}2、 在定温定压过程中,反应的标准摩尔焓变等于反应物的标准摩尔燃烧焓之和减去产物的标准摩尔燃烧焓之和 。
θm r H ∆=θm c H ∆(总反应物)-θm c H ∆(总生成物){参考状态单质只适用于标准摩尔生成焓,其标准摩尔燃烧焓不为零}第三章:化学动力学基础第一节:反应速率第二节:浓度对反应速率的影响—速率方程1、 对化学反应zZ yY bB aA +→+来说,反应速率r 与反应物浓度的定量关系为:βαB A C kc r =,该方程称为化学反应速率定律或化学反应速率方程,式中k 称为反应速率系数,表示化学反应速率相对大小;A c ,B c 分别为反应物A 和B 的浓度,单位为1-⋅L mol ;α,β分别称为A ,B 的反应级数;βα+称为总反应级数。
反应级数可以是零、正整数、分数,也可以是负数。
零级反应得反应物浓度不影响反应速率。
(反应级数不同会导致k 单位的不同。
对于零级反应,k 的单位为11--⋅⋅s L mol ,一级反应k 的单位为1-s ,二级反应k 的单位为11--⋅⋅s L mol ,三级反应k 的单位为122--⋅⋅s L mol )2、 由实验测定反应速率方程的最简单方法—初始速率法。
在一定条件下,反应开始时的瞬时速率为初始速率,由于反应刚刚开始,逆反应和其他副反应的干扰小,能较真实的反映出反应物浓度对反应速率的影响具体操作是将反应物按不同组成配置成一系列混合物。
对某一系列不同组成的混合物来说,先只改变一种反应物A 的浓度。
保持其他反应物浓度不变。
在某一温度下反应开始进行时,记录在一定时间间隔A 的浓度变化,作出t c A -图,确定t=0是的瞬时速率。
也可以控制反应条件,是反应时间间隔足够短,这时可以把平均速率作为瞬时速率。
3、对于一级反应,其浓度与时间关系的通式为:㏑kt A c A c t -=0 第三节:温度对反应速率的影响—Arrhenius 方程1、 速率系数与温度关系方程:()a ek k RT E a -=0,㏑{k }=㏑{0k }-()b RT E a , ㏑()c T T RT E k k a ⎪⎪⎭⎫ ⎝⎛-=211211,a E 实验活化能,单位为1-⋅mol KJ 。
0k 为指前参量又称频率因子。
0k 与k 具有相同的量纲。
a E 与0k 是两个经验参量,温度变化不大时视为与温度无关。
2、 对Arrhenius 方程的进一步分析:⑴在室温下,a E 每增加41-⋅mol KJ ,将使k 值降低80%。
在室温相同或相近的情况下,活化能a E 大的反应,其速率系数k 则小,反应速率较小;a E 小的反应k 较大,反应速率较大。
⑵对同一反应来说,温度升高反应速率系数k 增大,一般每升高10℃,k 值将增大2~10倍。
⑶对同一反应来说,升高一定温度,在高温区,k 值增大倍数小;在低温区k 值增大倍数大。
因此,对一些在较低温度下进行的反应,升高温度更有利于反应速率的提高。
⑷对于不同的反应,升高相同温度,a E 大的反应k 值增大倍数大;a E 小的反应k 值增大倍数小。
即升高温度对进行的慢的反应将起到更明显的加速作用。
第四节:反应速率理论与反应机理简介1、m r H ∆=a E (正)-a E (负)2、由普通分子转化为活化分子所需要的能量叫做活化能第五节:催化剂与催化作用1、 催化剂是指存在少量就能显著加速反应而本身最后并无损耗的物质。
催化剂加快反应速率的作用被称为催化作用。
2、 催化剂的特征:⑴催化剂只对热力学可能发生的反应起催化作用,热力学上不可能发生的反应,催化剂对它不起作用。
⑵催化剂只改变反应途径(又称反应机理),不能改变反应的始态和终态,它同时加快了正逆反应速率,缩短了达到平衡所用的时间,并不能改变平衡状态。
⑶催化剂有选择性,不同的反应常采用不同的催化剂,即每个反应有它特有的催化剂。
同种反应如果能生成多种不同的产物时,选用不同的催化剂会有利于不同种产物的生成。
⑷每种催化剂只有在特定条件下才能体现出它的活性,否则将失去活性或发生催化剂中毒。
第四章:化学平衡 熵和Gibbs 函数第一节:标准平衡常数1、平衡的组成与达成平衡的途径无关,在条件一定时,平衡的组成不随时间而变化。
平衡状态是可逆反应所能达到的最大限度。
平衡组成取决于开始时的系统组成。
2、对可逆反应()()()()()()l zZ aq yY g xX s cC aq bB g aA ++=++来说,其标准平衡常数(){}(){}(){}(){}b a yx c B c p A p c Y c p x p K θθθθθ=3、两个或多个化学计量式相加(或相减)后得到的化学计量式的标准平衡常数等于原各个化学计量式的化学平衡常数的积(或商),这称为多重平衡原理。
第二节:标准平衡常数的应用1、反应进度也常用平衡转化率来表示。
反应物A 的平衡转化率()A α表达式为()()()()A n A n A n A eq 00-=α 2、J 表示反应商。
若J<θK 则反应正向进行;若J=θK ,则反应处于平衡状态;若J>θK ,则反应逆向进行。
第三节:化学平衡的移动1、浓度对化学平衡的影响:浓度虽然可以使化学平衡发生移动,但并不能改变化学平衡常数的数值,因为在一定温度下,θK 值一定。
当反应物浓度增加或产物浓度减少时,平衡正向移动;当反应物浓度减少或产物浓度增加时,平衡逆向移动。
2、压力对化学平衡的影响:综合考虑各反应物和产物分压是否改变及反应前后气体分子数是否改变。
3、温度对化学平衡都影响:温度变化引起标准平衡常数的改变,从而使化学平衡移动。
温度对标准平衡常数的影响用van ’t Hoff 方程描述。
㏑⎪⎪⎭⎫ ⎝⎛-∆=211211T T R H K K m r θθθ第四节:自发变化和熵1、自发变化的基本特征:⑴在没有外界作用或干扰的情况下,系统自身发生的变化称为自发变化。