2017年八年级下册数学期中测试题

合集下载

2017人教版八年级数学下册期中试卷含答案

2017人教版八年级数学下册期中试卷含答案

期中测试(时间:90分钟 满分:120分)一、选择题☎每小题 分,共 分✆ .☎南通中考✆若⌧-在实数范围内有意义,则⌧的取值范围是☎ ✆✌.⌧≥ .⌧≥- .⌧>.⌧≠.一直角三角形的两直角边长为 和 ,则斜边长为☎ ✆✌.  .  .  . .如图,在▱✌中,已知✌= ♍❍,✌= ♍❍,✌☜平分 ✌交 边于点☜,则☜等于☎ ✆ ✌. ♍❍ . ♍❍ . ♍❍ . ♍❍.下列计算错误的是☎ ✆✌  =    =  ♋+ ♋= ♋ . - = .如图,点 是平面坐标系内一点,则点 到原点的距离是☎ ✆ ✌. .下列根式中,是最简二次根式的是☎ ✆ ✌♌♋- ♌⌧ -⍓  ♋♌ .如图,已知四边形✌是平行四边形,下列结论中不正确的是☎ ✆✌.当✌= 时,它是菱形 .当✌时,它是菱形.当 ✌= °时,它是矩形 .当✌= 时,它是正方形.已知菱形✌中,对角线✌与 交于点 ,∠ ✌= °,✌= ,则该菱形的面积是☎✆✌.  .  . ..如图,在四边形✌中,✌= ,∠✌= ✌= °, ☜⊥✌于点☜,且四边形✌的面积为 ,则 ☜=☎✆✌. . . ..如图所示,✌☎- , ✆, ☎, ✆分别为⌧轴,⍓轴上的点,△✌为等边三角形,点 ☎,♋✆在第一象限内,且满足  ✌= △✌,则♋的值为☎✆✌ .二、填空题☎每小题 分,共 分✆.已知☎⌧-⍓+ ✆ + -⍓= ,则⌧+⍓=♉♉♉♉♉♉♉♉♉♉♉♉..如图,已知 ✌中,✌= ♍❍, =  ♍❍,✌=  ♍❍,那么✌边上的中线 的长为♉♉♉♉♉♉♉♉♉♉♉♉♍❍.☎郴州中考✆如图,在矩形✌中,✌= , = ,☜是✌上一点,将矩形✌沿 ☜折叠后,点 落在✌边的点☞上,则 ☞的长为♉♉♉♉♉♉♉♉♉♉♉♉..如图,已知在 ♦△✌中,∠✌= °,✌= ,分别以✌, 为直径作半圆,面积分别记为 , ,则 + 等于♉♉♉♉♉♉♉♉♉♉♉♉..如图所示,直线♋经过正方形✌的顶点✌,分别过顶点 , 作 ☜♋于点☜, ☞⊥♋于点☞,若 ☜= , ☞= ,则☜☞的长为♉♉♉♉♉♉♉♉♉♉♉♉..如图,在图 中,✌ , , 分别是 ✌的边 , ✌,✌的中点,在图 中,✌ , , 分别是 ✌ 的边 , ✌ ,✌ 的中点,…,按此规律,则第⏹个图形中平行四边形的个数共有♉♉♉♉♉♉♉♉♉♉♉♉个.三、解答题☎共 分✆ .☎分✆计算: ☎✆ + - -; ☎✆ - +☎- ✆☎+✆..☎分✆在解答❽判断由长为 , ,的线段组成的三角形是不是直角三角形”一题中,小明是这样做的: 解:设♋= ,♌= ,♍= 又因为♋ +♌ =☎ ✆ + =  ♊ =♍ , 所以由♋,♌,♍组成的三角形不是直角三角形,你认为小明的解答正确吗?请说明理由..☎分✆如图,铁路上✌, 两点相距  ❍, , 为两村庄, ✌⊥✌于点✌, ⊥✌于点 ,已知 ✌=  ❍, =  ❍,现在要在铁路✌上建一个土特产品收购站☜,使得 , 两村到☜站的距离相等,则☜站应建在离✌站多少 ❍处?.☎分✆如图,☜,☞,☝,☟分别是边✌, , , ✌的中点. ☎✆判断四边形☜☞☝☟的形状,并证明你的结论;☎✆当 ,✌满足什么条件时,四边形☜☞☝☟是正方形.☎不要求证明✆.☎分✆如图,四边形✌是一个菱形绿地,其周长为  ❍,∠✌= °,在其内部有一个四边形花坛☜☞☝☟,其四个顶点恰好在菱形✌各边的中点,现在准备在花坛中种植茉莉花,其单价为 元 ❍ ,请问需投资金多少元?☎结果保留整数✆.☎分✆如图,在▱✌中,☜为 的中点,连接✌☜并延长交 的延长线于点☞☎✆求证:✌= ☞;☎✆当 与✌☞满足什么数量关系时,四边形✌☞是矩形,并说明理由..☎分✆如图,在 ♦△✌中,∠ = °,✌=  ♍❍,∠✌= °,点 从点 出发沿 ✌方向以 ♍❍秒的速度向点✌匀速运动,同时点☜从点✌出发沿✌方向以 ♍❍秒的速度向点 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点 ,☜运动的时间是♦秒☎♦♎✆.过点 作 ☞于点☞,连接 ☜,☜☞☎✆求证:✌☜= ☞;☎✆四边形✌☜☞能够成为菱形吗?如果能,求出相应的♦值;如果不能,请说明理由;☎✆当♦为何值时,△ ☜☞为直角三角形?请说明理由.参考答案.    ✌          π   ⏹ .☎✆原式= + - -=  ☎✆原式= - + + - - = -+ .小明的解答是错误的.设♋= ,♌= ,♍= 因为♋♍♌,且♋ +♍ =☎ ✆ +☎✆ =♌ ,所以由♋,♌,♍组成的三角形是直角三角形..设✌☜=⌧ ❍,则 ☜=☎-⌧✆❍,∵ ☜= ☜,又 在 ✌☜和 ☜中, ✌⊥✌于点✌, ⊥✌于点 ,∴⌧ +  =  +☎-⌧✆ 解得⌧= ☜站应建在离✌站  ❍处. .解:☎✆四边形☜☞☝☟是平行四边形.证明: ☜,☞分别是边✌ , 的中点,∴☜☞∥✌,且☜☞=✌ 同理:☟☝✌,且☟☝=✌☜☞☟☝,且☜☞=☟☝四边形☜☞☝☟是平行四边形.☎✆当 =✌且 ✌时,四边形☜☞☝☟是正方形..连接 ,✌∵菱形✌的周长为  ❍,∴菱形✌的边长为  ❍.∵∠✌= °,∴△✌,△ 是等边三角形. 对角线 =  ❍,✌=  ❍.∵☜,☞,☝,☟是菱形✌各边的中点,∴四边形☜☞☝☟是矩形,矩形的边长分别为 ❍, ❍.∴矩形☜☞☝☟的面积为  =  ☎❍ ✆,即需投资金为  =  ☟☎元✆.答:需投资金为 元. .☎✆证明: 四边形✌是平行四边形,∴✌∥ ☞∴∠ ✌☞= ☞✌☜为 的中点,∴ ☜= ☜又 ✌☜= ☞☜,∴△✌☜≌△☞☜☎✌✌✆. ✌= ☞☎✆当 =✌☞时,四边形✌☞是矩形.理由如下:由☎✆,得✌= ☞,∵✌∥ ☞,∴四边形✌☞是平行四边形. =✌☞,∴四边形✌☞是矩形..☎✆证明:在 ☞中,∠ ☞= °,∠ = °, = ♦,∴ ☞= ♦又 ✌☜= ♦,∴✌☜= ☞☎✆能.理由如下: ✌, ☞⊥ ,∴✌☜∥ ☞又 ✌☜= ☞,∴四边形✌☜☞为平行四边形.当四边形✌☜☞为菱形时,✌☜=✌=✌- 即 - ♦= ♦,解得♦= 当♦= 秒时,四边形✌☜☞为菱形.☎✆♊当 ☜☞= °时,由☎✆知四边形✌☜☞为平行四边形,∴☜☞∥✌,∴∠✌☜= ☜☞= ° ∵∠✌= °,∴∠✌☜= ° ∴✌= ✌☜=♦又✌= - ♦,即 - ♦=♦,解得♦= ;♋当 ☜☞= °时,四边形☜☞为矩形,在 ♦△✌☜中,∠✌= °,则∠✌☜= °,∴✌= ✌☜,即 - ♦= ♦,解得♦= ;♌若 ☜☞= ,则☜与 重合, 与✌重合,此种情况不存在.故当♦= 或 秒时,△ ☜☞为直角三角形.。

2017—2018学年度第二学期八年级数学期中试卷(含答案)

2017—2018学年度第二学期八年级数学期中试卷(含答案)

2017—2018学年度第二学期期中教学质量评估测试八年级数学试卷题号一 二 三 总分 得分注意事项:全卷共120分,考试时间120分钟.一、选择题:(每小题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .B .C .D . 2.下列计算正确的是( ).A.2(3)9=B .822÷=C .236⨯=D .2(2)2-=-3. 下列各组数中,能构成直角三角形的是( )A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,23 4. 在Rt△ABC 中,△C =90°,△B =45°,c =10,则a 的长为( )A. B. C.5 D.5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是( ) A. AB=BC,CD=DA B. AB//CD,AD=BC C. AB//CD,C A ∠=∠ D.D C B A ∠=∠∠=∠, 6.正方形面积为36,则对角线的长为( ) A.B .6C .9D. 7.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m8.如图,在平行四边形ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分△BAD 交BC 边于点E ,则EC 等于( )A .1cmB .2cmC .3cmD .4cm9.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .2410.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12二、填空题:(每小题3分,共30分)11. 木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 .(填“合格”或“不合格” ) 12.若式子 在实数范围内有意义,则 的取值范围是 .13.在数轴上表示实数a 的点如图所示,化简()2-a 5-a 2+的结果为______.14.计算()2252-的结果是________.15.一个直角三角形的两边长分别为4与5,则第三边长为________.16.平行四边形ABCD 中一条对角线分△A 为35°和45°,则△B= 度. 17. 如右图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则EF= cm . 18. 在△ABC 中,△C=90°,AC=12,BC=16,则AB 边上的中线CD 为 .19.在平面直角坐标系中,点A (﹣1,0)与点B (0,2)的距离是 . 20.对于任意不相等的两个数a ,b ,定义一种运算△如下:a△b = ,座号得 分 评卷人 题号1 2 3 4 5 6 7 8 9 10 答案得 分 评卷人学校 年级 姓名 学号密封线内不要答题八年级 数学 第1页 (共6页) 八年级 数学 第2页 (共6页)212510252612-+x x x 8.04529a b a b+-如3△2= =5.那么12△4= .三.解答题:(本大题共60分)21. (6分)(共2小题,每小题3分)(1) (2)22.(8分)若最简二次根式31025311x x y x y -+--+和是同类二次根式. (1)求x y 、的值; (5分) (2)求22y x +的值.(3分)23.(7分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. ( 4分)(2)求这块地的面积.(3分)24. (8分)如图,四边形ABCD 中,AC ,BD 相交于点O ,O 是AC 的中点,AD △BC ,AC =8,BD =6.(1)求证:四边形ABCD 是平行四边形; (4分) (2)若AC △BD ,求平行四边形ABCD 的面积. (4分)25 . (8分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE .过点C 作CF △BD 交线段OE 的延长线于点F ,连接DF . 求证:(1)△ODE △△FCE (4分)(2)四边形ODFC 是菱形 (4分)得 分 评卷人DACB八年级 数学 第3页 (共6页) 八年级 数学 第4页 (共6页)3232+-)227(328--+5232232⨯÷26.(8分)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). (1)四边形EFGH 的形状是 ,证明你的结论;(4分)(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形(不证明)(2分) (3)你学过的哪种特殊四边形的中点四边形是矩形? (不证明)(2分)27.(6分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口 小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?28.(9分)观察下列等式: △ △ + = △……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2分) (2)利用你观察到的规律,化简:(3分)(3)计算: + + +……+(4分)八年级 数学 第5页 (共6页) 八年级 数学 第6页 (共6页)23321+211+231+34)34)(34(34341-=-+-=+231+1031+)23)(23(23-+-23-2017—2018学年度第二学期期中教学质量评估测试八年级数学参考答案一、选择题1.D 2.B 3. B 4.A 5.C 6. A 7.C 8.B 9.D 10. C 二、填空题11.合格 12.x ≥﹣2且x ≠1 13. 3 14. 15.3或41 16.100 17 . 2.5 18. 10 19. . 20.1.2三、解答题:(共60分)21(1)解: + 2 ﹣(﹣ ) =2 +2 ﹣3 + ------(2分) =3 ﹣ ------(3分) (2)解: ÷ ×== ------(2分)= -------(3分) 22.(1)x=4,y=3;(5分) (2)5 (3分) 解:(1)由题意得:3x-10=2 , ---------(2分)2x+y-5=x-3y+11 ----------(4分)解得x=4 y=3 --------(5分)(2)当x=4 , y=3时22y x += =5 -----(3分) 23.解(1)以点A 、点B 、点C 为顶点的三角形是直角三角形(4分)(2)这块地的面积24m 2. (3分) 解:(1)连接AC . -------(1分) 由勾股定理可知:AC=---(2分)又∵AC 2+BC 2=52+122=132=AB 2--------(3分) ∴△ABC 是直角三角形 --------(4分) (2)这块地的面积=△ABC 的面积-△ACD 的面积 ----(1分)=×5×12- ×3×4 --- (2分) =24(m 2). ----(3分)24. (1)证明:∵O 是AC 的中点,∴OA =OC. ------(1分) ∵AD ∥BC ,∴∠DAO =∠BCO. -------(2分) 又∵∠AOD =∠COB ,∴△AOD ≌△COB ,(ASA ) -----------------(3分) ∴OD =OB ,∴四边形ABCD 是平行四边形 --------------(4分) (2)∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形 ---------------(2分)∴ ABCD 的面积= AC •BD = ×8×6=24 ---------------(4分)25 .证明:(1)∵CF ∥BD ∴∠ODE=∠FCE----------------(1分)∵E 是CD 中点 ∴CE=DE , -------------------(2分) 在△ODE 和△FCE 中2222435AD CD +=+=12121222410.-1.232322528528332⨯⨯10110102234+32722332235∴△ODE ≌△FCE (ASA ) --------------(4分) (2)∵△ODE ≌△FCE ∴OD=FC , -------------(1分) 又∵CF ∥BD , ∴四边形ODFC 是平行四边形-----(2分)∵矩形ABCD ∴AC=BD OC= AC,OD= BD ∴ OC=OD ----------------(3分)∴四边形ODFC 是菱形. -----------------------(4分) 26(1)平行四边形;(4分)(2)互相垂直(2分)(3)菱形.(2分)(1)证明:连结BD . -------------------- (1分)∵E 、H 分别是AB 、AD 中点,∴EH ∥BD ,EH= BD , ----------------------(2分)同理FG ∥BD ,FG= BD , ---------------------(3分)∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形 --------------------------(4分) 27. 解:根据题意,得PQ=16×1.5=24(海里) - -----------(1分)PR=12×1.5=18(海里) -----------(2分) QR=30(海里)∵242+182=302, 即PQ 2+PR 2=QR 2∴∠QPR=90°. ----------------(4分) 由“远洋号”沿东北方向航行可知∠QPS=45°,则∠SPR=45°(5分) 即“海天”号沿西北方向航行. -------(6分)28. (1)(2)2311- (3)解:(1)第n 个等式 (2分)(2)原式=1121123111211=-=-+. (3分)原式=2-1+3-2+4-3+……+10-9=10-1 ( 4分)12121212=-+++=++)1)(1(11n n n n n n 101nn -+1=-+++=++)1)(1(11n n n n n n nn -+1n n -+1n n -+1。

2017-2018学年度第二学期八年级下册 期中数学试卷(有答案和解析)

2017-2018学年度第二学期八年级下册 期中数学试卷(有答案和解析)

2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在二次根式中,字母x的取值范围是()A. B. C. D.2.若x=1是方程x2-ax+3=0的一个根,那么a值为()A. 4B. 5C.D.3.下列计算正确的是()A. B. C. D.4.A. 14,13B. 15,13C. 14,14D. 14,155.一个n边形的内角和等于它的外角和,则n=()A. 3B. 4C. 5D. 66.某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A. B.C. D.7.如图O是边长为9的等边三角形ABC内的任意一点,且OD∥BC,交AB于点D,OF∥AB,交AC于点F,OE∥AC,交BC于点E,则OD+OE+OF的值为()A. 3B. 6C. 8D. 98.关于x的方程(a-6)x2-8x+6=0有实数根,则a的取值范围是()A. 且B. 且C.D. 且9.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A. B. C. D.10.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(本大题共6小题,共24.0分)11.标本-1,-2,0,1,2,方差是______.12.若整数满足,则的值为________.13.若x=-2是关于x的方程x2-2ax+8=0的一个根,则方程的另一个根为______.14.已知m是一元二次方程x2-9x+1=0的解,则=______.15.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______m.16.如图在△ABC中,∠BAC=30°,AB=AC=6,M为AC边上一动点(不与A,C重合),以MA、MB为一组邻边作平行四边形MADB,则平行四边形MADB的对角线MD的最小值是______.三、计算题(本大题共1小题,共8.0分)17.(1)已知x=2+,y=2-,求(+)(-)的值.(2)若的整数部分为a,小数部分为b,写出a,b的值并计算-ab的值.四、解答题(本大题共6小题,共58.0分)18.解方程:(1)2x2-x=0(2)(x-1)(2x+3)=1.19.某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有______名同学参加这次测验;(2)这次测验成绩的中位数落在______分数段内;(3)若该校一共有800名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?20.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.(1)写出正确结论的序号;(2)证明所有正确的结论.21.银隆百货大楼服装柜在销售中发现:“COCOTREE”牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.22.如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形.(1)请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)(2)如图2,请再说出两种画角平分线的方法(要求画出图形,并说明你使用的工具和依据)23.如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:二次根式中,字母x的取值范围是:x-3>0,解得:x>3.故选:B.直接利用二次根式的性质分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】A【解析】解:把x=1代入x2-ax+3=0得1-a+3=0,解得a=4.故选:A.根据一元二次方程的解的定义把x=1代入x2-ax+3=0中得到关于a的方程,然后解关于a的一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【答案】A【解析】解:A、-=2-=,故本选项正确.B、+≠,故本选项错误;C、×=,故本选项错误;D、÷==2,故本选项错误.故选:A.根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.4.【答案】A【解析】解:将这组数据按大小顺序,中间一个数为13,则这组数据的中位数是13;=(24+15+13+10+8)÷5=14.故选:A.根据中位数和平均数的定义求解即可.本题为统计题,考查平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.【答案】B【解析】解:由题可知(n-2)•180=360,所以n-2=2,n=4.故选:B.利用等量关系式以及多边形内角和公式解答.根据题意列出方程即可.本题主要考查的是多边形的内角和与外角和,熟练掌握多边形的内角和与外角和公式是解题的关键.6.【答案】B【解析】【分析】主要考查增长率问题,一般用"增长后的量=增长前的量×(1+增长率)",如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产280台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.【解析】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:100(1+x),三月份生产机器为:100(1+x)2;又知二、三月份共生产280台;所以,可列方程:100(1+x)+100(1+x)2=280.故选B.7.【答案】D【解析】【分析】根据等边三角形,平行线的性质,和平行四边形的判定,并根据等腰梯形性质求解.本题考查了等边三角形的性质,关键是利用了:1、等腰三角形的性质和判定:三边相等,三角均为60度,有两角相等且为60度的三角形是等边三角形;2、平行四边形的判定的性质;3、等腰梯形的判定和性质.【解答】解:延长OD交AC于点G,∵OE∥CG,OG∥CE,∴四边形OGCE是平行四边形,有OE=CG,∠OGF=∠C=60°,∵OF∥AB,∴∠OFG=∠A=60°,∴OF=OG,∴△OGF是等边三角形,∴OF=FG,∵OD∥BC,∴∠ADO=∠B=60°∴梯形OFAD是等腰梯形,有OD=AF,即OD+OE+OF=AF+FG+CG=AC=9.8.【答案】C【解析】解:当a-6=0时,原方程为-8x+6=0,解得:x=,∴a=6符合题意;当a-6≠0时,有,解得:a≤且a≠6.综上所述,a的取值范围为:a≤.故选:C.分a-6=0和a-6≠0两种情况考虑:当a-6=0时,通过解一元一次方程可得出原方程有解,进而可得出a=6符合题意(此时已经可以确定答案了);当a-6≠0时,由二次项系数非零及根的判别式△≥0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围.综上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及解一元一次方程,分a-6=0和a-6≠0两种情况考虑是解题的关键.9.【答案】C【解析】解:∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y=kx+b,则,解得,所以直线l的解析式为y=x-1.根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.10.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②符合题意;在∴△ABC≌△EAD(SAS);①符合题意;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;④符合题意.若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不符合题意;∴①②④符合题意,故选:B.由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确.此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.11.【答案】2【解析】解:∵==0,∴方差S2=×[(1-0)2+(2-0)2+(0-0)2+(-1-0)2+(-2-0)2]=2.故答案为:2.先计算出平均数,再根据方差的公式计算.本题考查方差的定义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.【答案】4【解析】解:∵2=,3=,∴整数n满足2<n<3,则n的值为=4.故答案为4.直接得出n最接近的二次根式,进而得出答案.此题主要考查了估算无理数的大小,正确将原数转化是解题关键.13.【答案】-4【解析】解:设方程的另一个根为x1,根据根与系数的关系有:-2x1=8,解得x1=-4.故答案为:-4.设出方程的另一个根,利用根与系数关系中的两根之积可以求出方程的另一个根.本题考查的是一元二次方程的解,知道方程的一个根,用根与系数关系中的两根的积可以求出方程的另一个根.14.【答案】17【解析】解:∵m是一元二次方程x2-9x+1=0的解,∴m2-9m+1=0,∴m2-7m=2m-1,m2+1=9m,∴=2m-1+=2(m+)-1,∵m2-9m+1=0,∴m≠0,在方程两边同时除以m,得m-9+=0,即m+=9,∴=2(m+)-1=2×9-1=17.故答案是:17.将x=m代入该方程,得m2-9m+1=0,通过变形得到m2-7m=2m-1,m2+1=9m;然后在方程m2-9m+1=0两边同时除以m,得到m+=9,代入即可求得所求代数式的值.此题主要考查了方程解的定义.此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15.【答案】2【解析】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,由已知得:(30-3x)•(24-2x)=480,整理得:x2-22x+40=0,解得:x1=2,x2=20,当x=20时,30-3x=-30,24-2x=-16,不符合题意舍去,即x=2.答:人行通道的宽度为2米.故答案为2.设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.16.【答案】3【解析】解:如图,作BH⊥AC于H.在Rt△ABH中,∵AB=6,∠BHA=90°,∠BAH=30°,∴BH=AB=3,∵四边形ADBM是平行四边形,∴BD∥AC,∴当DM⊥AC时,DM的值最小,此时DM=BH=3,故答案为3.如图,作BH⊥AC于H.因为四边形ADBM是平行四边形,所以BD∥AC,所以当DM⊥AC时,DM的值最小,此时DM=BH.本题考查直角三角形30度角性质、等腰三角形的性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)原式=-==,∵x=2+,y=2-,∴x+y=4、y-x=-2、xy=1,则原式==-8;(2)∵2<<3,∴a=2、b=-2,∴-ab=-2(-2)=+2-2+4=6-.【解析】(1)将原式变形为,再根据x、y的值计算出y+x、y-x、xy的值,继而代入可得;(2)由题意得出a、b的值,代入计算可得.本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.18.【答案】解:(1)2x2-x=0,x(2x-)=0,则x=0或2x-=0,解得x1=0,x2=;(2)(x-1)(2x+3)=1,2x2+x-4=0,解得:x1=,x2=.【解析】(1)提取公因式x,即可得到x(2x-)=0,再解两个一元一次方程即可;(2)先转化为一般式方程,然后利用因式分解法解方程.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.19.【答案】40;70.5~80.5【解析】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是800×=380(人).(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案;(3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.20.【答案】解:(1)正确结论是①④,(2)①在△ABC和△ADC中,∵ ,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;【解析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,结论①可以利用等边对等角,由等量加等量和相等来解决.21.【答案】解:(1)设每件童装应降价x元,由题意得:(100-60-x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,答:每件童装应定价80元.(2)1200不是最高利润,y=(100-60-x)(20+2x)=-2x 2+60x+800=-2(x-15)2+1250故当降价15元,即以85元销售时,最高利润值达1250元.【解析】(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,用每件盈利×销售量=每天盈利,列方程求解.为了扩大销售量,x应取较大值.(2)设每天销售这种童装利润为y,利用(1)中的关系列出函数关系式,利用配方法解决问题.此题考查了二次函数的应用以及一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售这种童装利润,进而列方程与函数关系解决实际问题.22.【答案】解:(1)如图2,OP为所作;(2)方法一:如图1,利用有刻度的直尺画出AB的中点M,则OM为∠AOB的平分线;方法二:如图3,利用圆规和直尺作∠AOB的平分线ON,【解析】(1)利用AB、EF,填空相交于点P,如图2,利用平行四边形的性质得到PA=PB,然后根据等腰三角形的性质可判断OP平分∠AOB;(2)方法一:如图1,利用有刻度的直尺和腰三角形的性质画图;方法二:如图3,利用圆规和直尺,根据基本作图作∠AOB的平分线ON.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质和等腰三角形的性质.23.【答案】解:(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,∴PD=12-t,在Rt△PDC中,PC=,CD=5,根据勾股定理得,PC2=CD2+PD2,∴29=52+(12-t)2,∴t=10或t=14(舍).即:t的值为10s;(3)假设存在t,使得S△PMD=S△ABC.∵BC=10,AD=12,∴S△ABC=BC×AD=60,①若点M在线段CD上,即0≤t<时,PD=12-t,DM=5-2t,由S△PMD=S△ABC,即(12-t)(5-2t)=,2t2-29t+43=0解得t1=(舍去),t2=②若点M在射线DB上,即<t<12.由S△PMD=S△ABC得(12-t)(2t-5)=,2t2-29t+77=0解得t=11或t=综上,存在t的值为s或 11s或s,使得S△PMD=S△ABC.【解析】(1)根据等腰三角形性质和勾股定理解答即可;(2)根据勾股定理建立方程求解即可;(3)根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,三角形的面积公式,解本题的关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.。

2017年八年级下学期期中数学试卷两套合集五附答案解析

2017年八年级下学期期中数学试卷两套合集五附答案解析

2017年八年级下学期期中数学试卷两套合集五附答案解析八年级(下)期中数学试卷一、选择题(共10小题,每题3分,总分值30分)1.以下各式中不是二次根式的是()A.B.C.D.2.化简的结果正确的选项是()A.﹣2 B.2 C.±2 D.43.以下二次根式中,最简二次根式是()A.B.C.D.4.在Rt△ABC中,∠A=90°,BC=13cm,AC=5cm,那么第三边AB的长为()A.18cm B.12cm C.8cm D.6cm5.知足以下条件的三角形中,不是直角三角形的是()A.三内角之比为3:4:5 B.三边之比为1:1:C.三边长别离为5、13、12 D.有两锐角别离为32°、58°6.一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88°7.假设一个菱形的边长为2,那么那个菱形两条对角线的平方和为()A.16 B.8 C.4 D.18.△ABC中,AB=15,AC=13,高AD=12,那么△ABC中BC边的长为()A.9 B.5 C.4 D.4或149.如图,在▱ABCD中,已知AD=6cm,AB=8cm,CE平分∠BCD交BC边于点E,那么AE的长为()A.2cm B.4cm C.6cm D.8cm10.如图,直线l过正方形ABCD的极点B,点A、C至直线l的距离别离为2和3,那么此正方形的面积为()A.5 B.6 C.9 D.13二、填空题(共6小题,每题3分,总分值18分)11.已知:+|b﹣1|=0,那么(a+b)2016的值为.12.已知直角三角形的两边长为3、2,那么另一条边长的平方是.13.某楼梯的侧面视图如下图,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,那么在AB段楼梯所铺地毯的长度应为米.14.如下图,已知▱ABCD,以下条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC 中,能说明▱ABCD是矩形的有(填写序号).15.如图,在▱ABCD中,E、F别离是AD、DC的中点,假设△CEF的面积为3,那么▱ABCD的面积为.16.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,假设P、Q 别离是AD和AC上的动点,那么PC+PQ的最小值是.三、解答题(共8小题,总分值72分)17.计算(1)2﹣++(2)÷(﹣)×.18.如图,网格中每一个小正方形的边长都为1,(1)求四边形ABCD的面积;(2)求∠BCD的度数.19.阅读下面的文字后,回答下列问题:甲、乙两人同时解答题目:“化简并求值:,其中a=5.”甲、乙两人的解答不同;甲的解答是:;乙的解答是:.(1)的解答是错误的.(2)错误的解答在于未能正确运用二次根式的性质:.(3)仿照上题解答:化简并求值:,其中a=2.20.小强想明白学校旗杆的高,他发觉旗杆端的绳索垂到地面还多1米,当他把绳索的下端拉开5米后(即BC=5米),发觉下端恰好接触地面,你能帮他算出来吗?假设能,请你计算出AC的长.21.嘉淇同窗要证明命题“两组对边别离相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的方式写出证明;(3)用文字表达所证命题的逆命题为.22.如图,四边形ABCD是正方形,F别离是DC和BC的延长线上的点,且DE=BF,连结AE,AF,EF.(1)求证:△ADE≌△ABF;(2)假设BC=8,DE=6,求EF的长.23.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:AO=CO;(2)假设∠OCD=30°,AB=,求△AOC的面积.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)假设D为AB中点,那么当∠A的大小知足什么条件时,四边形BECD是正方形?请说明你的理由.参考答案与试题解析一、选择题(共10小题,每题3分,总分值30分)1.以下各式中不是二次根式的是()A.B.C.D.【考点】二次根式的概念.【分析】依照二次根式的被开方数是非负数,可得答案.【解答】解:被开方数是非负数,故C不是二次根式,应选:C.2.化简的结果正确的选项是()A.﹣2 B.2 C.±2 D.4【考点】二次根式的性质与化简.【分析】依照=|a|计算即可.【解答】解:原式=|﹣2|=2.应选B.3.以下二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方式,确实是逐个检查最简二次根式的两个条件是不是同时知足,同时知足的确实是最简二次根式,不然就不是.【解答】解:A、=,被开方数含分母,不是最简二次根式;故A选项错误;B、=,被开方数为小数,不是最简二次根式;故B选项错误;C、,是最简二次根式;故C选项正确;D. =5,被开方数,含能开得尽方的因数或因式,故D选项错误;应选C.4.在Rt△ABC中,∠A=90°,BC=13cm,AC=5cm,那么第三边AB的长为()A.18cm B.12cm C.8cm D.6cm【考点】勾股定理.【分析】依照勾股定理:在任何一个直角三角形中,两条直角边长的平方之和必然等于斜边长的平方进行计算即可.【解答】解:∵∠A=90°,BC=13cm,AC=5cm,∴AB===12(cm),应选:B.5.知足以下条件的三角形中,不是直角三角形的是()A.三内角之比为3:4:5 B.三边之比为1:1:C.三边长别离为5、13、12 D.有两锐角别离为32°、58°【考点】勾股定理的逆定理.【分析】依照三角形内角和定理和勾股定理的逆定理判定是不是为直角三角形.【解答】解:A、依照三角形内角和定理,求得各角别离为45°,60°,75°,因此此三角形不是直角三角形;B、三边符合勾股定理的逆定理,因此其是直角三角形;C、52+122=132,符合勾股定理的逆定理,因此是直角三角形;D、依照三角形内角和定理,求得第三个角为90°,因此此三角形是直角三角形;应选A.6.一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A.88°,108°,88°B.88°,104°,108°C.88°,92°,92° D.88°,92°,88°【考点】平行四边形的判定.【分析】两组对角别离相等的四边形是平行四边形,依照所给的三个角的度数能够求出第四个角,然后依照平行四边形的判定方式验证即可.【解答】解:两组对角别离相等的四边形是平行四边形,故B不是;当三个内角度数依次是88°,108°,88°时,第四个角是76°,故A不是;当三个内角度数依次是88°,92°,92°,第四个角是88°,而C中相等的两个角不是对角故C错,D中知足两组对角别离相等,因此是平行四边形.应选D.7.假设一个菱形的边长为2,那么那个菱形两条对角线的平方和为()A.16 B.8 C.4 D.1【考点】菱形的性质.【分析】依照菱形的对角线相互垂直平分,即菱形被对角线平分成四个全等的直角三角形,依照勾股定理,即可求解.【解答】解:设两对角线长别离是:a,b.那么(a)2+(b)2=22.那么a2+b2=16.应选A.8.△ABC中,AB=15,AC=13,高AD=12,那么△ABC中BC边的长为()A.9 B.5 C.4 D.4或14【考点】勾股定理.【分析】分两种情形讨论:锐角三角形和钝角三角形,依照勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故BC长为14或4.应选:D.9.如图,在▱ABCD中,已知AD=6cm,AB=8cm,CE平分∠BCD交BC边于点E,那么AE的长为()A.2cm B.4cm C.6cm D.8cm【考点】平行四边形的性质.【分析】利用平行四边形的性质和角平分线的性质得出∠BEC=∠BCE,进而得出BE=BC=6cm,再依照AE=AB﹣BE计算即可.【解答】解:∵在▱ABCD中,AB∥CD,AB=CD=8cm,BC=AD=6cm,∴∠DCE=∠BEC,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠BEC=∠BCE,∴BE=BC=6cm,∴AE=AB﹣BE=2cm,应选:A.10.如图,直线l过正方形ABCD的极点B,点A、C至直线l的距离别离为2和3,那么此正方形的面积为()A.5 B.6 C.9 D.13【考点】正方形的性质;全等三角形的判定与性质.【分析】第一证明△ABE≌△BCF,推出AE=BF,EB=CF,再利用勾股定理求出AB2,即可解决问题.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠ABE+∠CBF=90°,∠ABE+∠BAE=90°,∴∠BAE=∠CBF,∵AE⊥EF,CF⊥EF,∴∠AEB=∠CFB=90°,在△ABE和△BCF中,,∴△ABE≌△BCF,∴AE=BF=2,EB=CF=3,∴AB2=AE2+EB2=22+32=13,∴正方形ABCD面积=AB2=13.应选D.二、填空题(共6小题,每题3分,总分值18分)11.已知: +|b﹣1|=0,那么(a+b)2016的值为 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】依照非负数的性质别离求出a、b的值,代入代数式计算即可.【解答】解:由题意得,a+2=0,b﹣1=0,解得,a=﹣2,b=1,那么(a+b)2016=1,故答案为:1.12.已知直角三角形的两边长为3、2,那么另一条边长的平方是13或5 .【考点】勾股定理.【分析】依照勾股定理,分两种情形讨论:①直角三角形的两条直角边长别离为3、2;②当斜边为3时,进而取得答案.【解答】解:设第三边长为c,①直角三角形的两条直角边长别离为3、2,那么c2=32+22=13;②当斜边为4时,c2=32﹣22=5.故答案为13或5.13.某楼梯的侧面视图如下图,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,那么在AB段楼梯所铺地毯的长度应为(2+2)米.【考点】解直角三角形的应用-坡度坡角问题.【分析】求地毯的长度实际是求AC与BC的长度和,利用勾股定理及相应的三角函数求得相应的线段长即可.【解答】解:依照题意,Rt△ABC中,∠BAC=30°.∴BC=AB÷2=4÷2=2,AC==2,∴AC+BC=2+2,即地毯的长度应为(2+2)米.14.如下图,已知▱ABCD,以下条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有(填写序号)①④.【考点】矩形的判定;平行四边形的性质.【分析】矩形是特殊的平行四边形,矩形有而平行四边形没有的特点是:矩形的四个内角是直角;矩形的对角线相等且相互平分;可依照这些特点来选择条件.【解答】解:能说明▱ABCD是矩形的有:①对角线相等的平行四边形是矩形;④有一个角是直角的平行四边形是矩形.15.如图,在▱ABCD中,E、F别离是AD、DC的中点,假设△CEF的面积为3,那么▱ABCD 的面积为24 .【考点】平行四边形的性质.【分析】由平行四边形的性质得出△ABC的面积=△ADC的面积=平行四边形ABCD的面积,由中点的性质得出△DEF的面积=△CEF的面积=3,△ACE的面积=△CDE的面积=6,求出△ADC的面积=2△CDE的面积=12,即可得出▱ABCD的面积.【解答】解:连接AC,如下图:∵四边形ABCD是平行四边形,∴△ABC的面积=△ADC的面积=平行四边形ABCD的面积,∵E、F别离是AD、DC的中点,△CEF的面积为3,∴△DEF的面积=△CEF的面积=3,△ACE的面积=△CDE的面积=3+3=6,∴△ADC的面积=2△CDE的面积=12,∴▱ABCD的面积=2△ADC的面积=24;故答案为:24.16.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,假设P、Q别离是AD 和AC上的动点,那么PC+PQ的最小值是 2.4 .【考点】轴对称-最短线路问题.【分析】如图作CQ′⊥AB于Q′交AD于点P,作PQ⊥AC现在PC+PQ最短,利用面积法求出CQ′即可解决问题.【解答】解:如图,作CQ′⊥AB于Q′交AD于点P,作PQ⊥AC现在PC+PQ最短.∵PQ⊥AC,PQ′⊥AB,AD平分∠CAB,∴PQ=PQ′,∴PQ+CP=PC+PQ′=CQ′∴现在PC+PQ最短(垂线段最短).在RT△ABC中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵•AC•BC=•AB•CQ′,∴CQ′===2.4.∴PC+PQ的最小值为2.4.故答案为2.4.三、解答题(共8小题,总分值72分)17.计算(1)2﹣++(2)÷(﹣)×.【考点】二次根式的混合运算.【分析】(1)先把各个二次根式依照二次根式的性质化为最简二次根式,归并同类二次根式即可;(2)依照二次根式的乘除运算法那么计算即可.【解答】解:(1)原式=2﹣2++=3﹣;(2)原式=×(﹣)×=﹣=﹣=9.18.如图,网格中每一个小正方形的边长都为1,(1)求四边形ABCD的面积;(2)求∠BCD的度数.【考点】勾股定理;三角形的面积;勾股定理的逆定理.【分析】(1)利用正方形的面积减去四个极点上三角形及小正方形的面积即可;(2)连接BD,依照勾股定理的逆定理判定出△BCD的形状,进而可得出结论.=5×5﹣1﹣×1×4﹣×1×2﹣×2×4﹣×1×5=24﹣2﹣1【解答】解:(1)S四边形ABCD﹣4﹣=;(2)连BD,∵BC=2,CD=,BD=5,BC2+CD2=BD2,∴∠BCD=90°.19.阅读下面的文字后,回答下列问题:甲、乙两人同时解答题目:“化简并求值:,其中a=5.”甲、乙两人的解答不同;甲的解答是:;乙的解答是:.(1)甲的解答是错误的.(2)错误的解答在于未能正确运用二次根式的性质:=|a|,当a<0时, =﹣a .(3)仿照上题解答:化简并求值:,其中a=2.【考点】二次根式的化简求值.【分析】(1)当a=5时,1﹣3a<0,甲求的算术平方根为负数,错误;(2)二次根式的性质, =|a|,当a<0时, =﹣a;(3)将被开方数写成完全平方式,先判定当a=2时,1﹣a,1﹣4a的符号,再去绝对值,代值计算.【解答】解:(1)当a=5时,甲没有判定1﹣3a的符号,错误的选项是:甲;(2)=|a|,当a<0时, =﹣a.(3)|1﹣a|+=|1﹣a|+.∵a=2,∴1﹣a<0,1﹣4a<0,∴原式=a﹣1+4a﹣1=5a﹣2=8.20.小强想明白学校旗杆的高,他发觉旗杆端的绳索垂到地面还多1米,当他把绳索的下端拉开5米后(即BC=5米),发觉下端恰好接触地面,你能帮他算出来吗?假设能,请你计算出AC的长.【考点】勾股定理的应用.【分析】依照题意设旗杆的高AC为x米,那么绳索AB的长为(x+1)米,再利用勾股定理即可求得AC的长,即旗杆的高.【解答】解:设AC=x,那么AB=x+1,在Rt△ACB中,由勾股定理得:(x+1)2=x2+25,解得x=12(米),故:旗杆的高AC为12米.21.嘉淇同窗要证明命题“两组对边别离相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB= CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的方式写出证明;(3)用文字表达所证命题的逆命题为平行四边形两组对边别离相等.【考点】平行四边形的判定;命题与定理.【分析】(1)命题的题设为“两组对边别离相等的四边形”,结论是“是平行四边形”,依照题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,依照两组对边别离平行的四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边别离相等的四边形是平行四边形”的题设和结论对换可得平行四边形两组对边别离相等.【解答】解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(3)用文字表达所证命题的逆命题为:平行四边形两组对边别离相等.22.如图,四边形ABCD是正方形,F别离是DC和BC的延长线上的点,且DE=BF,连结AE,AF,EF.(1)求证:△ADE≌△ABF;(2)假设BC=8,DE=6,求EF的长.【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】(1)依照正方形性质得出∠ADE=∠ABC=90°=∠ABF,依照SAS推出全等即可;(2)依照全等三角形的性质求出BF=6,求出CF和CE,依照勾股定理求出即可.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ADE=∠ABC=90°=∠ABF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,DE=6,∴BF=DE=6,∵BC=DC=8,∴CE=8﹣6=2,CF=8+6=14,在Rt△FCE中,EF===10.23.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:AO=CO;(2)假设∠OCD=30°,AB=,求△AOC的面积.【考点】矩形的性质;全等三角形的判定与性质;翻折变换(折叠问题).【分析】(1)由矩形的性质和折叠的性质证明∠DAC=∠ECA,即可取得AO=CO;(2)第一求出AO,CO的长,再由三角形面积公式计算即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠BCA,又由折叠可知:∠BCA=∠ECA,∴∠DAC=∠ECA,∴OA=OC;(2)在Rt△COD中,∠D=90°∠OCD=30°∴OD=OC,又∵AB=CD=,∴(OC)2=OC2﹣()2,∴OC=2,∴AO=OC=2,∴S=AO•CD=×2×=△AOC24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)假设D为AB中点,那么当∠A的大小知足什么条件时,四边形BECD是正方形?请说明你的理由.【考点】正方形的判定;平行四边形的判定与性质;菱形的判定.【分析】(1)先求出四边形ADEC是平行四边形,依照平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,依照菱形的判定推出即可;(3)求出∠CDB=90°,再依照正方形的判定推出即可.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.八年级(下)期中数学试卷一、选择题(本部份共12小题,每题3分,共36分,每题只有一个选项正确)1.已知a>b,以下不等式中正确的选项是()A.a+3<b+3 B.a﹣1<b﹣1 C.﹣a>﹣b D.>2.以下各式从左到右,不是因式分解的是()A.x2+xy+1=x(x+y)+1 B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4xy+4y2=(x﹣2y)2D.ma+mb+mc=m(a+b+c)3.以下多项式中,不能运用平方差公式因式分解的是()A.﹣m2+4 B.﹣x2﹣y2C.x2y2﹣1 D.(m﹣a)2﹣(m+a)24.将一把直尺与一把三角板如图那样放置,假设∠1=35°,∠2的度数是()A.65° B.70° C.75° D.80°5.已知点P(3﹣m,m﹣1)在第二象限,那么m的取值范围在数轴上表示正确的选项是()A.B.C.D.6.以下图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.假设a﹣b=2,ab=3,那么ab2﹣a2b的值为()A.6 B.5 C.﹣6 D.﹣58.等腰三角形两边长别离为4和8,那么那个等腰三角形的周长为()A.16 B.18 C.20 D.16或209.若是关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣110.已知△ABC中,求作一点P,使P到∠A的两边的距离相等,且PB=PC,那么以下确信P 点的方式正确的选项是()A.P是∠A与∠B两角平分线的交点B.P是AC、AB两边上中垂线的交点C.P是∠A的角平分线与BC的中垂线的交点D.P是∠A的角平分线与AB的中垂线的交点11.某校举行关于“爱惜环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,那么他至少答对的题数是()A.17 B.16 C.15 D.1212.如下图,在△ABC中,已知点D,E,F别离为边BC,AD,CE的中点,且S△ABC=4cm2,那么S阴影等于()A.2cm2B.1cm2C. cm2D. cm2二、填空题(此题共4小题,每题3分,共12分)13.分解因式:4x2﹣8x+4=______.14.如图,△ABC中,AD⊥BC,AE是∠BAC的平分线,∠B=60°,∠BAC=84°,那么∠DAE=______.15.如图,已知一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),那么不等式kx1+b1<kx2+b2的解集是______.16.如图,已知Rt△ABC中,AC⊥BC,∠B=30°,AB=10,过直角极点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A1⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,如此一直做下去,取得了一组线段A1C1,A2C2,…,那么A1C1=______;那么A 3C3=______;那么AnCn=______.三、解答题(此题共7小题,共52分)17.计算:(1)解不等式:x﹣(2x﹣1)≤3(2)解不等式组:,并把它的解集在数轴上表示出来.(3)因式分解:﹣4a2x+12ax﹣9x.18.先因式分解,再求值:4x(m﹣1)﹣3x(m﹣1)2,其中x=,m=3.19.如图,方格纸中的每一个小方格都是边长为1个单位的正方形,在成立平面直角坐标系后,Rt△OAB的B点在第三象限,到x轴的距离为3,到y轴的距离为4,直角极点A在y轴,画出△OAB.①点B的坐标是______;②把△OAB向上平移5个单位后取得对应的△O1A1B1,画出△O1A1B1,点B1的坐标是______;③把△OAB绕原点O按逆时针旋转90°,画出旋转后的△O2A2B2,点B2的坐标是______.20.如图,在Rt△ABC中,∠C=90°,∠A=30°,∠ABC=60°,AB的垂直平分线别离交AB,AC于点D,E.(1)求证:AE=2CE;(2)求证:DE=EC.21.某产品生产车间有工人10名.已知每名工人天天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,若是要使此车间天天所获利润不低于15600元,你以为至少要派多少名工人去生产乙种产品才适合.22.某校张教师寒假预备率领他们的“三勤学生”外出旅行,甲、乙两家旅行社的效劳质量相同,且报价都是每人400元,经协商,甲旅行社表示:“若是带队张教师买一张全票,那么学生可半价”;乙旅行社表示:“所有游客全数享受6折优惠.”那么:(1)设学生数为x(人),甲旅行社收费为y甲(元),乙旅行社收费为y乙(元),两家旅行社的收费各是多少?(2)哪家旅行社收费较为优惠?23.如图,已知△ABC中AB=AC=12厘米,BC=9厘米,点D为AB的中点.(1)若是点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.①假设点P点Q的运动速度相等,通过1秒后,△BPD与△CQP是不是全等,请说明理由;②假设点P点Q的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)假设点Q以②中的运动速度从点C动身,点P以原先的运动速度从点B同时动身,都逆时针沿△ABC三边运动,求通过量长时刻,点P与点Q第一次在△ABC的哪条边上相遇?参考答案与试题解析一、选择题(本部份共12小题,每题3分,共36分,每题只有一个选项正确)1.已知a>b,以下不等式中正确的选项是()A.a+3<b+3 B.a﹣1<b﹣1 C.﹣a>﹣b D.>【考点】不等式的性质.【分析】依照不等式的性质1,可判定A,B;依照不等式的性质3,可判定C;依照不等式的性质2,可判定D.【解答】解;A、不等式的两边都加上那个同一个数,不等号的方向不变,故A错误;B、不等式的两边都减去同一个数,不等号的方向不变,故B错误;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都除以同一个负数不等号的方向改,故D正确;应选:D.2.以下各式从左到右,不是因式分解的是()A.x2+xy+1=x(x+y)+1 B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4xy+4y2=(x﹣2y)2D.ma+mb+mc=m(a+b+c)【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把那个多项式因式分解,也叫做分解因式,依照概念即可判定.【解答】解:A、结果不是乘积的形式,不是分解因式,选项正确;B、是分解因式,选项错误;C、是分解因式,选项错误;D、是分解因式,选项错误.应选A.3.以下多项式中,不能运用平方差公式因式分解的是()A.﹣m2+4 B.﹣x2﹣y2C.x2y2﹣1 D.(m﹣a)2﹣(m+a)2【考点】因式分解-运用公式法.【分析】能运用平方差公式因式分解的式子的特点是:两项平方项;符号相反.【解答】解:A、﹣m2+4符合平方差公式因式分解的式子的特点,故A错误;B、﹣x2﹣y2两项的符号相同,因此不能用平方差公式因式分解,故B正确;C、x2y2﹣1符合平方差公式因式分解的式子的特点,故C错误;D、(m﹣a)2﹣(m+a)2符合平方差公式因式分解的式子的特点,故D错误.应选B.4.将一把直尺与一把三角板如图那样放置,假设∠1=35°,∠2的度数是()A.65° B.70° C.75° D.80°【考点】平行线的性质.【分析】先依照平行线的性质求出∠3的度数,再由三角形外角的性质即可得出结论.【解答】解:∵直尺的两边相互平行,∠1=35°,∴∠3=∠1=35°,∴∠2=35°+30°=65°.应选A.5.已知点P(3﹣m,m﹣1)在第二象限,那么m的取值范围在数轴上表示正确的选项是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.【分析】依照第二象限内点的坐标特点,可得不等式,依照解不等式,可得答案.【解答】解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,应选:A.6.以下图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的概念和中心对称图形的概念回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.应选:D.7.假设a﹣b=2,ab=3,那么ab2﹣a2b的值为()A.6 B.5 C.﹣6 D.﹣5【考点】因式分解-提公因式法.【分析】直接将原式提取公因式ab,进而分解因式将已知代入求出答案.【解答】解:∵a﹣b=2,ab=3,那么b﹣a=﹣2,∴ab2﹣a2b=ab(b﹣a)=3×(﹣2)=﹣6.应选:C.8.等腰三角形两边长别离为4和8,那么那个等腰三角形的周长为()A.16 B.18 C.20 D.16或20【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,那么应该分两种情形进行分析.【解答】解:①当4为腰时,4+4=8,故此种情形不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.应选:C.9.若是关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【考点】解一元一次不等式.【分析】此题可对a>﹣1,与a<﹣1的情形进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解此题.【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.应选:D.10.已知△ABC中,求作一点P,使P到∠A的两边的距离相等,且PB=PC,那么以下确信P 点的方式正确的选项是()A.P是∠A与∠B两角平分线的交点B.P是AC、AB两边上中垂线的交点C.P是∠A的角平分线与BC的中垂线的交点D.P是∠A的角平分线与AB的中垂线的交点【考点】角平分线的性质;线段垂直平分线的性质.【分析】别离作出∠BAC的平分线及线段BC的垂直平分线,其交点即为所求点.【解答】解:作出∠BAC的平分线及线段BC的垂直平分线,其交点即为所求点,应选C.11.某校举行关于“爱惜环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,那么他至少答对的题数是()A.17 B.16 C.15 D.12【考点】一元一次不等式的应用.【分析】依照竞赛得分=10×答对的题数+(﹣5)×未答对的题数,依照本次竞赛得分要超过100分,列出不等式求解即可.【解答】解:设要答对x道.10x+(﹣5)×(20﹣x)>100,10x﹣100+5x>100,15x>200,解得:x>,依照x必需为整数,故x取最小整数14,即小彤参加本次竞赛得分要超过100分,他至少要答对14道题.应选C.12.如下图,在△ABC中,已知点D,E,F别离为边BC,AD,CE的中点,且S△ABC=4cm2,那么S阴影等于()A.2cm2B.1cm2C. cm2D. cm2【考点】三角形的面积.【分析】依照三角形的面积公式,知:等底等高的两个三角形的面积相等.【解答】解:S阴影=S△BCE=S△ABC=1cm2.应选:B.二、填空题(此题共4小题,每题3分,共12分)13.分解因式:4x2﹣8x+4= 4(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式4,再依照完全平方公式进行二次分解即可求得答案.【解答】解:4x2﹣8x+4=4(x2﹣2x+1)=4(x﹣1)2.故答案为:4(x﹣1)2.14.如图,△ABC中,AD⊥BC,AE是∠BAC的平分线,∠B=60°,∠BAC=84°,那么∠DAE= 12°.【考点】三角形内角和定理.【分析】由角平分线的概念可求得∠BAE,在Rt△ABD中可求得∠BAD,再利用角的和差可求得∠DAE的大小.【解答】解:∵AE是∠BAC的平分线,∠BAC=84°,∴∠BAE=∠BAC=×84°=42°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∴∠DAE=∠BAE﹣∠BAD=42°﹣30°=12°,故答案为:12°15.如图,已知一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),那么不等式kx1+b1<kx2+b2的解集是x<1 .【考点】一次函数与一元一次不等式.【分析】看两函数交点坐标左侧的图象所对应的自变量的取值即可.【解答】解:一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),因此不等式kx1+b1<kx2+b2的解集是x<1.故答案为:x<1.。

2017人教版八年级数学下册期中试卷含答案

2017人教版八年级数学下册期中试卷含答案

2017人教版八年级数学下册期中试卷含答案期中测试一、选择题(每小题3分,共30分)1.若在实数范围内有意义,则x的取值范围是()。

A。

x≥2B。

x≥-2C。

x>1D。

x≠22.一直角三角形的两直角边长为12和16,则斜边长为()。

A。

12B。

16C。

18D。

203.如图,在▱ABCD中,已知AD=5 cm,AB=3 cm,AE 平分∠BAD交BC边于点E,则EC等于()。

A。

1 cmB。

2 cmC。

3 cmD。

4 cm4.下列计算错误的是()。

A。

14×7=98B。

60÷5=12C。

9a+25a=34aD。

32-2=305.如图,点P是平面直角坐标系内一点,则点P到原点的距离是()。

A。

3B。

2C。

7D。

5√36.下列根式中,是最简二次根式的是()。

A。

0.2bB。

12a-12bC。

x^2-y^2D。

5ab^27.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()。

A。

当AB=BC时,它是菱形B。

当AC⊥BD时,它是菱形C。

当∠ABC=90°时,它是矩形D。

当AC=BD时,它是正方形8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()。

A。

16√3B。

16C。

8√3D。

89.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()。

A。

2B。

3C。

2√2D。

3√210.如图所示,A(-3,0),B(0,1)分别为x轴,y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()。

A。

7B。

2C。

3D。

4二、填空题(每小题4分,共24分)11.已知(x-y+3)^2+2-y=0,则x+y=()。

解:(x-y+3)^2+2-y=0化简得:x^2-2xy+3x+y^2-2y+11=0移项得:x^2-2xy+3x+y^2-2y=-11再加上2xy,得:x^2+y^2+3x-2y=-11+2xy再移项得:x^2+y^2+3x+2y-11=0再加上6,得:x^2+y^2+3x+2y-5=6即:(x+3)^2+(y+1)^2=25因此,点(x,y)在以(-3,-1)为圆心,5为半径的圆上,而x和y的和等于该点到圆心的距离,即x+y=5.12.如图,已知△ABC中,AB=5 cm,BC=12 cm,AC=13 cm,那么AC边上的中线BD的长为()cm。

2016-2017学年八年级下学期数学期中考试试题及答案

2016-2017学年八年级下学期数学期中考试试题及答案

2016-2017学年八年级下学期数学期中测试一、选择题〔每题3分,共30分〕1..若代数式0)21-+-x x x (有意义,则实数x 的取值范围是〔〕 A. x ≠ 1B.x ≥0C. x ≥0且x ≠1D.x ≥0且x ≠1,x ≠22.已知a <b,化简二次根式b a 3-的正确结果是〔〕A .ab a --B .ab a -C .ab aD .ab a -3、等边三角形的边长为2,则该三角形的面积为 〔 〕 A :43 B :3C :23 D :34.下列运算正确的是〔 〕A 、235=-B 、312914=C 、32321+=- D 、()52522-=-5.由线段a 、b 、c 组成的三角形不是直角三角形的是< >A 、a=7,b=24,c=25;B 、a=41,b=4,c=5;C 、a=54,b=1,c=34; D 、a=13,b=14,c=15; 5.若ABC ∆中,13,15AB cm AC cm ==,高AD=12,则BC 的长为〔 〕 A :14 B :4 C :14或4 D :以上都不对7.已知110a a+=,则1a a -的值为〔〕 A .22±B .8 C .6± D .68. 如图,过矩形ABCD 的四个顶点作对角线AC,BD 的平行线,分别相交于E,F,G,H 四点,则四边形EFGH 为A.平行四边形B.矩形C.菱形D.正方形9.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ’处,则重叠部分△AFC的面积为〔〕.A .6B .8C .10D .1210. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且△BAE=22.5 º,EF △AB ,垂足为F ,则EF 的长为〔〕 A .1 B .错误! C .4-2错误! D .3错误!-4二、填空题〔每题分3,共18分〕11.如果最简二次根式a +1与24-a 是同类二次根式,那么a =.12.如图由于台风的影响,一棵树在折断前〔不包括树根〕长度是m 16,树顶落在离树干底部A B C D F D’↑ ↓ ←m 8E DA Om 8处,则这棵树在离地面处折断.13.如图,▱ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=厘米.14..如图,每个小正方形的边长为1.在△ABC 中,点D 为AB 的中点,则线段CD 的长为;15.如图,在Rt ΔABC 中,∠ACB=90°,AC=4,BC=3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB,当AD=时,平行四边形CDEB 为菱形.16.如图,正方形ABCD 中,点E 在BC 上,且CE=14BC,点F 是CD 的中点,延长AF 与BC 的延长线交于点M.以下结论:①AB=CM ;②AE=AB+CE ;③S △AEF =ABCF S 31四边形;④∠AFE=90°,其中正确结论的个数有三.解答题〔共72分〕17.〔8分〕计算:<1> 〔2〕 18〔8分〕<1>先化简,再求值:1-12122a a a a +--,其中121+=a . <2>如图,实数a 、b 、c 在数轴上的位置,化简:错误!-︱a -b ︱+ 错误!.19.〔8分〕如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB,DE ⊥AB 于E,若AC=6,BC=8,CD=3. 〔1〕求DE 的长;〔2〕求△ADB 的面积.20.〔8分〕如图,某校将一块△ABC 废地开辟为生物园,AB=100m,AC=80m,BC=60m.〔1〕若入口E 在边AB 上,且与A 、B 等距离,求从入口E 到出口C 的最短路线〔2〕若线段CD 是一条水渠,且D 点在边AB 上,已知水渠的造价为10元/米,则D 点在距A 点多远处时,水渠的造价最低?最低造价是多少?21.〔8分〕如图,△ABC 中,AB=AC,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E,使OE=OD,连接AE,BE.<1>求证:四边形AEBD 是矩形.<2>当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.22.〔10分〕如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,MN 过点O 且与边AD 、BC 分别交于点M 和点N .〔1〕请你判断OM 与ON 的数量关系,并说明理由;〔2〕过点D 作DE ∥AC 交BC 的延长线于点E ,当AB =6,AC =8时,求△BDE 的周长.23.〔10分〕如图,已知平行四边形中,对角线交于点,是延长线上的点,且是等边三角形.〔1〕求证:四边形是菱形;〔2〕若求证:四边形是正方形. ABCD AC BD ,O E BD ACE △ABCD 2AED EAD ∠=∠ABCD )323125.0()4881(----)65()154(5333y x x y xy --÷•24.〔12分〕如图1,四边形ABCD 、DEFG 都是正方形,连接AE 、CG . 〔1〕求证:AE=CG ; 〔2〕观察图形,猜想AE 与CG 之间的位置关系,并证明你的猜想;〔3〕将正方形ABCD,绕点D 逆时针旋转一定的角度〔小于90度〕,如图2,请猜想AE 与CG 之间的关系,并证明你的猜想.2016-2017学年八年级下学期数学期中测试答案一、选择题〔每题3分,共36分〕1..若代数式0)21-+-x x x (有意义,则实数x 的取值范围是〔D 〕 A. x ≠ 1B.x ≥0C. x ≥0且x ≠1D.x ≥0且x ≠1,x ≠22.已知a <b,化简二次根式b a 3-的正确结果是〔A 〕A .ab a --B .ab a -C .ab aD .ab a -3、等边三角形的边长为2,则该三角形的面积为 〔B 〕 A :43 B :3C :23 D :34.下列运算正确的是〔 〕A 、235=-B 、312914=C 、32321+=- D 、()52522-=-5.由线段a 、b 、c 组成的三角形不是直角三角形的是< D >A 、a=7,b=24,c=25;B 、a=41,b=4,c=5;C 、a=54,b=1,c=34; D 、a=13,b=14,c=15; 5.若ABC ∆中,13,15AB cm AC cm ==,高AD=12,则BC 的长为〔C 〕 A :14 B :4 C :14或4 D :以上都不对7.已知110a a +=,则1a a -的值为〔C 〕 A .22±B .8 C .6± D .68. 如图,过矩形ABCD 的四个顶点作对角线AC,BD 的平行线,分别相交于E,F,G,H 四点,则四边形EFGH 为 < C >A.平行四边形B.矩形C.菱形D.正方形11.如图,在矩形ABCD 中,9.AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ’处,则重叠部分△AFC 的面积为〔C 〕.A .6B .8C .10D .12 10. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且△BAE =22.5 º,EF △AB ,垂足为F ,则EF 的长为〔C 〕 A .1 B .错误!A B C D F D’↑ ↓ ← m 8E D C B A C .4-2错误! D .3错误!-4二、填空题〔每题分3,共18分〕11.如果最简二次根式a +1与24-a 是同类二次根式,那么a =1.12.如图由于台风的影响,一棵树在折断前〔不包括树根〕长度是m 16,树顶落在离树干底部m 8处,则这棵树在离地面6处折断.13.如图,▱ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=3厘米.14..如图,每个小正方形的边长为1,在△ABC 中,点D 为AB 的中点,则线段CD 的长为√262; 15.如图,在Rt ΔABC 中,∠ACB=90°,AC=4,BC=3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB,当AD=75时,平行四边形CDEB 为菱形. 16.如图,正方形ABCD 中,点E 在BC 上,且CE=14BC,点F 是CD 的中点,延长AF 与BC 的延长线交于点M.以下结论:①AB=CM ;②AE=AB+CE ;③S △AEF =ABCF S 31四边形;④∠AFE=90°, 其中正确结论的个数有①②④三.解答题〔共72分〕17.〔8分〕计算:<1> <2>18、〔8分〕<1>先化简,再求值:1-12122a a a a +--,其中121+=a . <2>如图,实数a 、b 、c 在数轴上的位置,化简:错误!-︱a -b ︱+ 错误!.19.〔8分〕如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB,DE ⊥AB 于E,若AC=6,BC=8,CD=3. 〔1〕求DE 的长;〔2〕求△ADB 的面积.20.〔8分〕如图,某校将一块△ABC 废地开辟为生物园,AB=100m,AC=80m,BC=60m.〔1〕若入口E 在边AB 上,且与A 、B 等距离,求从入口E 到出口C 的最短路线〔2〕若线段CD 是一条水渠,且D 点在边AB 上,已知水渠的造价为10元/米,则D 点在距A 点多远处时,水渠的造价最低?最低造价是多少?解:〔1〕在△ABC 中,因为AC=80,BC=60,AB =100,所以所以∠C=90°,即△ABC 为直角三角形,)323125.0()4881(----故入口E到出口C的最短线路就是Rt△ABC斜边的中线CE,又因为CE=AB=50,所以入口E到出口C的最短距离为50m;〔2〕CD为Rt△ABC斜边上的高时,CD最短,此时水渠造价最低,因为CD×AB-AC×BC,所以CD=48m,在Rt△ACD中,,即,解得AD=64m,所以点D距点A64m时,水渠的造价最低,最低造价为48×10=480元21.〔8分〕如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.<1>求证:四边形AEBD是矩形.<2>当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.〔1〕证明:∵点O为AB的中点, OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;〔2〕当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD,∵由〔1〕得四边形AEBD是矩形,∴矩形AEBD是正方形.22.〔10分〕如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.〔1〕请你判断OM与ON的数量关系,并说明理由;〔2〕过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.解:〔1〕∵四边形ABCD是菱形,∴AD∥BC,AO=OC∴OM=ON.〔2〕∵四边形ABCD是菱形,∴AC⊥BD,AD=BC=AB=6,∴BO==2,∴,∵DE∥AC,AD∥CE,∴四边形ACED是平行四边形,∴DE=AC=6,∴△BDE的周长是:BD+DE+BE=BD+AC+〔BC+CE〕=4+8+〔6+6〕=20即△BDE的周长是20.E C D B A O 23.〔10分〕如图,已知平行四边形中,对角线交于点,是延长线上的点,且是等边三角形.〔1〕求证:四边形是菱形;〔2〕若求证:四边形是正方形. 证明:〔1〕∵四边形ABCD 是平行四边形, ∴AO=CO.又∵△ACE 是等边三角形,∴EO⊥AC,即AC⊥BD,∴四边形ABCD 是菱形 〔2〕∵四边形ABCD 是平行四边形,∴AO=CO.又∵△ACE 是等边三角形,∴EO 平分∠AEC〔三线合一〕,∴∠AED=1/2∠AEC=1/2×60°=30°,又∵∠AED=2∠EAD∴∠EAD=15°,∴∠ADO=∠DAE+∠DEA=15°+30°=45°∵四边形ABCD 是菱形,∴∠ADC=2∠ADO=90°,∴平行四边形ABCD 是正方形. 24.〔12分〕如图1,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .〔1〕求证:AE=CG ;〔2〕观察图形,猜想AE 与CG 之间的位置关系,并证明你的猜想;〔3〕将正方形ABCD,绕点D 逆时针旋转一定的角度〔小于90度〕,如图2,请猜想AE 与CG 之间的关系,并证明你的猜想.〔1〕证明:由题意得AD=CD,ED=GD,∠ADE=∠GDC=90°∴根据SAS 可证△EAD ≌△GCD,∴AE=CG ;〔2〕猜想:AE ⊥CG ;延长EA 交CG 于H,由〔1〕得∠CGD+∠GAH=∠CGD+∠EAD=∠CGD+∠GCD=90°∴AE ⊥CG ;〔3〕猜想:AE=CG ;AE ⊥CG .由题意得CD=AD,GD=ED,∠ADE=90+∠GDA=∠CDG ∴△EAD ≌△GCD ∴AE=CG,∠CGD=∠AED ∵∠AED+∠EOD=90°,∴∠CGD+∠EOD=90°,∵∠EOD=∠GOH,∴∠CGO+∠GOH=∠CGO+∠EOD=∠AED+∠EOD=90°,∴AE ⊥CG . ∴∠EAN=∠MAN .∵在△MAN 和△EAN 中,AE=AM ∠MAN=∠EAN AN=AN∴△MAN ≌△EAN 〔SAS 〕,∴EN=MN,即DN-DE=MN,∴DN-BM=MN.ABCD AC BD ,O E BD ACE △ABCD 2AED EAD ∠=∠ABCD。

17—18学年下学期八年级期中考试数学试题(附答案)

17—18学年下学期八年级期中考试数学试题(附答案)

2016—2017学年度第二学期期中考试八 年 级 数 学 试 题(友情提醒:全卷满分100分,答卷时间100分钟,请你掌握好时间.)命题、校对:曹## 一、 选择题( 每题3分,共24分)1. 下列图形中,是中心对称图形,但不是轴对称图形的是 ( ) A .正方形 B .矩形 C .菱形 D .平行四边形 2.已知四边形ABCD 是平行四边形,下列结论中不正确的是 ( ) A .当AB =BC 时,它是菱形 B .当AC =BD 时,它是正方形 C .当∠ABC =90°时,它是矩形 D .当AC ⊥BD 时,它是菱形3. 分式 有意义,则x 的取值范围是( )A .x ≠1B .x =1C .x ≠﹣1D .x =﹣1 4.关于x 的方程211x a x +=-的解是正数,则a 的取值范围是( )A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-25. 下列函数中,是反比例函数的是( ) A. y x =-2B. y x =-12C. y x =-11D. y x=126. 东台教育局为帮助全市贫困师生举行“一日捐”活动,甲、乙两校教师各捐款60000元,已知“……”,设乙学校教师有x 人,则可得方程20%2016000060000=+-xx )(,根据此情景,题中用“……”表示的缺失的条件应补( )A .乙校教师比甲校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%B .甲校教师比乙校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%C .甲校教师比乙校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%D .乙校教师比甲校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20% 7. 如图,E 、F 分别是正方形ABCD 的边AB 、BC 上的点,BE=CF ,连接CE 、DF .△CDF 可以看作是将△BCE 绕正方形ABCD 的中心O 按逆时针方向旋转得到.则旋转角度为( )A .45°B .60°C .90°D .120°8. 如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中不一定成立的是( ) A. S △BEC =2S △CEF B.EF =CF C. ∠DCF =∠BCD D.∠DFE =3∠AEF 二、填空题( 每题3分,共30分)9.在式子1a 、2xy π、2334a b c 、56x +、78x y +、109x y +中,分式有 个.10.□ABCD 中,∠A =50°,则∠C =__________.11.已知菱形两条对角线的长分别为5cm 和12cm ,则这个菱形的面积是_______ cm 2. 12.如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,BC=8,则DE= .13.当x 时,分式11x 2+-x 的值为零.14.如果反比例函数xmy =过A (2,-3),则m= 。

2017年下学期八年级期中质量检测数学试卷

2017年下学期八年级期中质量检测数学试卷

2017年下学期八年级期中质量检测数学试卷注意:所有答案都填写在答题卷中,写在试题卷上的答案无效。

满分:100分 考试时量:120分钟一、选择题(每小题有且只有一个正确答案,本题共8小题,每小题3分,共24分) 1. 0)1(-π的值是A. 0B. 1C. 1-πD. 1-2. 若分式1+x x的值存在,则x 不能取A. 0B. 1C. 1-D. 以上答案都不对. 3. 下列式子是最简分式的是A. x 24B. xxx -2 C. 3a D. 112-x4. 如果一个三角形的两边长分别为2和4,则第三边的长可能是A. 2B. 4C. 6D. 8 5. 下列式子一定正确的是A. 10=x B. 33812a a=- C. 23)(2)(3+=-+-x b a x b a D.)(b a b a b a b a b a ≠-+=+--- 6. 下列命题是真命题的是A. 三角形的外角和是︒180B. 三个角分别相等的两个三角形全等C. 钝角三角形的三条高不交于一点D. 三角形的一个外角等于两个内角的和.7. 若方程xm x x -=-11无解,则 A. 1-=m B. 1=m C. 1-≠m D.不存在使方程无解的m . 8. 如图,D C B A ∠+∠+∠+∠(四个用弧线标明的角)的值为A. ︒360B. ︒270C. ︒180D. 不确定.二、填空题(本题共8小题,每小题3分,共24分) 9. 把31023.1-⨯用小数表示是 . 10. 计算:=⋅÷xyy x 1 . 11. 分式xy y x 2+,z x y 23,xyy x 6-的最简公分母是 . 12. 计算:=⎪⎪⎭⎫⎝⎛---1122xy x .13. 如图,点D 在BC 上,AD 经过△ABC 的重心E ,△ABD 的面积是2,则△ABC 的面积是 .14. 写出“两个锐角的和是钝角”的逆命题: 15. 等腰三角形的一个外角是︒100,则它的底角的度数为 16. 如图,在△ABC 中,︒=∠90C ,︒=∠30B ,以点A 为圆心,任意长为半径画弧分别交AC AB ,于点M 和N ,再分别以点N M ,为圆心,大于MN 21的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D .①点P 是△ABC 的三条角平分线的交点;②︒=∠60ADC ;③点D 在AB 的垂直平分线线上;④3:1:=∆∆ABC DAC S S .⑤△ABC 的周长等于△ABD 的周长.其中正确的是 .(填序号)三、解答题(本大题共8小题,共52分) 17.计算:(每小题4分) (1)()()32232---÷ab b a (2)xx x x x x++÷---21111班次 姓名 考室号 考号 . ————————————装—————————————订—————————————线——————————第8题图第13题图第16题图18.(6分)解方程:1416222-=-+-+x x x19. (6分)如图,BC AD //,BC AD =.求证:D B ∠=∠.20.(6分) 已知92=a, 1942-⎪⎭⎫ ⎝⎛=b,求ba 239÷的值.21. (6分)如图,△ABC 中,︒=∠=40,A AC AB ,AC 是线段BD 的垂直平分线,求D ∠的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年八年级下册数学期中测试题
班级:姓名:
一、选择题(本大题共10个小题,每小题3分,共30分.每小题只有一个正确选项,请将正确选项的代号填在答题答案栏内.)
题号 1 2 3 4 5 6 7 8 9 10 答案
1、如图中,既是中心对称又是轴对称的图案是()
A.凤凰卫视台徽 B.奥运五连环 C.中国结 D.太极图
2、以下四组数中,不是勾股数的是()
A.3,4,5
B.5,12,13
C.4,5,6
D.8,15,17
3、Rt△ABC中,∠C=90°,∠B=54°,则∠A= ()
A.66°
B.36°
C.56°
D.46°
4、三角形中,到三边距离相等的点是()
A.三条边的垂直平分线的交点
B.三条高的交点
C.三条中线的交点
D.三条角平分线的交点
5、下列关于矩形的说法,正确的是()
A. 对角线相等的四边形是矩形
B. 对角线互相平分的四边形是矩形
C. 矩形的对角线互相垂直平分
D. 矩形的对角线相等且互相平分
6、如图,四边形ABCD的对角线互相垂直平分,要使它成为
正方形,那么需要添加的条件是( )
A.AB=CD B.AD=BC C.AB=BC D.AC=BD (第7题图)
7、如图,将周长为10的△ABC沿BC方向平移l个单位,得到△DEF,则四边形
ABFD的周长是( )
A.12 B.14 C.15 D.16
8、若一个多边形内角和等于1260°,则该多边形边数是( )
A、8
B、9
C、10
D、11
9、在Rt△ABC中,∠ACB=900,∠A=300,AB=2 3 cm, 则AB边上的中线为( )
A、3cm
B、2 3 cm
C、1.5cm
D、 3 cm
10、若菱形的一条对角线长是另一条对角线长的2倍,且菱形的面积为4cm2,则
菱形的边长为()
A.2cm
B.3cm
C.5cm
D.23cm
A
B C
D
E
二、填空题(每小题3分,共24分)
11、一个多边形的每一个外角都等于36°,它是________边形。

12、如图,一棵大树在一次强台风中于离地面3米处折断倒下,倒下树尖部分与树根距离为4米,这棵大树原来的高度
为__________米。

13、三角形的三边长分别是3cm ,5cm ,6cm ,则连结三边中点所围成的三角形的周长是_________cm .
14、如果矩形的一边长为8,一条对角线长为10,那么这个矩形面积是 15、如图所示,以正方形ABCD 中AD 边为一边向外作等边ΔADE ,则∠AEB = 16、如图,ABCD 的对角线AC 、BD 相交于点O ,点E 、F 分别是线段AO 、BO 的中点.已知AB=6厘米,则EF=________厘米.
17、已知□ABCD 中,对角线AC ,BD 相交于点O ,请你添加一个适当的条件,使□ABCD 成为一个菱形,你添加的条件是 18、如图在△ABC 中,∠ACB=90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AE+DE=3cm ,那么AC=________.
15题图
三、解答题(本大题共8个小题,共66分,要求写出证明步骤或解答过程) 19、按要求作图:(6分) 如图,选择点O 为对称中心,画出与ABC ∆关于点O 对称的∆'''C B A
20、(8分)已知:如图,为了躲避海盗,一轮船一直由西向东航行,早上8点,在A 处测得小岛P 的方向是北偏东75°,以每小时15海里的速度继续向东航行,10点到达B 处,并测得小岛P 的方向是北偏东60°,若小岛周围25海里内有暗礁,问该轮船是否能一直向东航行?
C
B
O
A
21、(8分)如图,已知矩形ABCD 的两条对角线相交于O ,︒=∠120AOD ,AB=4cm ,求此矩形的面积。

22、(8分)如图,在□ABCD 中,点E ,F 分别在BC ,AD 上,且DF=BE .
求证:四边形AECF 是平行四边形.
23、(8分)已知:如图,AB =AC ,点D 是BC 的中点,AB 平分∠DAE,AE⊥BE, 垂足为E 。

求证:AD =AE 。

.
A
B
O
C D
F A B
C
D E
24、(8分)如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的延长线于E ,DF ⊥BC ,交BC 的延长线于F 。

请你猜想DE 与DF 的大小有什么关系?并证明你的猜想.
25、(10分)如图所示,在Rt ΔABC 中,∠C =90°,∠A 、∠B 的平分线交于点D ,DE ⊥BC 于E ,DF ⊥AC 于F ,试说明四边形CEDF 为正方形。

26、(12分)四边形ABCD 中,AD∥BC,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从点A 开始,沿AD 边,以1厘米/秒的速度向点D 运动;动点Q 从点C 开始,沿CB 边,以3厘米/秒的速度向B 点运动。

已知P 、Q 两点分别从A 、C 同时出发,,当其中一点到达端点时,另一点也随之停止运动。

假设运动时间为t 秒,问:
(1)t 为何值时,四边形PQCD 是平行四边形?
(2)在某个时刻,四边形PQCD 可能是菱形吗?为什么?
A
B
E
C
D
F。

相关文档
最新文档