三角函数基础练习题二(含答案)
三角函数练习题(含答案)

三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=45,则AC=( ) A 、3 B 、4 C 、5 D 、6 3、若∠A 是锐角,且sinA=13,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=13,则A A AA tan 2sin 4tan sin 3+-=( ) A 、47B 、 13C 、 12D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:√2C 、1:1:√3D 、1:1:√226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB= 23B .cosB= 23C .tanB= 23D .tanB=32 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D点测得楼顶的仰角为300,向高楼前进60米到C点,又测得仰角为450,则该高楼的高度大约为()A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)填空题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是______.4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B 点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
第28章三角函数试题含答案3-2

第二十八章测评卷(二)(时间45分钟 满分100分)一、选择题(每题3分,共24分)1.在△ABC 中,∠C=90°,3sin 5A =,则cos A 的值是( ) A .45B .35 C . 34 D . 432.在△ABC 中,2∠B=∠A+∠C,则sinB +tanB 等于( ) A .1 B .323 C .321+ D .不能确定3.等腰三角形底边与底边上的高的比是 ( ) A . 60° B .90° C .120° D .150°4.一段公路的坡度为1:3,某人沿这段公路路面前进100米,那么他上升的最大高度是( )A .30米B .10米C .1030米D .1010米5.若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是( )A .150B .375C . 9D . 76.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向上取点C ,测得AC =a ,∠ACB=α,那么AB 等于( )A .sin a α⋅B .cos a α⋅C .n a ta α⋅D .tan aα7.如图,ΔABC 中,AE⊥BC 于E ,D 为AB 边上一点,如果BD =2AD ,CD =10,sin∠BCD =35,那么AE 的值为( )A .3B .6C .7.2D .98.如图,E 在矩形ABCD 的边CD 上,AB =2BC ,则t a n ∠CBE +tan ∠DAE 的值是( )A .2B .2.2D .2+二、填空题(每题2分,共20分)9.在△ABC 中,2AB =,AC =,B ∠=30º,则 ∠BAC 的度数是 . 10.锐角A 满足2sin (A -150)=3则∠A= .11.如图,在菱形ABCD 中,DE⊥AB,垂足是E ,DE =6,sinA =35,则菱形ABCD 的周长是________12.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ). 13.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 度.14.已知,在△ABC 中,∠A=30°,tanB=23,AC=32,则AB= . 15.计算:100245sin 251-+⋅-+-=16.如图,修建抽水站时,沿着倾斜角为300的斜坡铺设管道,若量得水管AB 的长度为80米,那么点B 离水平面的高度BC 的长为 米.ABCEDABCDE第6题 第7题 第8题ACA第11题 第12题 第13题17.如图,小红把梯子AB 斜靠在墙壁上,梯脚B 距墙1.6米,小红上了两节梯子到D 点,此D 点距墙1.4米,BD 长0.55米,则梯子的长为18.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为 (结果保留根号).三、解答题(共56分)19.(4分)阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺、标杆、一副三角尺、小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种..测量方案.(1)所需的测量工具是: ; (2)请在下图中画出测量示意图;(3)设树高AB 的长度为x ,请用所测数据(用小写字母表示)求出x .图12第19题第18题图CBAADE B第16题 第17题 第18题20.(4分)如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50米。
初中数学三角函数基础练习含答案

三角函数基础练习一.选择题(共40小题)1.如图,△ABC中,∠C=90o,tan A=2,则cos A的值为()A.B.C.D.2.在Rt△ABC中,∠C=90°,sin A=,则sin B的值为()A.B.C.D.3.如图,已知点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将()A.增大B.减小C.先增大后减小D.先减小后增大4.在Rt△ABC中,若∠ACB=90°,tan A=,则sin B=()A.B.C.D.5.一艘轮船在A处测得灯塔S在船的南偏东60°方向,轮船继续向正东航行30海里后到达B处,这时测得灯塔S在船的南偏西75°方向,则灯塔S离观测点A、B的距离分别是()A.(15﹣15)海里、15海里B.(15﹣15)海里、5海里C.(15﹣15)海里、15海里D.(15﹣15)海里、15海里6.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=()A.B.C.D.7.在Rt△ABC中,∠C=90°,∠B=α,若BC=m,则AC的长为()A.B.m•cosαC.m•sinαD.m•tanα8.如图,在Rt△ABC中,∠C=90°,BC=4,AC=2,则tan A等于()A.B.2C.D.9.如图,测得一商场自动扶梯的长为l,自动扶梯与地面所成的角为θ,则该自动扶梯到达的高度h为()A.l•sinθB.C.l•cosθD.10.如图,在Rt△ABC中,直角边BC的长为m,∠A=40°,则斜边AB的长是()A.m sin40°B.m cos40°C.D.11.如图,在△ABC中,∠ACB=90°,AB=5,AC=3,则tan∠B的值为()A.B.C.D.12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A.B.C.D.13.如图,在Rt△ABC中,∠CAB=90°,AD⊥BC于点D,BD=2,tan∠C=,则线段AC的长为()A.10B.8C.D.14.如图,梯子AC的长为2.8米,则梯子顶端离地面的高度AD是()A.米B.米C.sinα米D.cosα米15.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.116.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.17.在△ABC中,∠ACB=90°,AC=1,BC=2,则cos B的值为()A.B.C.D.18.若锐角A满足cos A=,则∠A的度数是()A.30°B.45°C.60°D.75°19.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为60°,已知斜坡AB的坡角为30°,AB=AE=10米.则标识牌CD的高度是()米.A.15﹣5B.20﹣10C.10﹣5D.5﹣520.在直角三角形中sin A的值为,则cos A的值等于()A.B.C.D.21.在Rt△ABC中,∠C=90°,AB=4,BC=3,则sin∠B的值为()A.B.C.D.22.已知在Rt△ABC中,∠C=90°,sin A=,则∠A的正切值为()A.B.C.D.23.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AB长是()A.4B.6C.8D.1024.已知∠A与∠B互余,若tan∠A=,则cos∠B的值为()A.B.C.D.25.如图,A,B,C是3×1的正方形网格中的三个格点,则tan B的值为()A.B.C.D.26.Rt△ABC中,∠C=90°,AC=,AB=4,则cos B的值是()A.B.C.D.27.如图,在Rt△ABC中,∠C=90°,AB=13,BC=12,AC=5,则下列三角函数表示正确的是()A.sin A=B.cos A=C.tan A=D.tan B=28.如图,△ABC中,∠B=90°,BC=2AB,则sin C=()A.B.C.D.29.已知在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值为()A.B.C.D.30.锐角α满足,且,则α的取值范围为()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°31.如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是()A.B.C.2D.32.已知cosα=,且α是锐角,则α=()A.75°B.60°C.45°D.30°33.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=34.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是i=()A.B.1:3C.D.1:235.如图,有一斜坡AB的长AB=10米,坡角∠B=36°,则斜坡AB的铅垂高度AC为()A.10sin36°B.10cos36°C.10tan36°D.36.某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,则这个斜坡坡角为()A.30°B.45°C.60°D.90°37.如图,在Rt△ABC中,∠C=90°,AC=2,BC=3,则tan A=()A.B.C.D.38.在Rt△ABC中,AB=4,AC=2,∠C=90°,则∠A的度数为()A.30°B.40°C.45°D.60°39.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠BAC的值为()A.B.C.D.40.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠B的正切值为()A.3B.C.D.三角函数基础练习参考答案与试题解析一.选择题(共40小题)1.解:∵△ABC中,∠C=90o,∴tan A==2,∴设CB=2k,AC=k,∴AB==k,∴cos A===,故选:B.2.解:∵Rt△ABC中,∠C=90°,sin A=,∴cos A===,∠A+∠B=90°,∴sin B=cos A=.故选:A.3.解:点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将增大,故选:A.4.解:如图,∵在Rt△ABC中,∠C=90°,tan A=,∴设AC=2k,BC=k,则AB==k,∴sin B===.故选:D.5.解:过S作SC⊥AB于C,在AB上截取CD=AC,∴AS=DS,∴∠CDS=∠CAS=30°,∵∠ABS=15°,∴∠DSB=15°,∴SD=BD,设CS=x,在Rt△ASC中,∵∠CAS=30°,∴AC=x,AS=DS=BD=2x,∵AB=30海里,∴x+x+2x=30,解得:x=,∴AS=(15﹣15)(海里);∴BS==15(海里),∴灯塔S离观测点A、B的距离分别是(15﹣15)海里、15海里,故选:D.6.解:由图可知:BC=4,AB=3,∠ABC=90°,在Rt△ABC中,tan A==.故选:A.7.解:在Rt△ABC中,∠C=90°,tan B=,∴AC=BC•tan B=m•tanα,故选:D.8.解:在Rt△ABC中,∠C=90°,∴tan A=═2,故选:B.9.解:∵sinθ=,∴h=l•sinθ,故选:A.10.解:∵sin A=,∴AB=,故选:C.11.解:由勾股定理得,BC==4,∴tan∠B==,故选:D.12.解:∵∠C=90°,AB=5,BC=3,∴AC==4,∴cos A==,故选:A.13.解:∵∠CAB=90°,AD⊥BC于点D,∴∠B+∠C=90°,∠B+∠BAD=90°,∴∠BAD=∠C.在Rt△ABD中,∠ADB=90°,BD=2,∵tan∠BAD==,∴AD=2BD=4,∴AB==2.在Rt△ABC中,∠CAB=90°,AB=2,∵tan∠C==,∴AC=2AB=4.故选:D.14.解:在Rt△ACD中,∠ADC=90°,AB=2.8m,∠ACD=α,∴AD=AC•sin∠ACD=2.8sinα=sinα米,故选:C.15.解:2sin30°﹣2cos60°+tan45°=2×﹣2×+1=1﹣1+1=1.故选:D.16.解:由勾股定理得,AC===则sin B==,故选:C.17.解:由勾股定理得,AB===,则cos B===,故选:B.18.解:∵cos A=,∴∠A=30°.故选:A.19.解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.在Rt△ABM中,AB=10米,∠BAM=30°,∴AM=AB•cos∠BAM=5米,BM=AB•sin∠BAM=5米.在Rt△ADE中,AE=10米,∠DAE=60°,∴DE=AE•tan∠DAE=10米.在Rt△BCN中,BN=AE+AM=(10+5)米,∠CBN=45°,∴CN=BN•tan∠CBN=(10+5)米,∴CD=CN+EN﹣DE=10+5+5﹣10=(15﹣5)米.故选:A.20.解:∵在直角三角形中sin A的值为,∴∠A=30°.∴cos A=cos30°=.故选:C.21.解:如图:∵∠C=90°,AB=4,BC=3,∴AC==,∴sin∠B=,故选:A.22.解:∵在Rt△ABC中,∠C=90°,sin A==,∴设BC=3x,AB=5x,由勾股定理得:AC==4x,∴tan A===,即∠A的正切值为,故选:D.23.解:∵∠C=90°,sin A==,BC=6,∴AB=BC=×6=10;故选:D.24.解:∵∠A与∠B互余,∴∠A、∠B可看作Rt△ABC的两锐角,∵tan∠A==,∴设BC=4x,AC=3x,∴AB=5x,∴cos∠B===.故选:B.25.解:如图所示,在Rt△ABD中,tan B==.故选:A.26.解:∵∠C=90°,AC=,AB=4,∴BC===1,∴cos B==,故选:D.27.解:A、sin A==,故原题说法正确;B、cos A==,故原题说法错误;C、tan A==,故原题说法错误;D、tan B==,故原题说法错误;故选:A.28.解:∵BC=2AB,∴设AB=a,BC=2a,∴AC==a,∴sin C===,故选:D.29.解:∵∠C=90°,AB=5,AC=4,∴BC==3,∴cos B==.故选:B.30.解:∵,且,∴45°<α<60°.故选:B.31.解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,AB=,∴sin B=.故选:B.32.解:∵cosα=,且α是锐角,∴α=30°.故选:D.33.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.34.解:由题意得:某人在斜坡上走了50米,上升的高度为25米,则某人走的水平距离s==25,∴坡度i=25:25=1:.故选:A.35.解:由题意可得:sin B=,即sin36°=,故AC=10sin36°.故选:A.36.解:∵某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,∴设这个斜坡的坡角为α,故tanα==,故α=30°.故选:A.37.解:在Rt△ABC中,∠C=90°,tan A==,故选:B.38.解:在Rt△ABC中,AB=4,AC=2,∴cos A===,则∠A=45°.故选:C.39.解:过点C作CD⊥AB于点D,∵AD=3,CD=4,∴由勾股定理可知:AC=5,∴cos∠BAC==,故选:C.40.解:在Rt△ABC中,tan B==,故选:B.。
(完整版)三角函数系列二倍角公式测试题含答案

二倍角公式评卷人得分一、选择题1.已知2sinθ+3cosθ=0,则tan2θ=()A. B. C. D.2.已知=,则sin2α+cos(α﹣)等于()A.﹣B.C.D.﹣3.若0<α<,﹣<β<0,cos(+α)=,cos(﹣β),则cos(α+β)=()A.B.﹣C.D.﹣5.已知cosα=,cos(α+β)=﹣,且α、β∈(0,),则cos(α﹣β)=()A.B.C.D.6.求值:tan42°+tan78°﹣tan42°•tan78°=()A.B.C.D.7.已知sinx=﹣,且x在第三象限,则tan2x=()A.B.C.D.8.已知tanα=4,=,则则tan(α+β)=()A.B.﹣C.D.﹣9.计算log2sin+log2cos的值为()A.﹣4 B.4 C.2 D.﹣210.若均α,β为锐角,=()A.B.C.D.11.已知tanα=,tanβ=,则tan(α﹣β)等于()A.B.C.D.12.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.13.已知sinθ+cosθ=,则tan2θ值为()A.B.C.D.14.设tanα,tanβ是方程x2﹣3x+2=0的两个根,则tan(α+β)的值为()A.﹣3 B.﹣1 C.1 D.315.sinα=,α∈(,π),则cos(﹣α)=()A.B.C.D.16.已知sinα+cosα=﹣,则sin2α=()A.B.C.D.17.已知,那么cosα=()A.B.C.D.18.设α﹑β为钝角,且sinα=,cosβ=﹣,则α+β的值为()A.B.C.D.或19.若tan(α﹣β)=,tanβ=,则tanα等于()A.﹣3 B.﹣C.3 D.20.=()A.B.C.D.21.若角A为三角形ABC的一个内角,且sinA+cosA=,则这个三角形的形状为()A.锐角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形第II卷(非选择题)评卷人得分二、填空题22.若tan(α+β)=,tan(β﹣)=,则tan(α+)=.23.(1+tan1°)(1+tan44°)= .24.若,,,则=.25.已知α为第三象限的角,,则=.26.已知<α<,cos(+α)=﹣,则sinα=.27.在△ABC中,已知tanA,tanB是方程3x2﹣7x+2=0的两个实根,则tanC= .评卷人得分三、解答题28.已知,(1)求sinα的值;(2)求β的值.29.已知cosα=,cos(α﹣β)=,且0<β<α<,(Ⅰ)求tan2α的值;(Ⅱ)求β.二倍角公式试卷答案1.B2.A解答:解:由已知得:==sinα+cosα=,∴(sinα+cosα)2=1+2sinαcosα=1+sin2α=,∴sin2α=﹣,又sinα+cosα=sin(α+),∴sin(α+)=,cos(α﹣)=cos(﹣α)=sin(x+)=,∴sin2α+cos(α﹣)=﹣.3.C解答:解:∵cos(+α)=,0<α<,∴<+α<,∴sin(+α)==,∵cos(﹣β)=,﹣<β<0,∴<﹣β<,∴sin(﹣β)==,∵α+β=(+α)﹣(﹣β),∴cos(α+β)=cos[(+α)﹣(﹣β)]=cos(+α)cos(﹣β)+sin(+α)sin(﹣β)===.4.解答:由题意可得:tanα+tanβ=;tanαtanβ=,显然α,β ﹣又tan(α+β)===1且α+β∈,故α+β=﹣﹣﹣﹣﹣﹣(10分)5.C解答:由2α∈(0,π),及cosα=,得到cos2α=2cos2α﹣1=﹣,且sin2α==,由α+β∈(0,π),及cos(α+β)=﹣,得到sin(α+β)==,则cos(α﹣β)=cos[2α﹣(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)=﹣×(﹣)+×=.6.C解答:由tan120°=tan(78°+42°)==﹣,得到tan78°+tan42°=﹣(1﹣tan78°tan42°),则tan78°+tan42°﹣tan18°•tan42°=﹣.故选:C..7.A 8.B 解答:由得tanβ=3,又tanα=4,所以tan(α+β)===,故选:B.9.D 10.B解答:α,β为锐角,则cosα===;则cos(α+β)=﹣=﹣=﹣,cosβ=cos(α+β﹣α)=cos(α+β)cosα+sin(α+β)sinα==.11.D 12.B 13.C 14.A 15.A 16.D 17.C 18.C解答:∵α﹑β为钝角,且sinα=,cosβ=﹣,∴cosα=﹣,s inβ=,∴cos(α+β)=cosαco sβ﹣sinαsinβ=﹣×(﹣)﹣×=,又α﹑β为钝角,∴α+β∈(π,2π),∴α+β=.故选:C.19.C解答:∵tan(α﹣β)===,∴可解得:tanα=3.故选:C.20.D 21.B解答:角A为三角形ABC的一个内角,sinA+cosA=sin(A+),如果A∈(0,],A+∈,sin(A+)∈.A∈(,π),A+∈,sin(A+)∈(﹣1,1).∵sinA+cosA=,∴A是钝角.三角形是钝角三角形.故选:B.22.解答:∵tan(α+)=tan[(α+β)﹣(β﹣)],∴又∵∴.故答案为:.23.2 24.解答:∵∴∵,∴,∴===故答案为:25.解答:方法一:因为α为第三象限的角,所以2α∈(2(2k+1)π,π+2(2k+1)π)(k∈Z),又<0,所以,于是有,,所以=.方法二:α为第三象限的角,,⇒4kπ+2π<2α<4kπ+3π⇒2α在二象限,26.解答:∵<α<,∴<α+<π,又cos(+α)=﹣,∴sin(+α)==,∴sinα=sin[(α+)﹣]=sin(+α)cos﹣cos(+α)sin=×﹣(﹣)×=.故答案为:.27.-7解答:∵tanA,tanB是方程3x2﹣7x+2=0的两个根,则tanA+tanB=,tanAtanB=,∴tanC=tan=﹣tan(A+B)=﹣=﹣728.解答:(1)∵,∴tanα==.∵tanα=,sin2α+cos2α=1,∴sin α=,cos α=.(2)∵,,∴sin(α﹣β)=﹣,∴tan(α﹣β)==﹣7==,∴tanβ=﹣1,∴β=.29.解答:(Ⅰ)由,得∴,于是(Ⅱ)由0<β<α<,得,又∵,∴由β=α﹣(α﹣β)得:cosβ=cos=cosαcos(α﹣β)+sinαsin(α﹣β)=所以.。
(完整版)三角函数基础练习题答案

三角函数基础练习题1.如果,那么与终边相同的角可以表示为21α=-αA . B .{}36021,k k ββ=⋅+∈Z {}36021,k k ββ=⋅-∈Z C .D .{}18021,k k ββ=⋅+∈Z {}18021,k k ββ=⋅-∈Z 参考答案:B考查内容:任意角的概念,集合语言(列举法或描述法)认知层次:b 难易程度:易2.一个角的度数是,化为弧度数是405A .B .C .D .π3683π47π613π49解:由,得,所以180π=1180π=94054051804ππ=⨯=参考答案:D考查内容:弧度制的概念,弧度与角度的互化认知层次:b 难易程度:易3.下列各数中,与cos1030°相等的是A .cos50°B .-cos50°C .sin50°D .- sin50°解:,1030336050=⨯- cos1030cos(336050)cos(50)cos50=⨯-=-=参考答案:A考查内容:任意角的概念,的正弦、余弦、正切的诱导公式(借助单位圆)πα±认知层次:c 难易程度:易4.已知x ∈[0,2π],如果y = cos x 是增函数,且y = sin x 是减函数,那么A .B .02x π≤≤xππ≤≤2C .D .32x ππ≤≤23x ππ≤≤2解:画出与的图象sin y x =cos y x =参考答案:C考查内容:的图象,的图象,正弦函数在区间上的性质,余弦sin y x =cos y x =[0,2π]函数在区间上的性质[0,2π]认知层次:b难易程度:易5.cos1,cos2,cos3的大小关系是( ).A .cos1>cos2>cos3B .cos1>cos3>cos2C .cos3>cos2>cos1D .cos2>cos1>cos3解:,而在上递减,01232ππ<<<<<cos y x =[0,]π参考答案:A考查内容:弧度制的概念,的图象,余弦函数在区间上的性质cos y x =[0,2π]认知层次:b 难易程度:易6.下列函数中,最小正周期为的是().πA . B .cos 4y x =sin 2y x =C . D . sin2xy =cos4xy =解:与的周期为sin y x ω=cos y x ω=2T πω=参考答案:B考查内容:三角函数的周期性认知层次:a 难易程度:易7.,,的大小关系是( ).)( 40tan -38tan56tan A . B .>-)( 40tan > 38tan56tan >38tan >-)(40tan56tan C . D .>56tan >38tan )(40tan ->56tan >-)(40tan38tan 解:在上递增,而tan y x =(,22ππ-9040<38<56<90-<-参考答案:C考查内容:的图象,正切函数在区间上的性质tan y x =ππ,22⎛⎫-⎪⎝⎭认知层次:b 难易程度:易8.如果,,那么等于( ).135sin =α),2(ππα∈tan αrA .B .C .D .125-125512-512解:由,得,135sin =α),2(ππα∈12cos 13α==-sin 5tan cos 12ααα==-参考答案:A考查内容:同角三角函数的基本关系式:,同角三角函数的基本关系式:22sin cos 1x x +=sin tan cos xx x=认知层次:b 难易程度:中9.函数图象的一条对称轴方程是)62sin(5π+=x y A . B . C . D .12x π=-0x =6x π=3x π=解:函数图象的对称轴方程是,即(),)62sin(5π+=x y 262x k πππ+=+26k x ππ=+Z k ∈令得0k =6x π=参考答案:C考查内容:正弦函数在区间上的性质[0,2π]认知层次:b 难易程度:易10.函数y = sin 的图象是中心对称图形,它的一个对称中心是34x π⎛⎫-⎪⎝⎭A .B ., 012π⎛⎫-⎪⎝⎭7, 012π⎛⎫- ⎪⎝⎭C .D . 7, 012π⎛⎫⎪⎝⎭11, 012π⎛⎫⎪⎝⎭解:设得函数图象的对称中心是(),34x k ππ-=sin(3)4y x π=-(,0)312k ππ+Z k ∈ 令得,2k =-7, 012π⎛⎫- ⎪⎝⎭参考答案:B考查内容:正弦函数在区间上的性质[0,2π]难易程度:中11.要得到函数y = sin 的图象,只要将函数y = sin2x 的图象( ).23x π⎛⎫+⎪⎝⎭A .向左平移个单位 B .向右平移个单位3π3πC .向左平移个单位 D .向右平移个单位6π6π解:,sin 2sin 236y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭6x x π→+参考答案:C考查内容:参数,,对函数图象变化的影响A ωϕsin()y A x ωϕ=+认知层次:a 难易程度:易12.已知tan ( 0 << 2),那么角等于( ).ααπαA .B .或C .或D .6π6π76π3π43π3π解:,,令或可得tan α=6k παπ⇒=+Z k ∈0k =1k =参考答案:B考查内容:任意角的正切的定义(借助单位圆)认知层次:b 难易程度:易13.已知圆的半径为100cm ,是圆周上的两点,且弧的长为112cm ,那么O ,A B AB 的度数约是( ).(精确到1)AOB ∠︒A . B .C .D .646886110解:11211218064100100απ==⨯≈参考答案:A考查内容:弧度与角度的互化认知层次:b14.如图,一个半径为10米的水轮按逆时针方向每分钟转4圈.记水轮上的点P 到水面的距离为米(P 在水面下则为负数)d d ,如果(米)与时间(秒)之间满足关系式:d t ,且当P 点()sin 0,0,22d A t k A ππωϕωϕ⎛⎫=++>>-<< ⎪⎝⎭从水面上浮现时开始计算时间,那么以下结论中错误的是A .B .C .D .10=A 152πω=6πϕ=5=k 解:周期(秒),角速度,振幅,上移60154T ==215πω=10A =5k =参考答案:C考查内容:用三角函数解决一些简单实际问题,函数的实际意义,三角sin()y A x ωϕ=+函数是描绘周期变化现象的重要函数模型认知层次:b 难易程度:难15.sin(-)的值等于__________.196π解:,19534666πππππ-=--=-+1951sin(sin(4)662πππ-=-+=参考答案:12考查内容:的正弦、余弦、正切的诱导公式πα±认知层次:c 难易程度:易16.如果< θ < π,且cos θ = -,那么sin 等于__________.2π353πθ⎛⎫+ ⎪⎝⎭不做考查内容:同角三角函数的基本关系式:,两角和的正弦公式22sin cos 1x x +=认知层次:c 难易程度:中17.已知角的终边过点,那么的值为__________.α(4, 3)P -2sin cos αα+10m d5mP解: , 5r OP ===3422sin cos 2()555αα+=⨯-+=-参考答案:52-考查内容:任意角的正弦的定义(借助单位圆),任意角的余弦的定义(借助单位圆)认知层次:b 难易程度:中18.的值等于__________.75tan 175tan 1-+不做参考答案:3-考查内容:两角和的正切公式认知层次:c 难易程度:易19.函数y = sin(x +)在[-2π,2π]内的单调递增区间是__________.124π解:令,解得,令得1222242k x+k πππππ-≤≤+34422k x k ππππ-≤≤+0k =参考答案:[-,]32π2π考查内容:正弦函数在区间上的性质,不等关系,子集[0,2π]认知层次:b 难易程度:中20.已知sin +cos =,那么sin 的值是__________.αα532α参考答案:-1625考查内容:同角三角函数的基本关系式:22sin cos 1x x +=认知层次:b 难易程度:易21.函数y = sin x cos x 的最小正周期是__________.参考答案:2π考查内容:两角和的正弦公式,三角函数的周期性认知层次:c 难易程度:易22.已知,,那么tan2x 等于__________.(, 0)2x π∈-4cos 5x =参考答案:247-考查内容:同角三角函数的基本关系式:,二倍角的正切公式22sin cos 1x x +=认知层次:c 难易程度:易23.已知 ,.π02α<<4sin 5α=(1)求的值;tan α(2)求的值.(不做)πcos 2sin 2αα⎛⎫++⎪⎝⎭参考答案:(1)因为,, 故,所以.π02α<<4sin 5α=3cos 5α=34tan =α(2).πcos 2sin 2αα⎛⎫+-=⎪⎝⎭212sin cos αα-+=3231255-+=825考查内容:同角三角函数的基本关系式:,同角三角函数的基本关系式:22sin cos 1x x +=,的正弦的诱导公式,二倍角的余弦公式sin tan cos x x x =π2α+认知层次:c难易程度:中24.某港口海水的深度(米)是时间(时)()的函数,记为:.y t 024t ≤≤)(t f y =已知某日海水深度的数据如下:(时)t 03691215182124(米)y 10.013.09.97.010.013.010.17.010.0经长期观察,的曲线可近似地看成函数的图象.)(t f y =sin y A t b ω=+(1)试根据以上数据,求出函数的振幅、最小正周期和表达式;()sin y f t A t b ω==+(2)一般情况下,船舶航行时,船底离海底的距离为米或米以上时认为是安全的55(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为米,5.6如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)?参考答案:(1)依题意,最小正周期为:,振幅:,,12=T 3A =10=b .2ππ6T ω==所以.π()3sin 106y f t t ⎛⎫==⋅+⎪⎝⎭(2)该船安全进出港,需满足:.即:.6.55y ≥+π3sin 1011.56t ⎛⎫⋅+≥⎪⎝⎭所以.π1sin 62t ⎛⎫⋅≥⎪⎝⎭所以.ππ5π2π2π()666k t k k +≤⋅≤+∈Z 所以.121125()k t k k +≤≤+∈Z 又 ,024t ≤≤所以或.15t ≤≤1317t ≤≤所以,该船至多能在港内停留:(小时).16117=-考查内容:三角函数是描绘周期变化现象的重要函数模型,正弦函数在区间上的性[0,2π]质,用三角函数解决一些简单实际问题认知层次:b 难易程度:难。
三角函数的应用题练习题(基础)

三角函数的应用题练习题(基础)题目1: 三角函数的高度应用某个人站在一座高楼的窗户旁,离地面的距离是20米。
该人仰望斜顶角度为30度的楼顶,试计算楼顶的高度是多少米?答案:首先,我们可以利用正弦函数来解决这个问题。
正弦函数定义为:sin(θ) = 对边/斜边。
按照这个定义,我们可以得到以下方程:sin(30度) = 对边/20米对方程进行求解,我们可以得到:对边 = 20米 * sin(30度)利用计算器,我们可以得到:对边 = 10米因此,楼顶的高度是10米。
题目2: 三角函数的距离应用一辆汽车正在沿着直路行驶。
从汽车起点到终点的直线距离为1000米。
汽车行驶的角度与直线路线的夹角为45度。
试计算汽车实际行驶的距离是多少米?答案:对于这个问题,我们可以使用余弦函数来求解。
余弦函数定义为:cos(θ) = 临边/斜边。
应用于这个问题,我们可以得到以下方程:cos(45度) = 临边/1000米对方程进行求解,我们可以得到:临边 = 1000米 * cos(45度)利用计算器,我们可以得到:临边 = 707.106米因此,汽车实际行驶的距离是707.106米。
题目3: 三角函数的速度应用一艘船以20米/秒的速度顺水行驶。
河流的流速为10米/秒,且方向与船垂直。
试计算船在水中实际的速度是多少米/秒?答案:对于这个问题,我们可以使用正切函数来求解。
正切函数定义为:tan(θ) = 对边/临边。
应用于这个问题,我们可以得到以下方程:tan(θ) = 10米/秒 / 20米/秒对方程进行求解,我们可以得到:tan(θ) = 0.5利用计算器,我们可以得到:θ = 26.565度因此,船在水中实际的速度是约为26.565米/秒。
三角函数经典练习题(含详细答案)
三角函数典型例题(含详解答案)一、选择题1.函数)y x ωϕ=+其中(0,0π)ωϕ><<,的图象的一部分如图所示,则( )A. π3π,84ωϕ== B. ππ,84ωϕ== C. ππ,42ωϕ== D. π3π,44ωϕ==2.+( ) A.1sin 2 B.1cos 2C.112sin cos 22- D.112cos sin 22-3.若sin 2α=,sin()βα-=,且π,π4α⎡⎤∈⎢⎥⎣⎦,3ππ,2β⎡⎤∈⎢⎥⎣⎦,则αβ+的值是( ) A.7π4 B.9π4 C.5π4或7π4 D.5π4或9π44.已知1tan 2α=-求2212sin cos sin cos αααα+-的值是( ) A.13 B.3 C.13- D.-35.已知函数()sin()f x A x ωϕ=+(其中π0,2A ϕ><)的部分图象如右图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( )A.向右平移π6个长度单位B.向右平移π12个长度单位C .向左平移π6个长度单位 D.向左平移π12个长度单位 二、填空题6.计算:1tan151tan15+-= ___________. 三、解答题7.已知π0,cos sin 2ααα<<-=,求1tan cos2cos21ααα--+的值. 8.已知函数21()1sin 2sin sin tan 44f x x x x x ππ⎛⎫⎛⎫⎛⎫=+-+⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (1)若tan 2α=,求()f α;(2)若,122x ππ⎡⎤∈⎢⎥⎣⎦,求()f x 的值域.9.已知函数2π()sin()sin 2f x x x x =-. (I )求()f x 的最小正周期和最大值;(II )讨论()f x 在π2π[,]63上的单调性. 10.已知ABC △内角,,A B C 的对边分别为,,,a b c 向量(cos ,2),(2,1)m A a b n c =-=,且m n ⊥.(1).求角C ;(2).若2c =,ABC △ 求ABC △的周长.参考答案一、选择题1.答案:B解析:如图根据函数的图象可得:函数的周期为()62416-⨯=,又∵0ω>, ∴2ππ8T ω==,当2x =时取最大值,即π28ϕ⎛⎫⨯+= ⎪⎝⎭可得:ππ22π,Z 82k k ϕ⨯+=+∈, ∴π2π,Z 4k k ϕ=+∈, ∵0<πϕ<, ∴π4ϕ=, 故选:B .先利用图象中求得函数的周期,求得ω,最后根据2x =时取最大值,求得ϕ,即可得解.本题主要考查了由()sin()f x A x ωϕ=+的部分图象确定其解析式,考查了学生基础知识的运用和图象观察能力,属于基本知识的考查.2.答案:B解析:原式1111cos sin sin cos 2222=-+=. 3.答案:A解析:因为π,π4α⎡⎤∈⎢⎥⎣⎦,所以π2,2π2α⎡⎤∈⎢⎥⎣⎦.又sin 2α=,故π2,π2α⎡⎤∈⎢⎥⎣⎦,所以ππ,42α⎡⎤∈⎢⎥⎣⎦,所以cos 2α=.又3ππ,2β⎡⎤∈⎢⎥⎣⎦,所以π5π,24βα⎡⎤-∈⎢⎥⎣⎦,且5π,2π4αβ⎡⎤+∈⎢⎥⎣⎦,于是cos()βα-=所以cos()cos[2()]αβαβα+=+-cos2cos()sin 2sin()αβααβα=---⎛== ⎝⎭,故7π4αβ+=. 4.答案:C解析:5.答案:A解析:二、填空题6.解析:三、解答题7.答案:1tan cos2cos21ααα--+ 2cos sin cos (sin 22sin )ααααα-=+ cos sin sin 2(cos sin )ααααα-=+由cos sin αα-=两边平方得4sin 25α=, 29(cos sin )1sin 25ααα+=+= 而π02α<<,cos sin αα∴+=,故原式512== 解析:8.答案:(1)由题意,知2()sin sin cos cos 2f x x x x x =++ 1cos2111sin 2cos2(sin 2cos2)2222x x x x x -=++=++. 有tan 2α=,得2222sin cos 2tan 4sin 2sin cos tan 15ααααααα===++, 222222cos sin 1tan 3cos2sin cos tan 15ααααααα--===-++, 所以14313()25525f α⎛⎫=-+= ⎪⎝⎭. (2)由(1),得111()(sin 2cos 2)22242f x x x x π⎛⎫=++=++ ⎪⎝⎭.由,122x ππ⎡⎤∈⎢⎥⎣⎦,得552,4124x πππ⎡⎤+∈⎢⎥⎣⎦,所以sin 24x ⎡⎤π⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦.从而()f x 的值域为⎡⎢⎣⎦. 解析:9.答案:(Ⅰ)函数2π()sin()sin 2f x x x x =-cos sin cos2)x x x =+1sin 22x x =πsin(2)2x =-故函数的周期为2ππ2=,最大值为1- (Ⅱ)当π2π[,]63x ∈时,π2[0,π]3x -∈, 故当ππ0232x ≤-≤时,即π5π[,]612x ∈时,()f x 为增函数; 当ππ2π23x ≤-≤时,即5π2π[,]123x ∈时,()f x 为减函数. 解析:10.答案:(1).由m n ⊥得2cos 2c A b a =-, 由正弦定理2sin 2sin cos 2sin sin CcsoA A C C A =+-,2sin cos sin A C A ∴= 在ABC △中,0πA <<,sin 0A ≠,1cos 2C ∴=,0πC <<,π3C ∴=. (2).4ab = 由余弦定理,22π42cos 3a b ab ab +-==,2()43a b ab ∴+-=,从而4a b += 2a b ==,周长为6解析:。
三角函数系列二倍角公式测试题含答案
二倍角公式一、选择题,则tan2θ=()A. B. C. D.2.已知=,则sin2α+cos(α﹣)等于()A.﹣B.C.D.﹣3.若0<α<,﹣<β<0,cos(+α)=,cos(﹣β),则cos(α+β)=()A.B.﹣C.D.﹣5.已知cosα=,cos(α+β)=﹣,且α、β∈(0,),则cos(α﹣β)=()A.B.C.D.6.求值:tan42°+tan78°﹣tan42°•tan78°=()A.B.C.D.7.已知sinx=﹣,且x在第三象限,则tan2x=()A.B.C.D.8.已知tanα=4,=,则则tan(α+β)=()A.B.﹣C.D.﹣9.计算log2sin+log2cos的值为()A.﹣4 B.4 C.2 D.﹣210.若均α,β为锐角,=()A.B.C.D.11.已知tanα=,tanβ=,则tan(α﹣β)等于()A.B.C.D.12.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y=2x 上,则cos2θ=( )A . ﹣B . ﹣C .D .13.已知sin θ+cos θ=,则tan2θ值为( )A .B .C .D .14.设tan α,tan β是方程x 2﹣3x+2=0的两个根,则tan (α+β)的值为( ) A . ﹣3 B . ﹣1C . 1D . 315.sin α=,α∈(,π),则cos (﹣α)=( )A .B .C .D .16.已知sin α+cos α=﹣,则sin2α=( )A .B .C .D .17.已知,那么cos α=( )A .B .C .D .18.设α﹑β为钝角,且sin α=,cos β=﹣,则α+β的值为( )A .B .C .D .或19.若tan (α﹣β)=,tan β=,则tan α等于( )A . ﹣3B . ﹣C . 3D .20.=( )A .B .C .D .21.若角A 为三角形ABC 的一个内角,且sinA+cosA=,则这个三角形的形状为( )A . 锐角三角形B . 钝角三角形C . 等腰直角三角形D . 等腰三角形第II卷(非选择题)二、填空题22.若tan(α+β)=,tan(β﹣)=,则tan(α+)=.23.(1+tan1°)(1+tan44°)= .24.若,,,则=.25.已知α为第三象限的角,,则=.26.已知<α<,cos(+α)=﹣,则sinα= .27.在△ABC中,已知tanA,tanB是方程3x2﹣7x+2=0的两个实根,则tanC= .三、解答题28.已知,(1)求sinα的值;(2)求β的值.29.已知cosα=,cos(α﹣β)=,且0<β<α<,(Ⅰ)求tan2α的值;(Ⅱ)求β.二倍角公式试卷答案1.B2.A解答:解:由已知得:==sinα+cosα=,∴(sinα+cosα)2=1+2sinαcosα=1+sin2α=,∴sin2α=﹣,又sinα+cosα=sin(α+),∴sin(α+)=,cos(α﹣)=cos(﹣α)=sin(x+)=,∴sin2α+cos(α﹣)=﹣.3.C解答:解:∵cos(+α)=,0<α<,∴<+α<,∴sin(+α)==,∵cos(﹣β)=,﹣<β<0,∴<﹣β<,∴sin(﹣β)==,∵α+β=(+α)﹣(﹣β),∴cos(α+β)=cos[(+α)﹣(﹣β)]=cos(+α)cos(﹣β)+sin(+α)sin(﹣β)===.4.解答:由题意可得:tanα+tanβ=;tanαtanβ=,显然α,β﹣又tan(α+β)===1且α+β∈,故α+β=﹣﹣﹣﹣﹣﹣(10分)5.C解答:由2α∈(0,π),及cosα=,得到cos2α=2cos2α﹣1=﹣,且sin2α==,由α+β∈(0,π),及cos(α+β)=﹣,得到sin(α+β)==,则cos(α﹣β)=cos[2α﹣(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)=﹣×(﹣)+×=.6.C解答:由tan120°=tan(78°+42°)==﹣,得到tan78°+tan42°=﹣(1﹣tan78°tan42°),则tan78°+tan42°﹣tan18°•tan42°=﹣.故选:C..7.A 8.B 解答:由得tanβ=3,又tanα=4,所以tan(α+β)===,故选:B.9.D 10.B解答:α,β为锐角,则cosα===;则cos(α+β)=﹣=﹣=﹣,cosβ=cos(α+β﹣α)=cos(α+β)cosα+sin(α+β)sinα==.11.D 12.B 13.C 14.A 15.A 16.D 17.C 18.C解答:∵α﹑β为钝角,且sinα=,cosβ=﹣,∴cosα=﹣,sinβ=,∴cos(α+β)=cosαco sβ﹣sinαsinβ=﹣×(﹣)﹣×=,又α﹑β为钝角,∴α+β∈(π,2π),∴α+β=.故选:C.19.C解答:∵tan(α﹣β)===,∴可解得:tanα=3.故选:C.20.D 21.B解答:角A为三角形ABC的一个内角,sinA+cosA=sin(A+),如果A∈(0,],A+∈,sin(A+)∈.A∈(,π),A+∈,sin(A+)∈(﹣1,1).∵sinA+cosA=,∴A是钝角.三角形是钝角三角形.故选:B.22.解答:∵tan(α+)=tan[(α+β)﹣(β﹣)],∴又∵∴.故答案为:.23.2 24.解答:∵∴∵,∴,∴===故答案为:25.解答:方法一:因为α为第三象限的角,所以2α∈(2(2k+1)π,π+2(2k+1)π)(k∈Z),又<0,所以,于是有,,所以=.方法二:α为第三象限的角,,⇒4kπ+2π<2α<4kπ+3π⇒2α在二象限,26.解答:∵<α<,∴<α+<π,又cos(+α)=﹣,∴sin(+α)==,∴sinα=sin[(α+)﹣]=sin(+α)cos﹣cos(+α)sin=×﹣(﹣)×=.故答案为:.27.-7解答:∵tanA,tanB是方程3x2﹣7x+2=0的两个根,则tanA+tanB=,tanAtanB=,∴tanC=tan=﹣tan(A+B)=﹣=﹣728.解答:(1)∵,∴tanα==.∵tanα=,sin2α+cos2α=1,∴sin α=,cos α=.(2)∵,,∴sin(α﹣β)=﹣,∴tan(α﹣β)==﹣7==,∴tanβ=﹣1,∴β=.29.解答:(Ⅰ)由,得∴,于是(Ⅱ)由0<β<α<,得,又∵,∴由β=α﹣(α﹣β)得:cosβ=cos=cosαcos(α﹣β)+sinαsin(α﹣β)=所以.。
三角函数练习题附答案
三角函数练习题附答案一、填空题1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .角B 为钝角.设△ABC 的面积为S ,若()2224bS a b c a =+-,则sin A +sin C 的最大值是____________.2.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了"勾股圆方图",亦称"赵爽弦图"(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比"赵爽弦图",可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设 ,AD AB AC λμ=+若4AD AF =,则λ-μ的值为___________3.已知三棱锥P ABC -中,23APB ∠=π,3PA PB ==,5AC =,4BC =,且平面PAB ⊥平面ABC ,则该三棱锥的外接球的表面积为_________.4.已知单位向量1e ,2e 与非零向量a 满足12322e e +≤()120a e e ⋅-≤,则()1232a e e a⋅+的最大值是______.5.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =BD 长度的最大值为______.6.在锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos b a a C -=,则ac的取值范围是______.7.在ABC 中,AB BC ≠,O 为ABC 的外心,且有23AB BC AC +=,sin (cos 3)cos sin 0C A A A +=,若AO x AB y AC =+,,x y R ∈,则2x y -=________.8.在角1θ,2θ,3θ,…,29θ的终边上分别有一点1P ,2P ,3P ,…,29P ,如果点k P 的坐标为()()()sin 15,sin 75k k-+,129k ≤≤,k ∈N ,则12329cos cos cos cos θθθθ+++⋅⋅⋅+=______9.关于函数()()33cos sin f x x x x =+①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号).10.已知O 为△ABC 外接圆的圆心,D 为BC 边的中点,且4BC =,6AO AD ⋅=,则△ABC 面积的最大值为___________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,若在椭圆E 上存在点M ,使得12MF F △的面积等于2122sin b F MF ∠,则椭圆E 的离心率e 的取值范围为( )A .3⎡⎫⎪⎢⎪⎣⎭B .3⎛ ⎝⎦C .122⎛ ⎝⎦D .2⎡⎫⎪⎢⎪⎣⎭13.若函数()f x 同时满足:①定义域内任意实数x ,都有()()110f x f x ++-=;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.若“DM 函数”满足()()2sin cos 0f f αα-+>,则锐角α的取值范围为( ) A .0,4π⎛⎫ ⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,43ππ⎛⎫ ⎪⎝⎭D .2,43ππ⎛⎫ ⎪⎝⎭14.已知ABC 的内角分别为,,A B C ,23cos 1sin 26A A =-,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1215.设函数()211f x x =-,()122x f e x --=,()31sin 23f x x π=,99i ia =,0i =、1、2、、99.记()()()()()()10219998k k k k k k k I f a f a f a f a f a f a =-+-++-,1k =、2、3,则( ) A .123I I I << B .321I I I << C .132I I I << D .213I I I <<16.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( ) A .132B .2C .31+D .2317.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14B .23C 151-D 51-18.在ABC 中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( ) A .6B .62C .12D .12219.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( )A .11[,]52B .21[,]52C .14[,]55D .24[,]5520.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合.(1)求ω和ϕ的值;(2)若函数()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求函数()h x 的单调递减区间及图象的对称轴方程.22.已知函数()()2sin 24sin 206x x x f πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻的两个交点的距离为2π. (1)求函数()f x 的解析式;(2)若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛-⎫ ⎪⎝⎭,求当m 取得最小值时,()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间. 23.如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC ⊥AB .在OC 上有一座观赏亭Q ,其中∠AQC =23π,.计划在BC 上再建一座观赏亭P ,记∠POB =θ(0)2πθ<<.(1)当θ=3π时,求∠OPQ 的大小; (2)当∠OPQ 越大时,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时,角θ的正弦值.24.已知函数()2sin cos cos2x x x x f =+. (1)求()f x 的最小正周期及单调递减区间;(2)求()f x 在区间0,4π⎡⎤⎢⎥⎣⎦上的最大值和最小值.25.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?26.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为3域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.27.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.28.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足sin()n n b a =,集合*{|,}n S x x b n ==∈N .(1)若10a =,23d π=,求集合S ; (2)若12a π=,求d 使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,n T n b b +=,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S . 29.已知函数2133()sin 24f x x x =+(1)求()f x 的最小正周期T 和[0,]π上的单调增区间:(2)若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,求实数m 的取值范围.30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题1.982.473.28π 4535616.32⎝⎭7.4333-8.09.②③10.2二、单选题 11.A 12.A 13.A 14.A 15.D 16.C 17.A 18.C19.B 20.C 三、解答题21.(1)2ω=,3πϕ=;(2)减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴方程为()212k x k Z ππ=+∈ 【解析】 【分析】(1)先根据平移后周期不变求得2ω=,再根据三角函数的平移方法求得3πϕ=即可.(2)根据(1)中()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭代入可得()h x ,利用辅助角公式求得()23h x x π⎛⎫=+ ⎪⎝⎭,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合,所以2ω=.5sin 2sin 2cos 222663f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 所以()cos 2cos 23x x πϕ⎛⎫+=+ ⎪⎝⎭,因为2πϕ<,所以3πϕ=.(2)由(1)()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭,所以()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 2212123x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()3222232k x k k Z πππππ+≤+≤+∈,解得()71212k x k k Z ππππ+≤≤+∈ 所以函数的单调递减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 令()232x k k Z πππ+=+∈,可得图象的对称轴方程为()212k x k Z ππ=+∈. 【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.22.(1)()23f x x π⎛⎫=+ ⎪⎝⎭(2)单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦. 【解析】 【分析】(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与x 轴相邻的两个交点的距离为2π,得出周期,利用周期公式得出1ω=,即可得出该函数的解析式;(2)根据平移变换得出()223m x x g π⎛⎫=++ ⎪⎝⎭,再由函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭,结合正弦函数的性质得出m 的最小值,进而得出()223g x x π⎛⎫=+ ⎪⎝⎭,利用整体法结合正弦函数的单调性得出该函数在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.【详解】解:(1)()2sin 24sin 26x x x f πωω⎛⎫=--+ ⎪⎝⎭11cos22cos24222xx x ωωω-=--⨯+32cos22x x ωω=+23x πω⎛⎫=+ ⎪⎝⎭由已知函数()f x 的周期T π=,22ππω=,1ω=∴()23f x x π⎛⎫=+ ⎪⎝⎭.(2)将()f x 的图象向左平移()0m m >个长度单位得到()g x 的图象∴()223m x x g π⎛⎫=++ ⎪⎝⎭,∵函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭22033m ππ⎡⎤⎛⎫⨯-++= ⎪⎢⎥⎝⎭⎣⎦,即sin 203m π⎛⎫-= ⎪⎝⎭∴23m k ππ-=,k Z ∈∴26k m ππ=+,k Z ∈∵0m >,∴当0k =,m 取最小值,此时最小值为6π此时,()223g x x π⎛⎫=+⎪⎝⎭. 令7612x ππ-≤≤,则2112336x πππ≤+≤当22332x πππ≤+≤或32112236x πππ≤+≤,即当612x ππ-≤≤-或571212x ππ≤≤时,函数()g x 单调递增当232232x πππ≤+≤,即51212x ππ-≤≤时,函数()g x 单调递减. ∴()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦.【点睛】本题主要考查了由正弦函数的性质确定解析式以及正弦型函数的单调性,属于中档题.23.(1)6π.(2)sin θ=. 【解析】(1)设∠OPQ =α,在△POQ 中,用正弦定理sin sin OQ OPOPQ OQP=∠∠可得含α,θ的关系式,将其展开化简并整理后得tanαθ=3π代入得答案;(2)令f (θ)f (θ)的最大值,即此时的sin θ,由(1)可知tanα.【详解】(1)设∠OPQ =α,在△POQ 中,用正弦定理可得含α,θ的关系式. 因为∠AQC =23π,所以∠AQO =3π.又OA =OB =3,所以OQ 在△OPQ 中,OQOP =3,∠POQ =2π-θ,设∠OPQ =α,则∠PQO =2π-α+θ.由正弦定理,得3sin 2παθ⎛⎫-+ ⎪⎝⎭=cos (α-θ).展开并整理,得tanαθ∈0,2π⎛⎫⎪⎝⎭.此时当θ=3π时,tanα因为α∈(0,π),所以α=6π.故当θ=3π时,∠OPQ =6π.(2)设f (θ)θ∈0,2π⎛⎫ ⎪⎝⎭.则f ′(θ)令f ′(θ)=0,得sinθθ0满足0sin θ则0cos θ=,即()02f θ===列表如下:由(1)可知tanα=f (θ)>0,则0,2πα⎛⎫∈ ⎪⎝⎭, tanα单调递增则当tanα取最大值2时,α也取得最大值. 故游客在观赏亭P 处的观赏效果最佳时,sinθ 【点睛】本题考查三角函数和解三角形的实际应用,应优先建模,将实际问题转化为熟悉的数学问题,进而由正弦定理构建对应关系,还考查了利用导数求函数的最值,属于难题. 24.(1)最小正周期π;单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈(2)最大值和最小值和1. 【解析】(1)利用二倍角的正弦公式的逆用公式以及两角和的正弦公式的逆用公式化简得()24f x x π⎛⎫+ ⎪⎝⎭,再根据周期公式可得周期,利用正弦函数的递减区间可得()f x 的递减区间;(2)利用正弦函数的性质可求得结果. 【详解】(1)因为()sin 2cos 224x f x x x π⎛⎫=+=+ ⎪⎝⎭.所以()f x 的最小正周期22T ππ==. 由3222242k x k πππππ+≤+≤+,得588k x k ππππ+≤≤+,所以()f x 的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈⎢⎥⎣⎦.所以当242x ππ+=,即8x π=当244x ππ+=或34π,即0x =或4x π=时,函数取得最小值1.所以()f x 在区间0,4⎡⎤⎢⎥⎣⎦π和1.【点睛】本题考查了二倍角的正弦公式,考查了两角和的正弦公式,考查了正弦型函数的周期公式,考查了求三角函数的单调区间和最值,属于基础题. 25.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x =【解析】 【分析】(1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值;(2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭233k ππϕπ∴-=+或2()3k k Z ππ-+∈又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴=(2)由(1)知 1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()4g x = 当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题26.(1)OA 、OB 都为50m ;(2)8sin 64sin cos S θθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8m +. 【解析】 【分析】对于(1),设OA m =,OB n =,m ,n (0,200)∈,在△OAB 中,利用余弦定理可得22222cos3AB OA OB OA OB π=+-⋅⋅,整理得222m n mn =++,结合基本不等式即可得出结论;对于(2),当△AOB 的周长最大时,梯形ACBD 为等腰梯形,过O 作OF ⊥CD 交CD 于F ,交AB 于E ,则E 、F 分别为AB ,CD 的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,8sin 64sin cos S θθθθ=-+ ,0,6πθ⎛⎤∈ ⎥⎝⎦,令()8sin 64sin cos f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S 的最大值. 【详解】解:(1)设OA m =,OB n =,m ,n (0,200)∈,在OAB ∆中,22222cos3AB OA OB OA OB π=+-⋅⋅,即222m n mn =++.所以22222()3()()()44m n m n mn m n m n +=+-+-=+.所以m n 100+,当且仅当m n 50==时,m n +取得最大值, 此时OAB ∆周长取得最大值.答:当OA 、OB 都为50m 时,OAB ∆的周长最大. (2)当AOB ∆的周长最大时,梯形ABCD 为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点, 所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦.在ODF ∆中,DF 200sin θ=,OF 200cos θ=. 又在AOE ∆中,OE OAcos253π==,故EF 200cos 25θ=-.所以1(503400sin )(200cos 25)2S θθ=-625(38sin )(8cos 1)θθ=-625(838sin 64sin cos 3)θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦.令()838sin 64sin cos 3f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,()838cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭.又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数,故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.因1()1640623f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数.所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8153)+. 答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8153)m +.【点睛】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()838sin 64sin cos 3f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题.27.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】 【分析】(1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值. 【详解】 (1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭,解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈; (2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1-【点睛】本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.28.(1)⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭;(2)23π或π;(3)3T =或4,3T =时,23n a n π=,S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭;4T =时,2n a n π=,{}0,1,1S =-【解析】【分析】(1)根据等差数列的通项公式写出n a ,进而求出n b ,再根据周期性求解;(2)由集合S 的元素个数,分析数列{}n b 的周期,进而可求得答案;(3)分别令1T =,2,3,4,5进行验证,判断T 的可能取值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S 【详解】(1)等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =, 集合{}*|,n S x x b n N ==∈. ∴当120,3a d π==, 所以集合3{2S =-,0,3}2. (2)12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=, ②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意. 与之相应的一个等差数列{}n a 的通项公式为23n a n π=,此时33S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭. ②当4T =时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{0S =,1,1}-. 与之相应的一个等差数列{}n a 的通项公式为2n a n π=,此时{}0,1,1S =-【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题. 29.(1) T=π,单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2) ∅ 【解析】 【分析】(1)化简函数得到1()sin 223f x x π⎛⎫=- ⎪⎝⎭,再计算周期和单调区间.(2)分情况n 的不同奇偶性讨论,根据函数的最值得到答案. 【详解】解:(1)函数2133()sin 24f x x x =131cos 23sin 242x x +=131sin 22sin 2423x x x π⎛⎫==- ⎪⎝⎭ 故()f x 的最小正周期22T ππ==. 由题意可知:222232k x k πππππ-+≤-≤+,k Z ∈解得:51212k x k ππππ-+≤≤+,k Z ∈ 因为[0,]x π∈,所以()g x 的单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦ (2)由(1)得1()sin 223f x x π⎛⎫=- ⎪⎝⎭∵,34x ππ⎡⎤∈-⎢⎥⎣⎦∴2,36x πππ⎡⎤-∈-⎢⎥⎣⎦,∴1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,12()1,2f x ⎡⎤∈-⎢⎥⎣⎦若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,则2()(1)n f x m +-⋅的最小值大于零. 当n 为偶数时,10m -+>,所以,1m 当n 为奇数时,10m -->,所以,1m <- 综上所述,m 的范围为∅. 【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力. 30.(Ⅰ)3π(Ⅱ)5 【解析】 【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析: 解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-= ∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。
三角函数定义练习含答案
课时作业3三角函数的定义时间:45分钟满分:100分一、选择题(每小题6分,共计36分)1.下列命题中正确的是( )A.若cosθ<0,则θ是第二或第三象限角B.若α>β,则cosα<cosβC.若sinα=sinβ,则α与β是终边相同的角D.若α是第三象限角,则sinαcosα>0且cosαtanα<0解析:α是第三象限角,sinα<0,cosα<0,tanα>0,则sinαcosα>0且cosαtanα<0.答案:D2.若sinθ·cosθ<0,则θ在( )A.第一、二象限 B.第一、三象限C.第一、四象限 D.第二、四象限解析:因为sinθcosθ<0,所以sinθ,cosθ异号.当sinθ>0,cosθ<0时,θ在第二象限;当sinθ<0,cosθ>0时,θ在第四象限.3.若角α的终边经过点P (35,-45),则sin αtan α的值是( )B .-1615D .-1516解析:∵r =352+-452=1,∴点P 在单位圆上.∴sin α=-45,tan α=-4535=-43.∴sin αtan α=(-45)·(-43)=1615.答案:A4.若角α终边上一点的坐标为(1,-1),则角α为( ) A .2k π+π4,k ∈ZB .2k π-π4,k ∈ZC .k π+π4,k ∈ZD .k π-π4,k ∈Z解析:∵角α过点(1,-1),∴α=2k π-π4,k ∈Z .故选B.5.已知角α的终边在射线y =-3x (x ≥0)上,则sin αcos α等于( )A .-310B .-1010解析:在α终边上取一点P (1,-3),此时x =1,y =-3. ∴r =1+-32=10.∴sin α=y r =-310,cos α=x r =110.∴sin αcos α=-310×110=-310.答案:A6.函数y =sin x +lgcos xtan x 的定义域为( )解析:要使函数有意义,则有⎩⎪⎨⎪⎧sin x ≥0 ①cos x >0 ②tan x ≠0 ③由①知:x 的终边在x 轴上、y 轴非负半轴上或第一、二象限内.由②知:x 的终边在第一、四象限或x 轴的正半轴.由③知x 的终边不能在坐标轴上.综上所述,x 的终边在第一象限,即函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x <2k π+π2,k ∈Z. 答案:B二、填空题(每小题8分,共计24分) 7.用不等号(>,<)填空:(1)sin 4π5·cos 5π4·tan 5π3________0;(2)tan100°sin200°·cos300°________0. 解析:(1)∵45π在第二象限,5π4在第三象限,5π3在第四象限,∴sin 4π5>0,cos 5π4<0,tan 5π3<0,∴sin 4π5·cos 5π4·tan 5π3>0.(2)∵100°在第二象限,200°在第三象限,300°在第四象限,∴tan100°<0,sin200°<0,cos300°>0, ∴tan100°sin200°·cos300°>0. 答案:(1)> (2)>8.函数f (x )=cos x 的定义域为__________________. 解析:若使f (x )有意义,须满足cos x ≥0,即2k π-π2≤x ≤2k π+π2,k ∈Z ,∴f (x )的定义域为{x |2k π-π2≤x ≤2k π+π2,k ∈Z }. 答案:{x |2k π-π2≤x ≤2k π+π2,k ∈Z }9.下列说法正确的有________.(1)正角的正弦值是正的,负角的正弦值是负的,零角的正弦值是零(2)若三角形的两内角α,β满足sin α·cos β<0,则此三角形必为钝角三角形(3)对任意的角α,都有|sin α+cos α|=|sin α|+|cos α| (4)若cos α与tan α同号,则α是第二象限的角解析:对于(1)正角和负角的正弦值都可正、可负,故(1)错. 对于(2)∵sin α·cos β<0,又α,β∈(0,π),∴必有sin α>0,cos β<0,即β∈(π2,π),∴三角形必为钝角三角形,故(2)对.对于(3)当sin α,cos α异号时,等式不成立.故(3)错. 对于(4)若cos α,tan α同号,α可以是第一象限角,故(4)错.因此填(2).答案:(2)三、解答题(共计40分,其中10题10分,11、12题各15分) 10.已知角α的终边上一点P 与点A (-3,2)关于y 轴对称,角β的终边上一点Q 与点A 关于原点对称,求sin α+sin β的值.解:由题意,P (3,2),Q (3,-2), 从而sin α=232+22=21313,sin β=-232+-22=-21313, 所以sin α+sin β=0. 11.求下列函数的定义域.(1)y =cos x +lg(2+x -x 2);(2)y =tan x +cot x .解:(1)依题意有⎩⎪⎨⎪⎧cos x ≥0,2+x -x 2>0,所以⎩⎪⎨⎪⎧-π2+2k π≤x ≤π2+2k πk ∈Z,-1<x <2.取k =0解不等式组得-1<x ≤π2,故原函数的定义域为⎝⎛⎦⎥⎤-1,π2.(2)因为tan x 的定义域为{x |x ∈R ,且x ≠k π+π2,k ∈Z },cot x 的定义域为{x |x ∈R ,且x ≠k π,k ∈Z },所以函数y =tan x +cot x 的定义域为{x |x ∈R ,且x ≠k π+π2,k∈Z }∪{x |x ∈R ,且x ≠k π,k ∈Z }={x |x ∈R ,且x ≠k π2,k ∈Z }.12.已知角α的终边落在直线y =2x 上,求sin α,cos α,tan α的值.解:当角α的终边在第一象限时,在角α的终边上取点P (1,2),设点P 到原点的距离为r .则r =|OP |=12+22=5,所以sin α=25=255,cos α=15=55,tan α=21=2;当角α的终边在第三象限时,在角α的终边上取点Q (-1,-2).则r =|OQ |=-12+-22=5,所以sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2.综上所得,当α是第一象限角时, sin α=255,cos α=55,tan α=2;当α是第三象限角时,sin α=-255,cos α=-55,tan α=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数基础练习题二
学生: 用时: 分数
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)
1. 若 –π/2<α<0,则点)cos ,(tan αα位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2. 若54
cos =
α,),0(πα∈则αcot 的值是( ) A .34 B .43 C . 3
4±
D .4
3
±
3. 函数πsin 23y x ⎛⎫=-
⎪⎝
⎭在区间ππ2⎡⎤-⎢⎥⎣⎦
,的简图是( )
4.函数)6
2sin(2π
+
=x y 的最小正周期是( )
A .π4
B .π2
C .π
D .
2
π
5.满足函数x y sin =和x y cos =都是增函数的区间是(
)
A .]2
2,2[π
ππ+
k k , Z k ∈ B .]2,2
2[πππ
π++
k k , Z k ∈
C .]22,2[ππππ--k k , Z k ∈
D .]2,2
2[ππ
πk k - Z k ∈
6.要得到函数sin y x =的图象,只需将函数cos y x π⎛
⎫=- ⎪3⎝⎭的图象( )
A .向右平移
π6个单位 B .向右平移π
3个单位 C .向左平移π3个单位 D .向左平移π
6
个单位
7.函数)2
5
2sin(π+=x y 的图象的一条对称轴方程是(
) A .2π
-
=x B .4
π
-
=x C .8
π
=
x
D .4
5π=
x 8.函数y=cos 2
x –3cosx+2的最小值是(
)
A .2
B .0
C .
4
1 D .6
9.如果α在第三象限,则
2
α
必定在第( )象限
A .一、二
B .一、三
C .三、四
D .二、四 10.已知函数)sin(φϖ+=x A y 在同一周期内,当3
π
=x 时有最大值2,当x=0时有最小
值-2,那么函数的解析式为(
)
A .x y 3sin
2= B .)3sin(2π+=x y C .)3sin(2π-=x y D .x y 3sin 1
=
二、填空题:把答案填在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共 25分).
11、在ABC ∆中,若3a =,b =3
A π
∠=,则C ∠的大小为_________。
答案:pi/2
12、在∆ABC 中,已知4
3
3=
a ,
b =4,A =30°,则sinB = .
13、函数x x f cos 21)(-=的定义域是___________________________ 答案:Z k k k ∈++
],3
5
2,32[πππ
π
14、已知a
a x --=43
2cos ,且x 是第二、三象限角,则a 的取值范围是________ 答案:)2
3,1(-
15、函数π()3sin 23f x x ⎛⎫
=-
⎪⎝
⎭
的图象为C ,则如下结论中正确的序号是 _____ ①、
图象C 关于直线11π12x =
对称; ②、图象C 关于点2π03⎛⎫ ⎪⎝⎭
,对称; ③、函数()f x 在区间π5π1212⎛⎫
- ⎪⎝⎭
,内是增函数; ④、由3sin 2y x =的图角向右平移π3个单位长度可以得到图象C .
答案:①②③
三角函数基础练习题
一、 选择题:
1. 下列各式中,不正确...的是 ( ) (A)cos(―α―π)=―cos α (B)sin(α―2π)=―sin α (C)tan(5π―2α)=―tan2α (D)sin(k π+α)=(―1)k
sin α (k ∈Z) 3. y=sin )2
332(
π
+x x ∈R 是 ( ) (A)奇函数 (B)偶函数 (C)在[(2k ―1)π, 2k π] k ∈Z 为增函数 (D)减函数 4.函数y=3sin(2x ―3
π
)的图象,可看作是把函数y=3sin2x 的图象作以下哪个平移得到 ( )(A)向左平移
3
π
(B)向右平移
3
π
(C)向左平移
6
π
(D)向右平移
6
π
5.在△ABC 中,cosAcosB >sinAsinB ,则△ABC 为 ( ) (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)无法判定 6.α为第三象限角,
1
sec tan 2tan 1cos 1
2
2
-+
+ααα
α化简的结果为 ( )
(A)3 (B)-3 (C)1 (D)-1
7.已知cos2θ=
3
2,则sin 4θ+cos 4
θ的值为 ( ) (A)1813 (B)18
11 (C)97 (D)-1
8. 已知sin θcos θ=81且4π<θ<2
π
,则cos θ-sin θ的值为 ( )
(A)-23 (B)43 (C) 23 (D)±4
3
9. △ABC 中,∠C=90°,则函数y=sin 2
A+2sinB 的值的情况 ( )
(A)有最大值,无最小值 (B)无最大值,有最小值 (C)有最大值且有最小值 (D)无最大值且无最小值 10、关于函数f(x)=4sin(2x+
3
π
), (x ∈R )有下列命题
(1)y=f(x)是以2π为最小正周期的周期函数 (2) y=f(x)可改写为y=4cos(2x -6
π
)
(3)y= f(x)的图象关于(-6
π
,0)对称 (4) y= f(x)的图象关于直线x=-
6
π
对称其中真命题的个数序号为
( )
(A) (1)(4) (B) (2)(3)(4) (C) (2)(3) (D) (3) 11.设a=sin14°+cos14°,b=sin16°+cos16°,c=
2
6
,则a 、b 、c 大小关系( ) (A)a <b <c (B)b <a <c (C)c <b <a (D)a <c <b
12.若sinx <2
1
,则x 的取值范围为 ( ) (A)(2k π,2k π+6π)∪(2k π+65π,2k π+π) (B) (2k π+6
π
,2k π+65π)
(C) (2k π+65π,2k π+6π) (D) (2k π-67π,2k π+6
π
) 以上k ∈Z
二、 填空题:
13.一个扇形的面积是1cm 2
,它的周长为4cm, 则其中心角弧度数为______。
14.已知sin α+cos β=
31,sin β-cos α=2
1
,则sin(α-β)=__________。
15.求值:tan20°+tan40°+3 tan20°tan40°=_____________。
16.函数y=2sin(2x -3
π
)的递增区间为_______________________。
答案
1、B
2、C
3、B
4、D
5、C
6、C
7、B
8、A
9、D 10、C 11、D 12、D 13、2 14、-7259 15、3 16、[12ππ-k 12
5π
π+k ]k ∈Z。