参数方程的概念(用)

合集下载

参数方程与参数方程的应用

参数方程与参数方程的应用

参数方程与参数方程的应用参数方程是描述曲线或曲面的一种常见方法,通过给出自变量的取值范围,我们可以得到相应的因变量。

在数学、物理、工程等领域中,参数方程被广泛应用于描述和解决各种问题。

本文将介绍参数方程的基本概念,以及它在不同领域中的应用。

一、参数方程的基本概念参数方程由自变量和因变量组成,一般形式为:x = f(t)y = g(t)其中,x和y表示曲线上的点的坐标,t是自变量的取值,f(t)和g(t)是与t相关的函数。

通过给定不同的t值,我们可以得到不同的曲线上的点。

参数方程的优势在于能够轻松地描述一些复杂的曲线形状,如椭圆、双曲线和螺旋线等。

与直角坐标系相比,参数方程对于描述曲线的形状更加直观和灵活。

二、参数方程的应用案例1. 物理学中的抛体运动抛体运动是物理学中经典的运动问题之一。

在空中投掷物体时,其运动轨迹可以使用参数方程来描述。

假设一个物体以初速度v0以角度α抛出,空中运动一段时间后,其轨迹可由以下参数方程表示:x = v0 * cos(α) * ty = v0 * sin(α) * t - (1/2) * g * t^2其中,g是重力加速度,t为时间。

通过这个参数方程,我们可以计算物体在不同时间点上的位置坐标。

这对于预测物体的落点和弹道分析非常有用。

2. 工程学中的曲线设计在工程领域,曲线的设计是一项重要的任务。

参数方程可以用于描述和控制曲线的形状。

例如,在高速公路建设中,我们需要设计道路的水平转弯曲线。

通过使用参数方程,我们可以根据设计要求控制曲线的曲率和变化率。

另外,参数方程还可以用于描述和控制工程中的其他曲线,比如流线型物体的设计、飞机机翼的曲线和汽车车身的造型等。

通过调整参数方程中的参数,我们可以灵活地控制曲线的形状,以满足设计需求。

3. 经济学中的需求曲线在经济学中,需求曲线是描述市场上消费者对商品或服务需求的一种方式。

需求曲线可以用参数方程来表示,其中价格作为自变量,需求量作为因变量。

参数方程及其应用

参数方程及其应用

参数方程及其应用参数方程是数学中一种常用的描述曲线的方法,通过引入参数来表示曲线上的点的坐标。

参数方程的优势在于它可以描述一些复杂的曲线,例如椭圆、双曲线和螺旋线等。

本文将介绍参数方程的基本概念以及其在不同领域中的应用。

一、参数方程的基本概念参数方程由一组函数构成,这些函数分别表示曲线上的点的x坐标和y坐标。

通常用t作为参数,通过给定t的取值范围,我们可以确定曲线上的点。

例如,对于平面上的一条曲线,它的参数方程可以表示为:x = f(t)y = g(t)其中f(t)和g(t)是关于t的函数。

通过选择不同的函数形式,我们可以得到各种不同的曲线。

二、参数方程的应用1. 几何学中的参数方程参数方程在几何学中有广泛的应用。

例如,椭圆可以用参数方程表示为:x = a*cos(t)y = b*sin(t)其中a和b分别表示椭圆的长半轴和短半轴。

通过改变参数t的取值范围,我们可以获得椭圆上的所有点。

另一个例子是螺旋线,它可以通过以下参数方程描述:x = a*cos(t)y = a*sin(t)z = b*t通过改变参数t的取值范围,我们可以得到一条在三维空间中逐渐升高的螺旋线。

2. 物理学中的参数方程参数方程在物理学中也有广泛的应用。

例如,质点在自由落体过程中的运动可以用参数方程描述:x = v0*cos(θ)*ty = v0*sin(θ)*t - (1/2)*g*t^2其中v0表示起始速度,θ表示抛射角度,g表示重力加速度。

通过给定不同的初始条件,我们可以得到不同情况下的自由落体轨迹。

3. 工程学中的参数方程参数方程在工程学中也有一些应用。

例如,在航空领域中,飞机的航迹可以用参数方程表示:x = v*cos(α)*ty = v*s in(α)*tz = h其中v表示飞机的速度,α表示飞机的航向角,t表示时间,h表示飞机的高度。

通过改变参数的取值,我们可以获得飞机在空中飞行的轨迹。

4. 计算机图形学中的参数方程参数方程在计算机图形学中也有广泛的应用。

【高中数学】高中数学知识点:参数方程的概念

【高中数学】高中数学知识点:参数方程的概念

【高中数学】高中数学知识点:参数方程的概念参数方程的概念:一般地,在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数且对于t的每一个允许值,由这个方程组所确认的点m(x,y)都在这条曲线上,那么这个方程组称作这条曲线的参数方程,联系x、y之间关系的变数t称作参变数,缩写参数。

相对于参数方程而言,轻易得出点的座标间关系的方程叫作普通方程.参数方程和普通方程的互化:在参数方程与普通方程的互化中,必须并使x,y的值域范围保持一致.否则,互化就是不等价的。

(1)参数方程化为普通方程的过程就是消参过程,常见方法有三种:①代入法:利用解方程的技巧谋出来参数t,然后代入解出参数;②三角法:利用三角恒等式消去参数;③整体窭元法:根据参数方程本身的结构特征,从整体上解出.(2)普通方程化为参数方程需要引入参数.例如:①直线的普通方程就是2x-y+2=0,可以化成参数方程②在普通方程xy=1中,令可以化成参数方程关于参数的几点说明:(1)参数就是联系变数x,y的桥梁,可以就是一个存有物理意义或几何意义的变数,也可以就是没显著实际意义的变数.(2)同一曲线选取参数不同,曲线参数方程形式也不同.(3)在实际问题中要确认参数的值域范围.参数方程的几种常用方法:方法1参数方程与普通方程的互化:将曲线的参数方程化成普通方程的方法需为题目的特点而的定,必须挑选恰当的方法消参,并必须特别注意由于消参后引发的范围管制消失而导致的增解问题.常用的消参技巧大加减消参,代人消参,平方消参等.方法2求曲线的参数方程:求曲线的参数方程或应用曲线的参数方程,要熟记曲线参数方程的形式及参数的意义.方法3参数方程问题的化解方法:化解参数方程的一个基本思路就是将其转变为普通方程,然后利用在直角坐标系下解决问题的方式展开解题.方法4利用圆的渐开线的参数方程求点:利用参数方程求解点时只需将参数代入方程就可求得。

方法5求圆的摆线的参数方程:根据圆的摆线的参数方程的表达式,可知只需求出其中的r,也就是说,摆线的参数方程由圆的半径唯一确定,因此只需把点代人参数方程求出r值再代人参数方程的表达式.。

参数方程的概念学案

参数方程的概念学案

参数方程的概念学案导语:参数方程是描述曲线或曲面上各点坐标的一种方式。

它通过引入新的参数变量,将曲线或曲面的坐标表示为参数的函数形式。

本文将介绍参数方程的概念及应用,并通过具体的例子来解释其原理和用途。

一、什么是参数方程参数方程是数学中用来描述曲线或曲面的一种方式。

其主要思想是将曲线或曲面上的点的坐标表示为一个或多个参数的函数形式。

常见的参数方程有二维参数方程和三维参数方程。

1. 二维参数方程二维参数方程是将平面上的点的坐标表示为一个参数的函数形式。

通常情况下,我们用t来表示参数。

例如,对于平面上的一条曲线,我们可以用参数方程表示为x = f(t),y = g(t),其中f(t)和g(t)是关于t的函数。

2. 三维参数方程三维参数方程是将空间中的点的坐标表示为多个参数的函数形式。

同样,我们用t1、t2等来表示参数。

例如,对于三维空间中的一个曲面,我们可以用参数方程表示为x = f(t1, t2),y = g(t1, t2),z= h(t1, t2),其中f(t1, t2)、g(t1, t2)和h(t1, t2)是关于t1和t2的函数。

二、参数方程的原理参数方程的原理是利用参数来表示曲线或曲面上的各个点的坐标。

通过改变参数的取值范围,我们可以获得曲线或曲面上的不同点。

参数方程可以将复杂的曲线或曲面分解为简单的参数函数,从而方便进行计算和分析。

三、参数方程的应用参数方程在数学中有着广泛的应用,特别是在几何学、物理学和工程学等领域。

1. 几何学中的参数方程在几何学中,参数方程常被用来描述曲线和曲面的形状和性质。

例如,通过参数方程,我们可以得到圆、椭圆、抛物线和双曲线等曲线的方程,从而进一步研究它们的几何性质。

参数方程的概念、参数方程与普通方程的互化 课件

参数方程的概念、参数方程与普通方程的互化  课件

③根据参数方程本身的结构特征,选用一些灵活的方

)例如借助1+2tt22+11-+tt222=1,t+1t 2-t-1t 2=4
等 )从整体上消去参数.
2.将参数方程化为普通方程时,要注意防止变量 x 和 y 的取值范围扩大或缩小,必须根据参数的取值范围, 确定函数 f(t)和 g(t)的值域,即 x 和 y 的取值范围.
所以 y=1±sin θ.
不 妨 取 y = 1 + sin θ , 则 所 求 的 参 数 方 程 为
x=cos θ,
(θ 为参数).
y=1+sin θ
归纳升华 1.消去参数的方法主要有三种. ①利用解方程的技巧求出参数的表示式,然后运用代 入消元法或加减消元法消去参数. ②利用三角恒等式借助 sin2θ+cos2θ=1 等消去参数.
2.求曲线参数方程的步骤:第一步,建立适当的直 角坐标系,设出曲线上任一点 M 的坐标为(x,y),画出草 图;第二步,选择适当的参数,参数的选择要考虑两点: 一是曲线上有一点的坐标(x,y)与参数的关系比较明显, 容易列出方程;二是 x,y 的值可以由参数唯一确定;第 三步,
根据已知条件、图形的几何性质、问题的物理意义等, 建立点的坐标与参数的函数关系式,并化成最简形式;第 四步,证明以化简后的参数方程的解为坐标的点都是曲线 上的点.(求解过程中第四步通常省略,但要通过检验, 并准确标注参数及其取值范围.)
温馨提示 在互化的过程中,必须使 x,y 的取值范 围保持一致.
类型 1 参数方程的概念
[典例 1] 已知曲线 C 的参数方程为xy==2t2t+1,(t 为 参数).
(1)判断点 A(1,0),B(5,4),E(3,2)与曲线 C 的位 置关系;

参数方程的概念

参数方程的概念

曲线的参数方程1.参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧x =f (t )y =g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数的意义:参数是联系变数x ,y 的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.参数方程与普通方程的区别与联系(1)区别:普通方程F (x ,y )=0,直接给出了曲线上点的坐标x ,y 之间的关系,它含有x ,y 两个变量;参数方程⎩⎪⎨⎪⎧x =f (t )y =g (t )(t 为参数)间接给出了曲线上点的坐标x ,y 之间的关系,它含有三个变量t ,x ,y ,其中x 和y 都是参数t 的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t 的一个值,就可以求出唯一对应的x ,y 的值.这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程.1.下列方程中可以看作参数方程的是( )A .x -y -t =0B .x 2+y 2-2ax -9=0C.⎩⎪⎨⎪⎧x 2=t 2y =2t -1 D .⎩⎪⎨⎪⎧x =sin θy =cos θ解析:选D.对于A :虽然含有参数t ,但它表示的是直线系方程,直接给出了x ,y 之间的关系,是普通方程;对于B :虽然含有参数a ,但它表示的图象方程也是普通方程;对于C :x 2=t 2不能把x 表示成参数t 的函数,也不是参数方程,只有D 选项满足参数方程的定义.2.点M (2,y 0)在曲线C :⎩⎪⎨⎪⎧x =2t y =t 2-1,(t 为参数)上,则y 0=________.解析:将M (2,y 0)代入参数方程得⎩⎪⎨⎪⎧2=2t y 0=t 2-1, 解得⎩⎪⎨⎪⎧t =1y 0=0.答案:03.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =3sin θ,(θ为参数,0≤θ<2π),判断点A (2,0),B ⎝ ⎛⎭⎪⎫-3,32是否在曲线C 上?若在曲线上,求出点对应的参数的值.解:将点A (2,0)的坐标代入⎩⎪⎨⎪⎧x =2cos θy =3sin θ,得⎩⎪⎨⎪⎧cos θ=1,sin θ=0.由于0≤θ<2π,解得θ=0,所以点A (2,0)在曲线C 上,对应θ=0.将点B ⎝ ⎛⎭⎪⎫-3,32的坐标代入⎩⎪⎨⎪⎧x =2cos θy =3sin θ,得⎩⎪⎨⎪⎧-3=2cos θ,32=3sin θ,即⎩⎪⎨⎪⎧cos θ=-32,sin θ=12.由于0≤θ<2π, 解得θ=5π6,所以点B ⎝⎛⎭⎪⎫-3,32在曲线C 上,对应θ=5π6.参数方程的概念已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =3t y =2t 2+1,(t 为参数).(1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值.[解] (1)把点M 1的坐标(0,1)代入方程组,得⎩⎪⎨⎪⎧0=3t ,1=2t 2+1. 解得:t =0.所以点M 1在曲线C 上. 同理:可知点M 2不在曲线C 上.(2)因为点M 3(6,a )在曲线C 上,所以⎩⎪⎨⎪⎧6=3t ,a =2t 2+1. 解得:t =2,a =9.所以a =9.(1)满足某种约束条件的动点的轨迹形成曲线,点与曲线的位置关系有两种:点在曲线上和点不在曲线上.(2)对于曲线C 的参数方程⎩⎪⎨⎪⎧x =f (t )y =g (t ),(t 为参数),若点M (x 1,y 1)在曲线上,则⎩⎪⎨⎪⎧x 1=f (t )y 1=g (t )对应的参数t 有解,否则参数t 不存在.1.曲线C :⎩⎪⎨⎪⎧x =ty =t -2,(t 为参数)与y 轴的交点坐标是____________.解析:令x =0,即t =0得y =-2,所以曲线C 与y 轴的交点坐标是(0,-2). 答案:(0,-2)2.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =t 2+1y =2t ,(t 为参数).(1)判断点A (1,0),B (5,4),E (3,2)与曲线C 的位置关系; (2)若点F (10,a )在曲线C 上,求实数a 的值. 解:(1)把点A (1,0)的坐标代入方程组,解得t =0, 所以点A (1,0)在曲线上.把点B (5,4)的坐标代入方程组,解得t =2, 所以点B (5,4)也在曲线上. 把点E (3,2)的坐标代入方程组,得到⎩⎪⎨⎪⎧3=t 2+1,2=2t ,即⎩⎨⎧t =±2,t =1.故t 不存在,所以点E 不在曲线上.(2)令10=t 2+1,解得t =±3,故a =2t =±6.求曲线的参数方程如图,△ABP 是等腰直角三角形,∠B 是直角,腰长为a ,顶点B 、A 分别在x 轴、y 轴上滑动,求点P 在第一象限的轨迹的参数方程.[解] 法一:设P 点的坐标为(x ,y ),过P 点作x 轴的垂线交x 轴于Q .如图所示,则Rt △OAB ≌Rt △QBP . 取OB =t ,t 为参数,(0<t <a ). 因为|OA |=a 2-t 2, 所以|BQ |=a 2-t 2.所以点P 在第一象限的轨迹的参数方程为⎩⎨⎧x =t +a 2-t 2y =t,(t 为参数,0<t <a ). 法二:设点P 的坐标为(x ,y ),过点P 作x 轴的垂线交x 轴于点Q ,如图所示.取∠QBP =θ,θ为参数(0<θ<π2),则∠ABO =π2-θ. 在Rt △OAB 中,|OB |=a cos ⎝ ⎛⎭⎪⎫π2-θ=a sin θ. 在Rt △QBP 中,|BQ |=a cos θ,|PQ |=a sin θ. 所以点P 在第一象限的轨迹的参数方程为⎩⎪⎨⎪⎧x =a (sin θ+cos θ),y =a sin θ.(θ为参数,0<θ<π2).求曲线参数方程的主要步骤第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数唯一确定.例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点“有向距离”、直线的倾斜角、斜率、截距等也常常被选为参数.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.设质点沿以原点为圆心,半径为2的圆作匀角速度运动,角速度为π60rad/s ,试以时间t 为参数,建立质点运动轨迹的参数方程.解:如图,运动开始时质点位于点A 处,此时t =0,设动点M (x ,y )对应时刻t ,由图可知:⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,又θ=π60·t ,故参数方程为⎩⎪⎨⎪⎧x =2cos π60t ,y =2sin π60t .(t 为参数).1.对参数方程概念的理解(1)曲线的参数方程中含有三个变量,并且以方程组的形式出现,其中x ,y 表示点的坐标,参数t 为中间变量,起着间接联系x ,y 桥梁的作用.(2)参数方程中,x ,y 都是关于参数t 的函数.反之,如果x ,y 虽然都能用t 表示,但不都能表示成t 的函数,它就不是参数方程.(3)曲线上任一点与满足参数方程的有序数对(x ,y )是一一对应关系.从数学的角度看,曲线上的任一点M 的坐标(x ,y )由t 唯一确定.当t 在允许值范围内连续变化时,x ,y 的值也随之连续地变化,于是就可以连续地描绘出点的轨迹.(4)在表达参数方程时,必须指明参数的取值范围,参数的取值范围不同,所表示的曲线可能不同.2.求曲线的参数方程(1)曲线的参数方程不是唯一的.同一条曲线由于所选取的参数不同,其参数方程的形式往往也不同.反之,形式不同的参数方程它们表示的曲线可以是相同的.(2)求曲线的参数方程,关键是选取参数.通常要结合实际问题和曲线形状选取时间、线段长度、方位角、旋转角等具有明确的物理意义或几何意义的量为参数,这样做有利于应用参数方程解决问题,当然也可以任意选取一个没有明确的实际意义的量为参数.(3)引入参数的同时,必须明确参数的取值范围.1.下列方程可以作为x 轴的参数方程的是( )A.⎩⎪⎨⎪⎧x =t 2+1y =0 B .⎩⎪⎨⎪⎧x =0y =3t +1 C.⎩⎪⎨⎪⎧x =1+sin θy =0 D .⎩⎪⎨⎪⎧x =4t +1y =0 解析:选D.选项A 表示x 轴上以(1,0)为端点向右的射线;选项B 表示的是y 轴;选项C 表示x 轴上以(0,0)和(2,0)为端点的线段;只有选项D 可以作为x 轴的参数方程.2.方程⎩⎪⎨⎪⎧x =1+sin θy =sin 2θ,(θ为参数)所表示曲线经过下列点中的( )A .(1,1)B .⎝ ⎛⎭⎪⎫32,12C.⎝ ⎛⎭⎪⎫32,32 D .⎝ ⎛⎭⎪⎫2+32,-12解析:选C.当θ=π6时,x =32,y =32,所以点⎝ ⎛⎭⎪⎫32,32在方程⎩⎪⎨⎪⎧x =1+sin θy =sin 2θ,(θ为参数)所表示的曲线上.3.已知点M (2,-2)在曲线C :⎩⎪⎨⎪⎧x =t +1t y =-2,(t 为参数)上,则其对应的参数t 的值为________.解析:由t +1t=2解得t =1.答案:14.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =2ty =3t 2-1(t 为参数). (1)判断点M 1(0,-1),M 2(4,10)与曲线C 的位置关系; (2)已知点M (2,a )在曲线C 上,求a 的值.解:(1)把点M 1(0,-1)的坐标代入参数方程⎩⎪⎨⎪⎧x =2t ,y =3t 2-1,得⎩⎪⎨⎪⎧0=2t-1=3t 2-1,所以t =0. 即点M 1(0,-1)在曲线C 上.把点M 2(4,10)的坐标代入参数方程⎩⎪⎨⎪⎧x =2t ,y =3t 2-1,得⎩⎪⎨⎪⎧4=2t10=3t 2-1,方程组无解. 即点M 2(4,10)不在曲线C 上. (2)因为点M (2,a )在曲线C 上,所以⎩⎪⎨⎪⎧2=2t ,a =3t 2-1. 所以t =1,a =3×12-1=2. 即a 的值为2.[A 基础达标]1.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =5cos θy =5sin θ(0≤θ<2π),则参数θ=5π3所对应的点P 的坐标为( )A.⎝ ⎛⎭⎪⎫52,-532B .⎝ ⎛⎭⎪⎫52,532C.⎝ ⎛⎭⎪⎫-532,52D .⎝ ⎛⎭⎪⎫532,52解析:选A.θ=5π3时,x =5×cos 5π3=52,y =5×sin 5π3=-532,得点P ⎝ ⎛⎭⎪⎫52,-532,故选A.2.参数方程⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数)表示的曲线是( )A .直线B .线段C .圆D .半圆解析:选C.因为sin 2θ+cos 2θ=1,所以普通方程为x 2+y 2=1.故选C.3.若点P (4,a )在曲线⎩⎪⎨⎪⎧x =t 2,y =2t(t 为参数)上,则a 等于( )A .4B .4 2C .8D .1解析:选B.根据题意,将点P 的坐标代入曲线方程中得⎩⎪⎨⎪⎧4=t 2,a =2t⇒⎩⎨⎧t =8,a =4 2.故选B.4.已知⎩⎪⎨⎪⎧x =2+cos θ,y =sin θ(θ为参数),则(x -5)2+(y +4)2的最小值是( )A .4B .25C .36D .6解析:选A.因为(x -5)2+(y +4)2=(cos θ-3)2+(sin θ+4)2=26+10sin(θ-φ)(且tan φ=34).所以当sin(θ-φ)=-1时,有最小值4,故选A.5.由方程x 2+y 2-4tx -2ty +3t 2-4=0(t 为参数)所表示的一族圆的圆心的轨迹方程为( )A.⎩⎪⎨⎪⎧x =2t y =t B .⎩⎪⎨⎪⎧x =-2ty =tC.⎩⎪⎨⎪⎧x =2t y =-tD .⎩⎪⎨⎪⎧x =-2t y =-t解析:选A.设(x ,y )为所求轨迹上任一点.由x 2+y 2-4tx -2ty +3t 2-4=0得:(x -2t )2+(y -t )2=4+2t 2.所以⎩⎪⎨⎪⎧x =2t y =t.6.若x =t -1(t 为参数),则直线x +y -1=0的参数方程是____________. 解析:将x =t -1代入x +y -1=0得y =2-t ,所以直线x +y -1=0的参数方程为⎩⎪⎨⎪⎧x =t -1y =2-t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =t -1y =2-t ,(t 为参数)7.已知曲线⎩⎪⎨⎪⎧x =2sin θ+1,y =sin θ+3(θ为参数,0≤θ<2π).下列各点A (1,3),B (2,2),C (-3,5),其中在曲线上的点是________.解析:将A 点坐标代入方程得:θ=0或π,将B 、C 点坐标代入方程,方程无解,故A 点在曲线上.答案:A (1,3)8.下列各参数方程与方程xy =1表示相同曲线的序号是________.①⎩⎪⎨⎪⎧x =t2y =-t 2;②⎩⎪⎨⎪⎧x =sin ty =1sin t ;③⎩⎪⎨⎪⎧x =cos t y =1cos t ;④⎩⎪⎨⎪⎧x =tan t y =1tan t.解析:普通方程中,x ,y 均为不等于0的实数,而①②③中x 的取值依次为:[0,+∞),[-1,1],[-1,1],故①②③均不正确;而④中,x ∈R ,y ∈R ,且xy =1,故④正确.答案:④9.已知动圆x 2+y 2-2ax cos θ-2by sin θ=0(a ,b 是正常数,且a ≠b ,θ为参数),求圆心的轨迹方程.解:设P (x ,y )为所求轨迹上任一点. 由x 2+y 2-2ax cos θ-2by sin θ=0得:(x -a cos θ)2+(y -b sin θ)2=a 2cos 2θ+b 2sin 2θ,所以⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ.这就是所求的轨迹方程.10.如图所示,OA 是圆C 的直径,且OA =2a ,射线OB 与圆交于Q 点,和经过A 点的切线交于B 点,作PQ ⊥OA 交OA 于D ,PB ∥OA ,试求点P 的轨迹的参数方程.解:设P (x ,y )是轨迹上任意一点,取∠DOQ =θ, 由PQ ⊥OA ,PB ∥OA ,得x =OD =OQ cos θ=OA cos 2θ=2a cos 2θ, y =AB =OA tan θ=2a tan θ.所以点P 的轨迹的参数方程为⎩⎪⎨⎪⎧x =2a cos 2θy =2a tan θ,θ∈⎝ ⎛⎭⎪⎫-π2,π2.[B 能力提升]11.已知圆的普通方程x 2+y 2+2x -6y +9=0,则它的参数方程为____________. 解析:由x 2+y 2+2x -6y +9=0,得(x +1)2+(y -3)2=1.令x +1=cos θ,y -3=sin θ,所以参数方程为⎩⎪⎨⎪⎧x =-1+cos θy =3+sin θ,(θ为参数).答案:⎩⎪⎨⎪⎧x =-1+cos θy =3+sin θ,(θ为参数)(注答案不唯一)12.动点M 作匀速直线运动,它在x 轴和y 轴方向的分速度分别为9和12,运动开始时,点M 位于A (1,1),则点M 的参数方程为____________.解析:设M (x ,y ),则在x 轴上的位移为x =1+9t ,在y 轴上的位移为y =1+12t .所以参数方程为:⎩⎪⎨⎪⎧x =1+9t ,y =1+12t (t 为参数).答案:⎩⎪⎨⎪⎧x =1+9t y =1+12t(t 为参数)13.在参数方程⎩⎪⎨⎪⎧x =f (t )y =g (t )(t 为参数,且t ∈R)中,若f (t )和g (t )都是奇函数,请判断该曲线所对应函数的奇偶性.解:设(x ,y )是参数方程曲线上的任意一点,则存在参数t 使得⎩⎪⎨⎪⎧x =f (t )y =g (t ),所以-x =-f (t ),-y =-g (t ). 又f (t )、g (t )均为奇函数, 所以-x =f (-t ),-y =g (-t ),所以⎩⎪⎨⎪⎧-x =f (-t )-y =g (-t ),即点(-x ,-y )也在曲线上,所以该曲线的图象关于原点对称. 所以该曲线对应的函数为奇函数.14.(选做题)试确定过M (0,1)作椭圆x 2+y 24=1的弦的中点的轨迹的参数方程.解:设过M (0,1)的弦所在的直线方程为y =kx +1,其与椭圆的交点为(x 1,y 1)和(x 2,y 2).设中点P (x ,y ),则有x =x 1+x 22,y =y 1+y 22.由⎩⎪⎨⎪⎧y =kx +1,x 2+y 24=1得:(k 2+4)y 2-8y +4-4k 2=0.所以y 1+y 2=8k 2+4,x 1+x 2=-2kk 2+4. 所以⎩⎪⎨⎪⎧x =-k k 2+4,y =4k 2+4.这就是以动弦斜率k 为参数的动弦中点的轨迹的参数方程.。

初一参数方程知识点

初一参数方程知识点

初一参数方程知识点一、参数方程的概念参数方程是描述一个曲线或曲面的方程,其中各个变量都用一个参数来表示。

参数方程通常用于描述动态变化的对象,如粒子在空间中的运动轨迹。

在初一数学中,我们主要学习的是平面上的参数方程。

二、参数方程的表示方式 1. 参数方程的一般形式对于平面上的曲线,可以用参数方程的形式表示为: x = x(t) y = y(t) 其中,x和y分别表示曲线上的点的横坐标和纵坐标,t表示参数。

2.参数方程的图像特点参数方程的图像通常具有以下特点:•曲线的形状和走向可以通过调整参数的取值范围和步长来改变。

•曲线上的点的密集程度取决于参数的步长,步长越小,点越密集,曲线越平滑。

三、常见的参数方程曲线 1. 直线直线可以用参数方程表示为: x = at + b y = ct + d 其中a、b、c和d为常数。

2.抛物线抛物线可以用参数方程表示为: x = at^2 + bt + c y = dt^2 + et+ f 其中a、b、c、d、e和f为常数。

3.圆圆可以用参数方程表示为: x = r cos(t) y = r sin(t) 其中r为半径,t为参数。

四、参数方程的应用参数方程在数学以及其他学科中有广泛的应用,例如: - 物理学中描述粒子的运动轨迹。

- 计算机图形学中描述曲线和曲面的形状。

- 工程学中描述动态系统的变化过程。

五、参数方程的解析与绘图在解析参数方程时,可以通过消去参数的方法得到曲线的解析方程。

对于给定的参数方程,我们可以通过绘制曲线的图像来观察和研究曲线的性质和特点。

六、总结初一阶段,我们了解了参数方程的概念、表示方式和常见的参数方程曲线。

参数方程可以帮助我们更好地描述和理解曲线的形状和特性,同时也为后续学习更高级的数学知识打下了基础。

以上是关于初一参数方程知识点的简要介绍。

希望通过这篇文章的阅读,能让你对参数方程有一个初步的了解,并为你的学习提供一些帮助。

参数方程是数学中的重要内容,掌握了参数方程的基本知识,可以为今后的学习打下坚实的基础。

参数方程的概念

参数方程的概念

参数方程的概念
参数方程是一种用参数表示变量的二元函数方程。

通常用符号
t表示参数,把x和y分别表示为t的函数,即x=f(t),y=g(t),这样得到的方程称为参数方程。

参数方程描述的是一个动力学系统中的轨迹,它可以用于描述曲线、曲面、空间曲线等。

参数方程与直角坐标系方程等价,但通常更适合用于表示非函数、参数化曲线等问题。

参数方程的优点在于它能够描述各种不规则的曲线,例如圆锥曲线、螺旋线、椭圆等。

另外,在计算机图形学中,参数方程也被广泛应用于构建复杂的三维曲线和曲面模型。

对于参数方程,一般需要注意的是其定义域和值域。

定义域即参数t的取值范围,它可以是实数集合,也可以是一个有限的
区间。

值域则是曲线或曲面上所有点的坐标集合。

在求解参数方程时,一般需要使用微积分和向量代数等数学工具。

需要注意的是,参数方程不一定是唯一的,一个曲线或曲面可以有多个不同的参数方程来描述。

另外,在一些应用场合中,也常常需要将参数方程转化为直角坐标系方程,这需要涉及到参数消元和解方程等技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

并且对于t的每一个允许值,由方程组(2)所确定的点M(x,y) 都在这条曲线上,那么方程(2)就叫做这条曲线的参数方程, 联系变数x,y的变数t叫做参变数,简称参数。
( x 1) 4 y为所求.
2
课堂检测
2 1、曲线 x 1 t ,(t为参数) 与x轴的交点坐标是( B ) y 4t 3
25 ( , 0); C、(1, 3); A、(1,4);B、 16
25 D、 ( , 0); 16
2、方程{
x sin y cos 2
x 1 2t , (t为参数,a R ) 2 y at .
(1)求常数a;
1+2t=5 at2=4 x=1+2t y=t2
解得:
a=1 t=2
∴ a=1
x 1 由第一个方程得: t 2 x 1 2 ) , 代入第二个方程得: y ( 2
(2)由已知及(1)可得,曲线C的方程为:
1、参数方程的概念:
如图,一架救援飞机在离灾区地面500m高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾 区指定的地面(不记空气阻力),飞行员应如何确定投放 时机呢?
提示: 即求飞行员在离救援点的水平距离 多远时,开始投放物资?
投放点

救援点
1、参数方程的概念:
如图,一架救援飞机在离灾区地面500m高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾 区指定的地面(不记空气阻力),飞行员应如何确定投放 时机呢?
垂直高度为y,所以
可以使其准确落在指定位置.
1、参数方程的概念:
一般地, 在平面直角坐标系中,如果曲线上任意一点的 坐标x, y都是某个变数t的函数 x f (t ), (2) y g ( t ). 并且对于t的每一个允许值, 由方程组(2) 所确定的点 M(x,y)都在这条曲线上, 那么方程(2) 就叫做这条曲线的 参数方程, 联系变数x,y的变数t叫做参变数, 简称参数. 相对于参数方程而言,直接给出点的坐标间关系 的方程叫做普通方程。
关于参数几点说明: 参数是联系变数x,y的桥梁, 1. 参数方程中参数可以是有物理意义, 几何意义, 也可以没有明 显意义。 2.同一曲线选取参数不同, 曲线参数方程形式也不一样 3.在实际问题中要确定参数的取值范围
知识应用
已知曲线C的参数方程是 点M(5,4)在该 曲线上. (2)求曲线C的普通方程. 解: (1)由题意可知:
(为参数)表示的曲线上(ຫໍສະໝຸດ 的一个点的坐标是C
)
1 1 1 1 A、 (2,7) B、 ( , ),C、 ( , ), D(1,0) 3 2 2 2
小结:
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 x,y都是某个变数t的函数
x f (t ), (2) y g (t ).
y 500
解:物资出舱后,设在时刻t,水平位移为x,
o
x 100t , (x,y) 1 2 2 ( g=9.8m/s ) y 500 gt . 2 令y 0, 得t 10.10s. x 代入x 100t, 得 x 1010m. 所以,飞行员在离救援点的水平距离约为1010m时投放物资,
相关文档
最新文档