参数方程的概念(教学设计)
参数方程的概念》教案(新人教选修

《参数方程的概念》教案(新人教选修)教学目标:1. 理解参数方程的定义和特点;2. 能够将直角坐标方程转换为参数方程;3. 能够解决实际问题,运用参数方程。
教学重点:1. 参数方程的定义和特点;2. 直角坐标方程与参数方程的转换方法。
教学难点:1. 参数方程的实际应用问题。
教学准备:1. PPT课件;2. 教学实例。
教学过程:一、导入(5分钟)1. 引入参数方程的概念,让学生回顾已学的直角坐标方程;2. 提问:什么是参数方程?与直角坐标方程有什么区别?二、新课讲解(15分钟)1. 讲解参数方程的定义和特点,强调参数的作用;2. 举例讲解直角坐标方程如何转换为参数方程;3. 讲解参数方程的实际应用问题,如物体运动轨迹的描述。
三、课堂练习(10分钟)1. 让学生独立完成课本上的练习题;2. 教师挑选部分学生的作业进行点评,解答学生的疑问。
四、拓展与应用(10分钟)1. 提供几个实际问题,让学生运用参数方程进行解决;2. 学生分组讨论,分享解题思路和方法;3. 教师总结解题技巧,并进行讲解。
五、课堂小结(5分钟)1. 回顾本节课所学的内容,让学生总结参数方程的概念和应用;2. 提问:你们认为参数方程在实际生活中有哪些应用?教学反思:本节课通过讲解和练习,使学生掌握了参数方程的概念和特点,能够将直角坐标方程转换为参数方程,并解决实际问题。
但在教学过程中,发现部分学生对参数方程的实际应用问题仍存在困惑,需要在今后的教学中加强练习和讲解。
六、案例分析:生活中的参数方程(10分钟)1. 教师展示几个生活中的实例,如电梯的运动、滑滑梯等;2. 让学生分析这些实例中是否涉及到参数方程的应用;3. 教师引导学生运用参数方程描述这些实例中的运动过程。
七、巩固练习:解决实际问题(15分钟)1. 提供几个实际问题,让学生运用参数方程进行解决;2. 学生独立思考,教师巡回指导;3. 选取部分学生的解题过程进行点评和讲解。
八、课堂讨论:参数方程的应用范围(10分钟)1. 教师引导学生思考:参数方程在哪些领域中应用广泛?2. 学生分组讨论,分享各自的想法;3. 教师总结并讲解参数方程在不同领域的应用。
高中数学《参数方程的概念》教案新人教A版选修

高中数学《参数方程的概念》教案新人教A版选修一、教学目标:1. 让学生理解参数方程的概念,了解参数方程与普通方程的区别和联系。
2. 培养学生运用参数方程解决实际问题的能力。
3. 通过对参数方程的学习,提高学生的数学思维能力和创新意识。
二、教学内容:1. 参数方程的定义及基本形式。
2. 参数方程与普通方程的互化。
3. 参数方程在实际问题中的应用。
三、教学重点与难点:1. 重点:参数方程的概念,参数方程与普通方程的互化。
2. 难点:参数方程在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探索参数方程的概念及应用。
2. 利用数形结合法,帮助学生直观地理解参数方程与普通方程的关系。
3. 运用实例分析法,让学生学会将实际问题转化为参数方程求解。
五、教学过程:1. 导入:引导学生回顾普通方程的知识,激发学生对参数方程的兴趣。
2. 新课讲解:讲解参数方程的定义、基本形式及与普通方程的关系。
3. 案例分析:分析参数方程在实际问题中的应用,如物体的运动轨迹、电路问题等。
4. 练习与讨论:学生分组讨论,尝试将实际问题转化为参数方程求解,教师给予指导。
5. 总结与拓展:总结本节课的主要内容,布置课后作业,引导学生深入研究参数方程的性质和应用。
六、教学评估:1. 课后作业:布置有关参数方程的概念理解、形式转换和实际应用的练习题,以巩固所学知识。
2. 课堂问答:通过提问的方式检查学生对参数方程的理解程度,以及能否将实际问题转化为参数方程。
3. 小组讨论:评估学生在小组讨论中的参与程度和合作能力,以及他们在解决问题时的创造性思维。
七、课后作业:1. 复习参数方程的概念和基本形式。
2. 完成课后练习题,包括将普通方程转化为参数方程,以及运用参数方程解决实际问题。
3. 探索参数方程在其他学科中的应用,如物理学、工程学等。
八、教学资源:1. 教材:新人教A版选修《高中数学》。
2. 多媒体课件:用于展示参数方程的图形和实例。
初中参数方程概念教案

初中参数方程概念教案教学目标:1. 了解参数方程的概念和特点;2. 学会将实际问题转化为参数方程;3. 掌握参数方程的解法及其应用。
教学重点:参数方程的概念和特点,参数方程的解法。
教学难点:理解参数方程的实际应用。
教学准备:教材、PPT、教学案例。
教学过程:一、导入(5分钟)1. 引入参数的概念:参数是用来表示某个物体或事物的特定属性的数;2. 引导学生思考:在数学中,我们如何表示一个曲线的形状和位置?二、参数方程的概念(10分钟)1. 给出参数方程的定义:在给定的平面直角坐标系中,如果曲线上任意一点的坐标x, y都是某个变数t的函数,且对于t的每一个允许值,由这个方程组所确定的点 M (x, y)都在这条曲线上,那么这个方程组称为这条曲线的参数方程;2. 解释参数方程的特点:参数方程中的x, y是t的函数,t称为参数。
三、参数方程的实际应用(10分钟)1. 给出一个实际问题:一个物体在直线上运动,其位置x与时间t有关,且满足关系式x=2t+1;2. 引导学生将实际问题转化为参数方程:x=2t+1;3. 解释参数方程在实际问题中的应用:通过改变参数t的值,可以得到物体在不同时间的位置。
四、参数方程的解法(10分钟)1. 给出一个简单的参数方程:x=2t,y=3t;2. 引导学生思考:如何求解这个参数方程?;3. 介绍解参数方程的方法:代入法、三角法、整体消元法;4. 演示如何使用这些方法解参数方程。
五、巩固练习(10分钟)1. 给出一些实际问题,让学生尝试转化为参数方程并求解;2. 引导学生总结解参数方程的步骤和注意事项。
六、课堂小结(5分钟)1. 回顾本节课所学的内容,总结参数方程的概念和特点;2. 强调参数方程在实际问题中的应用。
教学反思:本节课通过引入参数的概念,引导学生思考如何表示曲线的形状和位置,从而引入参数方程的概念。
通过实际应用案例,让学生理解参数方程在实际问题中的应用。
在解参数方程的过程中,引导学生思考并总结解题方法。
参数方程的概念学案

参数方程的概念学案导语:参数方程是描述曲线或曲面上各点坐标的一种方式。
它通过引入新的参数变量,将曲线或曲面的坐标表示为参数的函数形式。
本文将介绍参数方程的概念及应用,并通过具体的例子来解释其原理和用途。
一、什么是参数方程参数方程是数学中用来描述曲线或曲面的一种方式。
其主要思想是将曲线或曲面上的点的坐标表示为一个或多个参数的函数形式。
常见的参数方程有二维参数方程和三维参数方程。
1. 二维参数方程二维参数方程是将平面上的点的坐标表示为一个参数的函数形式。
通常情况下,我们用t来表示参数。
例如,对于平面上的一条曲线,我们可以用参数方程表示为x = f(t),y = g(t),其中f(t)和g(t)是关于t的函数。
2. 三维参数方程三维参数方程是将空间中的点的坐标表示为多个参数的函数形式。
同样,我们用t1、t2等来表示参数。
例如,对于三维空间中的一个曲面,我们可以用参数方程表示为x = f(t1, t2),y = g(t1, t2),z= h(t1, t2),其中f(t1, t2)、g(t1, t2)和h(t1, t2)是关于t1和t2的函数。
二、参数方程的原理参数方程的原理是利用参数来表示曲线或曲面上的各个点的坐标。
通过改变参数的取值范围,我们可以获得曲线或曲面上的不同点。
参数方程可以将复杂的曲线或曲面分解为简单的参数函数,从而方便进行计算和分析。
三、参数方程的应用参数方程在数学中有着广泛的应用,特别是在几何学、物理学和工程学等领域。
1. 几何学中的参数方程在几何学中,参数方程常被用来描述曲线和曲面的形状和性质。
例如,通过参数方程,我们可以得到圆、椭圆、抛物线和双曲线等曲线的方程,从而进一步研究它们的几何性质。
参数方程的概念(教学设计)

曲线的参数方程(孙雷)教材人民教育出版社高中数学选修4-4第二讲第一节授课教师孙雷教学目标1、理解曲线参数方程的概念,能选取适当的参数建立参数方程;2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义;3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中,形成数学抽象思维能力,初步体验参数的基本思想。
教学重点曲线参数方程的概念。
教学难点曲线参数方程的探求。
教学过程(一)曲线的参数方程概念的引入引例:当两个齿轮接触时,蓝色齿轮会带动红色齿轮转动,当两个齿轮没有接触时,蓝齿轮要带动红色齿轮转动,有一种方法是加入一个新的齿轮,使之与红蓝两个齿轮同时接触。
(上述过程让学生感受中间变量的作用,为参数方程中的参变量的引出作铺垫。
)思考1:若齿轮A、B、C的半径相等,他们转动时的角速度分别是x、y、t,方向忽略不计(1) 第一组图中,A与B角速度之间的关系是_______________;(2) 第二组图中,A与C角速度之间的关系是_______________;B与C角速度之间的关系是________________;思考2:思考:若齿轮A、B、C的半径分别为4、1、2,他们转动时的角速度分别是x、y、t,方向忽略不计(1) 第一组图中,它们角速度之间的关系是_________________;(2) 第二组图中,它们角速度之间的关系是_________________;引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决(1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。
)(二)曲线的参数方程例1、圆的参数方程的推导(1)一般的,设⊙O 的圆心为原点,半径为r ,0OP 所在直线为x 轴,如图,以0OP 为始边绕着点O 按逆时针方向绕原点以匀角速度ω作圆周运动,则质点P 的坐标与时刻t 的关系该如何建立呢?(其中r 与ω为常数,t 为变数)结合图形,由任意角三角函数的定义可知:),0[sin cos +∞∈⎩⎨⎧==t tr y t r x ωω t 为参数 ① (2)点P 的角速度为ω,运动所用的时间为t ,则角位移t ωθ=,那么方程组①可以改写为何种形式?结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈⎩⎨⎧==θθθr y r x θ为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力)(3)方程①、②是否是圆心在原点,半径为r 的圆方程?为什么?由上述推导过程可知:对于⊙O 上的每一个点),(y x P 都存在变数t (或θ)的值,使t r x ωcos =,t r y ωsin =(或θsin r y =,θcos r x =)都成立。
参数方程的概念(教案)

参数方程的概念(教案)第一章:引言1.1 目的:使学生理解参数方程的概念,并了解其在实际问题中的应用。
1.2 内容:引入参数方程的概念。
举例说明参数方程在实际问题中的应用。
1.3 教学方法:通过讲解和举例,引导学生理解参数方程的概念,并激发学生对参数方程应用的兴趣。
1.4 教学工具:投影仪、黑板、教学PPT。
第二章:参数方程的定义2.1 目的:使学生理解参数方程的定义,并能正确写出参数方程。
2.2 内容:讲解参数方程的定义。
引导学生通过示例写出参数方程。
2.3 教学方法:通过讲解和示例,引导学生理解参数方程的定义,并培养学生的实际操作能力。
2.4 教学工具:黑板、教学PPT。
第三章:参数方程的图像3.1 目的:使学生能绘制参数方程的图像,并理解参数方程与普通方程的区别。
3.2 内容:讲解参数方程的图像特点。
引导学生通过绘制参数方程的图像,理解参数方程与普通方程的区别。
3.3 教学方法:通过讲解和绘图,引导学生理解参数方程的图像特点,并通过对比加深对参数方程与普通方程区别的理解。
3.4 教学工具:投影仪、黑板、教学PPT。
第四章:参数方程的应用4.1 目的:使学生了解参数方程在实际问题中的应用,并能解决相关问题。
4.2 内容:举例说明参数方程在实际问题中的应用。
引导学生通过参数方程解决实际问题。
4.3 教学方法:通过讲解和示例,引导学生了解参数方程的应用,并培养学生的实际问题解决能力。
4.4 教学工具:黑板、教学PPT。
第五章:总结与拓展5.1 目的:使学生对参数方程的概念和应用有一个全面的理解,并激发学生对参数方程进一步学习的兴趣。
5.2 内容:对本章内容进行总结。
提出与参数方程相关的拓展问题。
5.3 教学方法:通过总结和提问,帮助学生巩固所学内容,并激发学生的学习兴趣。
5.4 教学工具:黑板、教学PPT。
第六章:简单曲线族的参数方程6.1 目的:使学生了解简单曲线族的参数方程,并能识别和应用。
《参数方程的概念曲线的参数方程》教案(新人教选修)

《参数方程的概念-曲线的参数方程》教案(新人教选修)第一章:参数方程的概念1.1 参数方程的定义解释参数方程的概念,强调参数方程与普通方程的区别。
通过实际例子展示参数方程的形式。
1.2 参数方程的应用探讨参数方程在实际问题中的应用,如物理、工程等领域。
分析参数方程的优势和局限性。
第二章:曲线的参数方程2.1 曲线参数方程的定义解释曲线参数方程的概念,强调参数方程与曲线方程的关系。
通过实际例子展示曲线参数方程的形式。
2.2 曲线参数方程的应用探讨曲线参数方程在几何、物理、工程等领域中的应用。
分析曲线参数方程的优势和局限性。
第三章:参数方程的图像3.1 参数方程图像的绘制介绍如何绘制参数方程的图像,强调参数方程与图像之间的关系。
通过实际例子展示参数方程图像的绘制方法。
3.2 参数方程图像的特点分析参数方程图像的特点,如曲线的形状、斜率等。
探讨参数方程图像在解决问题中的应用。
第四章:参数方程的变换4.1 参数方程的变换公式介绍参数方程的变换公式,强调变换公式的应用和意义。
通过实际例子展示参数方程的变换过程。
4.2 参数方程的变换应用探讨参数方程的变换在几何、物理、工程等领域中的应用。
分析参数方程的变换的优势和局限性。
第五章:参数方程的综合应用5.1 参数方程在实际问题中的应用分析参数方程在实际问题中的应用,如物体运动、曲线变形等。
探讨参数方程在解决问题中的优势和局限性。
5.2 参数方程在数学研究中的应用介绍参数方程在数学研究中的应用,如代数方程的求解、几何问题的研究等。
强调参数方程在数学研究中的重要性。
第六章:参数方程与极坐标方程的转换6.1 极坐标方程的基本概念回顾极坐标方程的定义和基本性质。
强调极坐标方程与直角坐标方程之间的关系。
6.2 参数方程与极坐标方程的转换方法介绍如何将参数方程转换为极坐标方程。
通过实际例子展示参数方程与极坐标方程之间的转换过程。
第七章:参数方程在几何中的应用7.1 参数方程与几何图形的性质探讨参数方程在描述几何图形方面的优势。
《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)第一章:参数方程的基本概念1.1 参数方程的定义与形式引导学生了解参数方程的定义,理解参数方程与普通方程的区别。
举例说明参数方程的形式,如圆的参数方程、直线的参数方程等。
1.2 参数方程的应用场景通过实际问题引入参数方程的应用,如物体的运动轨迹、几何图形的构造等。
引导学生理解参数方程在实际问题中的优势。
第二章:参数方程的求解方法2.1 参数方程的求解步骤介绍参数方程求解的一般步骤,如确定参数的范围、求解参数的值等。
通过具体例子演示参数方程的求解过程。
2.2 参数方程的图像分析引导学生了解参数方程的图像特征,如曲线的变化趋势、交点等。
通过绘制参数方程的图像,帮助学生直观理解参数方程的性质。
第三章:常见参数方程的类型及解法3.1 三角函数型参数方程介绍三角函数型参数方程的特点和解法,如正弦曲线、余弦曲线等。
通过例题讲解三角函数型参数方程的求解方法。
3.2 反比例函数型参数方程介绍反比例函数型参数方程的特点和解法,如双曲线等。
通过例题讲解反比例函数型参数方程的求解方法。
第四章:参数方程与普通方程的互化4.1 参数方程与直角坐标方程的互化引导学生了解参数方程与直角坐标方程的关系,掌握互化的方法。
通过例题演示参数方程与直角坐标方程的互化过程。
4.2 参数方程与极坐标方程的互化引导学生了解参数方程与极坐标方程的关系,掌握互化的方法。
通过例题演示参数方程与极坐标方程的互化过程。
第五章:参数方程在实际问题中的应用5.1 参数方程在物理学中的应用通过实际问题引入参数方程在物理学中的应用,如抛物线运动、电磁波等。
引导学生理解参数方程在物理学中的重要作用。
5.2 参数方程在工程中的应用通过实际问题引入参数方程在工程中的应用,如优化问题、设计问题等。
引导学生理解参数方程在工程中的实际意义。
第六章:参数方程的优化问题6.1 参数方程优化问题的定义与特点引导学生了解参数方程优化问题的定义,理解优化问题的实际意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线的参数方程(孙雷)教材人民教育出版社高中数学选修4-4第二讲第一节授课教师孙雷教学目标1、理解曲线参数方程的概念,能选取适当的参数建立参数方程;2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义;3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中,形成数学抽象思维能力,初步体验参数的基本思想。
教学重点曲线参数方程的概念。
教学难点曲线参数方程的探求。
教学过程(一)曲线的参数方程概念的引入引例:当两个齿轮接触时,蓝色齿轮会带动红色齿轮转动,当两个齿轮没有接触时,蓝齿轮要带动红色齿轮转动,有一种方法是加入一个新的齿轮,使之与红蓝两个齿轮同时接触。
(上述过程让学生感受中间变量的作用,为参数方程中的参变量的引出作铺垫。
)思考1:若齿轮A、B、C的半径相等,他们转动时的角速度分别是x、y、t,方向忽略不计(1) 第一组图中,A与B角速度之间的关系是_______________;(2) 第二组图中,A与C角速度之间的关系是_______________;B与C角速度之间的关系是________________;思考2:思考:若齿轮A、B、C的半径分别为4、1、2,他们转动时的角速度分别是x、y、t,方向忽略不计(1) 第一组图中,它们角速度之间的关系是_________________;(2) 第二组图中,它们角速度之间的关系是_________________;引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决(1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。
)(二)曲线的参数方程例1、圆的参数方程的推导(1)一般的,设⊙O 的圆心为原点,半径为r ,0OP 所在直线为x 轴,如图,以0OP 为始边绕着点O 按逆时针方向绕原点以匀角速度ω作圆周运动,则质点P 的坐标与时刻t 的关系该如何建立呢?(其中r 与ω为常数,t 为变数)结合图形,由任意角三角函数的定义可知:),0[sin cos +∞∈⎩⎨⎧==t tr y t r x ωω t 为参数 ① (2)点P 的角速度为ω,运动所用的时间为t ,则角位移t ωθ=,那么方程组①可以改写为何种形式?结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈⎩⎨⎧==θθθr y r x θ为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力)(3)方程①、②是否是圆心在原点,半径为r 的圆方程?为什么?由上述推导过程可知:对于⊙O 上的每一个点),(y x P 都存在变数t (或θ)的值,使t r x ωcos =,t r y ωsin =(或θsin r y =,θcos r x =)都成立。
对于变数t (或θ)的每一个允许值,由方程组所确定的点),(y x P 都在圆上;(1、对曲线的方程以及方程的曲线的定义进行必要的复习;2、学生从曲线的方程以及方程的曲线的定义出发,可以说明以上由变数t (或θ)建立起来的方程是圆的方程;)(4)若要表示一个完整的圆,则t 与θ的最小的取值范围是什么呢?➢ )2,0[sin cos ωπωω∈⎩⎨⎧==t t r y t r x , )2,0[sin cos πθθθ∈⎩⎨⎧==r y r x (5)圆的参数方程及参数的定义我们把方程①(或②)叫做⊙O 的参数方程,变数t (或θ)叫做参数。
(6)圆的参数方程的理解与认识(ⅰ)参数方程)2,0[sin 3cos 3πθθθ∈⎩⎨⎧==y x 与]2,0[sin 3cos 3πθθθ∈⎩⎨⎧==y x 是否表示同一曲线?为什么?(ⅱ)根据下列要求,分别写出圆心在原点、半径为r 的圆的部分圆弧的参数方程:①在y 轴左侧的半圆(不包括y 轴上的点);②在第四象限的圆弧。
(通过具体问题的解决,加深对圆的参数方程的理解与认识,体会到参数的取值范围也是圆的参数方程的重要组成部分;并为曲线的参数方程的定义及其理解与认识作铺垫。
)(7)曲线的参数方程的定义(ⅰ)一般地,在平面直角坐标系中,如果曲线C 上任意一点的坐标x 、y都是某个变数t 的函数)()()(D t t g y t f x ∈⎩⎨⎧== ③,并且对于t 的每一个允许值,由方程组③所确定的点),(y x P 都在这条曲线C 上,那么方程组③就叫做这条曲线的参数方程。
变数t 叫做参变量或参变数,简称参数。
(ⅱ)相对于参数方程来说,直接给出曲线上点的坐标x 、y 间关系的方程0),(=y x F 叫做曲线的普通方程。
(8)曲线的参数方程的理解与认识(ⅰ)参数方程的形式;(横、纵坐标x 、y 都是变量t 的函数,给出一个t 能唯一的求出对应的x 、y 的值,因而得出唯一的对应点;但横、纵坐标x 、y 之间的关系并不一定是函数关系。
)(ⅱ)参数的取值范围;(在表述曲线的参数方程时,必须指明参数的取值范围;取值范围的不同,所表示的曲线也可能会有所不同。
)(ⅲ)参数方程与普通方程的统一性;(普通方程是相对参数方程而言的,普通方程反映了坐标变量x 与y 之间的直接联系,而参数方程是通过变数反映坐标变量x 与y 之间的间接联系;普通方程和参数方程是同一曲线的两种不同表达形式;参数方程可以与普通方程进行互化。
)(ⅳ)参数的作用;(参数作为间接地建立横、纵坐标x 、y 之间的关系的中间变量,起到了桥梁的作用。
)(ⅴ)参数的意义。
(如果参数选择适当,参数在参数方程中可以有明确的几何意义,也可以有明确的物理意义,可以给问题的解决带来方便。
即使是同一条曲线,也可以用不同的变数作为参数。
)(三)巩固曲线的参数方程的概念例2.已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M1(0,1),M2(5,4)与曲线C 的位置关系(2)已知点M3(6,a)在曲线C 上,求a 的值练习:1.曲线⎩⎨⎧-=+=3412t y t x (t 为参数)与x 轴的焦点坐标是( )A.(1,4)B.(1625,0)C.(1,-3)D.(1625±,0) 2.方程⎩⎨⎧==θθsin cos y x )2,0[πθ∈所表示的曲线上一点是( ) A.(2,7) B.(3231,) C.(2121,)D.(1,0)(通过普通方程化为参数方程求得函数的最值,使学生初步体验参数方程的作用与意义。
)例3.如图所示,已知点A(1,2),B(5,6),点M 是线段AB 上的一个动点,试求点M(x,y)轨迹的参数方程(通过直线的参数方程的求解,使学生初步体验同一条曲线的参数方程随参数选取的变化而不同,这一点与普通方程不同。
)(四)课堂小结1、知识内容:知道圆的参数方程以及曲线参数方程的概念;能选取适当的参数建立参数方程;通过对圆和直线的参数方程的研究,理解其中参数的意义。
2、思想与方法:参数思想。
(引导学生回顾本节课的学习过程,小结与交流学习体会,包括数学知识的获得,数学思想方法的领悟。
)(五)作业课本7P ,练习17.1(1),第2、3题。
(六)思考若圆的一般方程为222)()(r b y a x =-+-,你能写出它的一个参数方程吗?教学设计说明一、教材分析本节课所用的教材是由人民教育出版社出版的高中数学选修4-4课本,内容为第二讲,第一节。
“参数方程和极坐标方程”这一章节内容是在“圆锥曲线”这一章的基础上进一步展开研究曲线的方程。
学习曲线的参数方程是为了进一步探讨直线、圆锥曲线的性质,也是进一步学习数学、运动学的基础,它在生产实践中有很多实际的应用。
本章主要学习参数方程的基本概念、基本原理、基本方法,因此在教学中要求应适当,难度要控制,基本应以课本例题与习题为主。
通过本章节的教学应使学生感悟到现实世界的问题是多种多样的,仅用一种坐标系,一种方程来研究各种不同的问题是不适合的,有时难以获得满意的效果。
参数方程有其自身的优越性,学习参数方程有其必要性。
通过学习参数方程的有关概念,以及方程之间、坐标之间的互化,使学生感悟到坐标系及各种方程的表示方法是可以视实际需要,主观能动的加以选择的。
“曲线的参数方程”为本章节的第一部分。
主要让学生了解参数方程的有关概念,通过探索圆锥曲线的参数方程初步掌握求曲线的参数方程的方法,并且在此基础上进行参数方程与普通方程的互化及其简单应用。
二、教学目标设计根据以上分析,本节课设置的教学目标为:1、理解曲线参数方程的概念,能选取适当的参数建立参数方程。
2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义。
3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中,培养数学抽象思维能力,初步体验参数的基本思想。
三、教学过程设计我校是湖北省示范型高中,我校的学生数学基础良好,思维活跃,具备一定的分析问题和自主探究能力。
因此在教学设计中强调学生的自主探究,强调数学思想方法的渗透与运用,希望加深学生对知识本质的理解。
本课设置如下教学环节以体现重点,突破难点,实现教学目标。
1、作为曲线的参数方程的概念课,一味的灌输是不可取的。
而是要让学生体会到为什么要建立曲线的参数方程,感受其产生的必要性、合理性以及可行性。
因此,由齿轮的转动这一实例引入,一方面使学生了解参数方程是基于生产、生活发展的实际需要而产生的,在引发学生研究的兴趣时,通过对问题的解决,使学生体会到仅仅运用一种方程来研究不同的问题不一定方便,往往难以获得满意的结果,从而了解研究曲线的参数方程的必要性;另一方面通过具体问题的解决,找到解决问题的途径,也为圆的参数方程的研究作必要的准备。
2、由特殊到一般,从具体到抽象。
以“引导设问”为主线,学生通过对问题的思考和解答,体验学习过程,自主探索和获取知识,从而得到圆的参数方程。
同时在探索的过程中也提高学生的数学抽象思维能力。
3、作为一堂概念课,学生对于概念的理解必须精确,深入,为后续课程打下扎实的基础,教师必须在这一环节进行深入的分析。
因此,在圆以及曲线的参数方程的概念引入之后,针对参数方程的形式、参数的取值范围、参数方程与普通方程的统一性、参数的作用以及参数的意义进行深入的理解与探讨。
通过这一环节,学生活跃的思维逐步从感性上升到理性;同时,对于概念的理解得到巩固与深化。
通过加强师生交流、关注学生思维,把握课堂教学重点,让学生体验知识产生的原因,发展的过程及其应用的价值。
4、在本节课中,设计了适当的练习与例题。