2019-2020学年高中数学 第1章《三角函数》三角函数的应用教学案 苏教版必修4.doc

合集下载

2019-2020年高考数学专题三:三角函数教案苏教版

2019-2020年高考数学专题三:三角函数教案苏教版

32
2
y
sin(3x )

2
62
[ 思路分析 ] 略
[ 小结 ] 正弦曲线问题是三角函数性质、 图象问题中的重点内容, 必须熟练掌握。
上述问题的解答可以根据正弦曲线的“五点画法”在草稿纸上作出函数的草图
来验证答案或得到答案。
cos x sin x sin x cos x sin 2x
∴当时,
分析:在已知条件下, ( 1)、( 2)两处不能同时取等号。 y a2 (1 tan2 x) b 2(1 cot 2 x) a 2 b 2 ( a 2 tan2 x b 2 cot 2 x)
正解: a2 b2 2ab (a b) 2
2019-2020 年高考数学 专题三: 三角函数教案 苏教版
【考点分析】
1、掌握三角函数概念,其中以三角函数的定义学习为重点。 (理科:兼顾反三
角)
2、提高三角函数的恒等变形的能力, 关键是熟悉诱导公式、 同角关系、 和差角
公式及倍角公式等,掌握常见的变形方法。
3、解决三角函数中的求值问题,关键是把握未知与已知之间的联系。
2x 2k
(k Z)
即 分析:忽略了满足不等式的在第一象限,上述解法引进了。
正解:即,由得
3
2k
x
2k
(k Z)
4
4
4
∴ 2k x 2k
四、 忽视角的范围,盲目地套用正弦、余弦的有界性
例 4. 设、为锐角,且 +,讨论函数的最值。
(k Z) 2
错解 y 1 1 (cos 2 cos 2 ) 1 cos(
[ 思路分析 ] ∵ sin( 2 ) sin( 2 ) sin( 2 ) cos( 2 )

高中数学 第一章 三角函数 1.3.4 三角函数的应用学案 苏教版必修4

高中数学 第一章 三角函数 1.3.4 三角函数的应用学案 苏教版必修4

1.3.4 三角函数的应用[学习目标] 1.会用三角函数解决一些简单的实际问题.2.体会三角函数是描述周期变化现象的重要函数模型.[知识链接]1.数学模型是什么?什么是数学模型的方法?答 简单地说,数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的方法是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法. 2.上述的数学模型建立的一般程序是什么? 答 解决问题的一般程序是:(1)审题:逐字逐句的阅读题意,审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择适当函数模型; (3)求解:对所建立的数学模型进行分析研究得到数学结论; (4)还原:把数学结论还原为实际问题的解答. [预习导引]1.三角函数的周期性y =A sin(ωx +φ) (ω≠0)的周期是T =2π|ω|; y =A cos(ωx +φ) (ω≠0)的周期是T =2π|ω|; y =A tan(ωx +φ) (ω≠0)的周期是T =π|ω|. 2.函数y =A sin(ωx +φ)+k (A >0,ω>0)的性质 (1)y max =A +k ,y min =-A +k . (2)A =y max -y min2,k =y max +y min2.(3)ω可由ω=2πT确定,其中周期T 可观察图象获得.(4)由ωx 1+φ=0,ωx 2+φ=π2,ωx 3+φ=π,ωx 4+φ=32π,ωx 5+φ=2π中的一个确定φ的值. 3.三角函数模型的应用三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.要点一 三角函数图象的应用例1 作出函数y =|cos x |,x ∈R 的图象,判断它的奇偶性并写出其周期和单调区间. 解 y =|cos x |=⎩⎪⎨⎪⎧cos x ,x ∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k πk ∈Z ,-cos x ,x ∈⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k πk ∈Z .作出函数y =cos x 的图象后,将x 轴下方部分沿x 轴翻折到x 轴上方,如图:由图可知,y =|cos x |是偶函数,T =π,单调递增区间为⎣⎢⎡⎦⎥⎤-π2+k π,k π(k ∈Z ),单调递减区间为⎣⎢⎡⎦⎥⎤k π,π2+k π(k ∈Z ).规律方法 翻折法作函数图象(1)要得到y =|f (x )|的图象,只需将y =f (x )的图象在x 轴下方的部分沿x 轴翻折到上方,即“下翻上”.(2)要得到y =f (|x |)的图象,只需将y =f (x )的图象在y 轴右边的部分沿y 轴翻折到左边,即“右翻左”,同时保留右边的部分.跟踪演练1 函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.解 (1)f (x )的最小正周期为π,x 0=7π6,y 0=3.(2)因为x ∈⎣⎢⎡⎦⎥⎤-π2,-π12,所以2x +π6∈⎣⎢⎡⎦⎥⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.要点二 应用函数模型解题例2 已知电流I 与时间t 的关系为I =A sin(ωt +φ).(1)如图所示的是I =A sin(ωt +φ)(ω>0,|φ|<π2)在一个周期内的图象,根据图中数据求I =A sin(ωt +φ)的解析式;(2)如果t 在任意一段1150秒的时间内,电流I =A sin(ωt +φ)都能取得最大值和最小值,那么ω的最小正整数值是多少? 解 (1)由图知A =300,设t 1=-1900,t 2=1180, 则周期T =2(t 2-t 1)=2⎝ ⎛⎭⎪⎫1180+1900=175. ∴ω=2πT=150π.又当t =1180时,I =0,即sin ⎝ ⎛⎭⎪⎫150π·1180+φ=0, 而|φ|<π2,∴φ=π6.故所求的解析式为I =300sin ⎝ ⎛⎭⎪⎫150πt +π6.(2)依题意,周期T ≤1150,即2πω≤1150(ω>0),∴ω≥300π>942,又ω∈N *, 故所求最小正整数ω=943.规律方法 例题中的函数模型已经给出,观察图象和利用待定系数法可以求出解析式中的未知参数,从而确定函数解析式.此类问题解题关键是将图形语言转化为符号语言,其中,读图、识图、用图是数形结合的有效途径.跟踪演练2 弹簧挂着的小球做上下振动,它在时间t (s)内离开平衡位置(静止时的位置)的距离h (cm)由下面的函数关系式表示:h =3sin ⎝⎛⎭⎪⎫2t +π4.(1)求小球开始振动的位置;(2)求小球第一次上升到最高点和下降到最低点时的位置; (3)经过多长时间小球往返振动一次? (4)每秒内小球能往返振动多少次? 解 (1)令t =0,得h =3sin π4=322,所以开始振动的位置为⎝⎛⎭⎪⎫0,322.(2)由题意知,当h =3时,t =π8,即最高点为⎝ ⎛⎭⎪⎫π8,3;当h =-3时,t =5π8,即最低点为⎝ ⎛⎭⎪⎫5π8,-3.(3)T =2π2=π≈3.14,即每经过约3.14秒小球往返振动一次.(4)f =1T≈0.318,即每秒内小球往返振动约0.318次.要点三 构建函数模型解题例 3 某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度y (米)随着时间t (0≤t ≤24,单位:小时)而周期性变化,每天各时刻t 的浪高数据的平均值如下表:t (时) 0 3 6 9 12 15 18 21 24 y (米)1.01.41.00.61.01.40.90.51.0(1)(2)观察图,从y =at +b ,y =A sin(ωt +φ)+b ,y =A cos(ωt +φ)中选择一个合适的函数模型,并求出该拟合模型的解析式;(3)如果确定在一天内的7时至19时之间,当浪高不低于0.8米时才进行训练,试安排恰当的训练时间.解 (1)描出所给点如图所示:(2)由(1)知选择y =A sin(ωt +φ)+b 较合适. 令A >0,ω>0,|φ|<π.由图知,A =0.4,b =1,T =12,所以ω=2πT =π6.把t =0,y =1代入y =0.4sin(π6t +φ)+1,得φ=0.故所求拟合模型的解析式为y =0.4sin π6t +1(0≤t ≤24).(3)由y =0.4sin π6t +1≥0.8,得sin π6t ≥-12,则-π6+2k π≤πt 6≤7π6+2k π(k ∈Z ),即12k -1≤t ≤12k +7(k ∈Z ), 注意到t ∈[0,24],所以0≤t ≤7,或11≤t ≤19,或23≤t ≤24.再结合题意可知,应安排在11时到19时训练较恰当.规律方法 数据拟合问题实质上是根据题目提供的数据画出简图,求相关三角函数的解析式进而研究实际问题.在求解具体问题时需弄清A ,ω,φ的具体含义,只有把握了这三个参数的含义,才可以实现符号语言(解析式)与图形语言(函数图象)之间的相互转化. 处理曲线拟合与预测问题时,通常需要以下几个步骤: 1.根据原始数据给出散点图.2.通过考察散点图,画出与其“最贴近”的直线或曲线,即拟合直线或拟合曲线. 3.根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.4.利用函数关系式,根据条件对所给问题进行预测和控制,以便为决策和管理提供依据. 跟踪演练3 某港口水深y (米)是时间t (0≤t ≤24,单位:小时)的函数,下面是水深数据:t (小时) 0 3 6 9 12 15 18 21 24 y (米)10.013.09.97.010.013.010.17.010.0+B 的图象.(1)试根据数据表和曲线,求出y =A sin ωt +B 的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)解 (1)从拟合的曲线可知,函数y =A sin ωt +B 的一个周期为12小时,因此ω=2πT =π6.又y min =7,y max =13,∴A =12(y max -y min )=3,B =12(y max +y min )=10.∴函数的解析式为y =3sin π6t +10 (0≤t ≤24).(2)由题意,得水深y ≥4.5+7, 即y =3sin π6t +10≥11.5,t ∈[0,24],∴sin π6t ≥12,π6t ∈⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6,k =0,1,∴t ∈[1,5]或t ∈[13,17],所以,该船在1∶00至5∶00或13∶00至17∶00能安全进港. 若欲于当天安全离港,它在港内停留的时间最多不能超过16小时.1.方程|x |=cos x 在(-∞,+∞)内有________个根. 答案 22.如图所示,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是________.答案 ③解析 d =f (l )=2sin l2.3.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f (x )=A sin (ωx +φ)+B (A >0,ω>0,|φ|<π2)的模型波动(x 为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f (x )的解析式为__________________.答案 f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+7解析 由条件可知⎩⎪⎨⎪⎧A +B =9,-A +B =5,∴B =7,A =2.又T =2(7-3)=8,∴ω=π4, 令3×π4+φ=π2,∴φ=-π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+7.4.如图所示,一个摩天轮半径为10 m ,轮子的底部在地面上2 m 处,如果此摩天轮按逆时针转动,每30 s 转一圈,且当摩天轮上某人经过点P 处(点P 与摩天轮中心高度相同)时开始计时.(1)求此人相对于地面的高度关于时间的关系式;(2)在摩天轮转动的一圈内,约有多长时间此人相对于地面的高度不小于17 m.解 (1)设在t s 时,摩天轮上某人在高h m 处.这时此人所转过的角为2π30 t =π15t ,故在t s 时,此人相对于地面的高度为h =10sin π15t +12(t ≥0).(2)由10sin π15t +12≥17,得sin π15t ≥12,则52≤t ≤252.故此人有10 s 相对于地面的高度不小于17 m.1.三角函数模型是研究周期现象最重要的数学模型.三角函数模型在研究物理、生物、自然界中的周期现象(运动)有着广泛的应用. 2.三角函数模型构建的步骤(1)收集数据,观察数据,发现是否具有周期性的重复现象. (2)制作散点图,选择函数模型进行拟合. (3)利用三角函数模型解决实际问题.(4)根据问题的实际意义,对答案的合理性进行检验.一、基础达标1.动点A (x ,y )在圆x 2+y 2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t =0时,点A 的坐标是(12,32),则当0≤t ≤12时,动点A 的纵坐标y 关于t (单位:秒)的函数的单调递增区间是________. 答案 [0,1]和[7,12]解析 ∵T =12,∴ω=2π12=π6,从而设y 关于t 的函数为y =sin(π6t +φ).又∵t =0时,y =32,∴可取φ=π3,∴y =sin(π6t +π3), ∴当2k π-π2≤π6t +π3≤2k π+π2(k ∈Z ),即12k -5≤t ≤12k +1(k ∈Z )时,函数递增.∵0≤t ≤12,∴函数的单调递增区间为[0,1]和[7,12].2.一物体相对于某一固定位置的位移y (cm)和时间t (s)之间的一组对应值如下表所示:t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 y-4.0-2.80.02.84.02.80.0-2.8-4.0答案 y =-4.0cos 52πt解析 设y =A sin(ωx +φ),则A =4.0,ω=2πT =2π0.8=5π2,又t =0时,y =-4.0,∴-4.0=4.0sin φ,∴可取φ=-π2,∴y =4.0sin ⎝ ⎛⎭⎪⎫52πt -π2,即y =-4.0cos 52πt .3.下图显示相对于平均海平面的某海弯的水面高度h (米)在某天24小时的变化情况,则水面高度h 关于从夜间零时开始的小时数t 的函数关系式为________.答案 h =6sin ⎝ ⎛⎭⎪⎫π6t +π⎝⎛⎭⎪⎫或h =-6sin π6t4.设y =f (t )是某港口水的深度y (米)关于时间t (时)的函数,其中0≤t ≤24.下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:t 0 3 6 9 12 15 18 21 24 y1215.112.19.111.914.911.98.912.1下面的函数中,最能近似表示表中数据间对应关系的函数是________. ①y =12+3sin π6t ,t ∈[0,24];②y =12+3sin ⎝ ⎛⎭⎪⎫π6t +π,t ∈[0,24]; ③y =12+3sin π12t ,t ∈[0,24];④y =12+3sin ⎝ ⎛⎭⎪⎫π12t +π2,t ∈[0,24].答案 ①解析 在给定的四个选项①②③④中我们不妨代入t =0及t =3,容易看出最能近似表示表中数据间对应关系的函数是①.5.函数y =2sin ⎝ ⎛⎭⎪⎫m 3x +π3的最小正周期在⎝ ⎛⎭⎪⎫23,34内,则正整数m 的值是________. 答案 26,27,28解析 ∵T =6πm ,又∵23<6πm <34,∴8π<m <9π,且m ∈Z ,∴m =26,27,28.6.函数y =f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b ]上的面积.已知函数y =sin nx 在[0,πn ]上的面积的2n(n ∈N *),则(1)函数y =sin 3x 在[0,2π3]上的面积为________;(2)函数y =sin(3x -π)+1在[π3,4π3]上的面积为________.答案 (1)43 (2)π+23解析 (1)取n =3,由已知,函数y =sin 3x 在[0,π3]上的面积为23.∵函数y =sin 3x 的周期为2π3,∴函数y =sin 3x 在(π3,2π3)上的面积也是23,∴函数y =sin 3x 在[0,2π3]上的面积为43.(2)y =sin(3x -π)+1=-sin 3x +1,作这个函数在区间[π3,4π3]上的图象如图所示:由(1)知S 1=S 2=S 3=23,直线x =π3,x =4π3,y =1及x 轴所围成的矩形面积为π.将S 2割下补在S 3处,则图中阴影部分的面积为π+23,∴函数y =sin(3x -π)+1在[π3,4π3]上的面积为π+23.7.如图所示,某地夏天从8~14时的用电量变化曲线近似满足函数y =A sin(ωx +φ)+b . (1)求这一天的最大用电量及最小用电量; (2)写出这段曲线的函数解析式.解 (1)最大用电量为50万kW·h,最小用电量为30万kW·h.(2)观察图象可知从8~14时的图象是y =A sin(ωx +φ)+b 的半个周期的图象, ∴A =12×(50-30)=10,b =12×(50+30)=40.∵12×2πω=14-8,∴ω=π6.∴y =10sin ⎝ ⎛⎭⎪⎫π6x +φ+40. 将x =8,y =30代入上式,解得φ=π6.∴所求解析式为y =10sin ⎝ ⎛⎭⎪⎫π6x +π6+40,x ∈[8,14].二、能力提升8.已知A 1,A 2,…A n 为凸多边形的内角,且lgsin A 1+lgsin A 2+……+lgsin A n =0,则这个多边形是________. 答案 矩形解析 由题意,得sin A 1·sin A 2·…·sin A n =1, ∴sin A 1=sin A 2=…=sin A n =1, ∴A 1=A 2=…=A n =90°.根据多边形的内角和得n ×90°=(n -2)×180°,解得n =4.9.已知某种交流电电流I (A)随时间t (秒)的变化规律可以用函数I =52sin ⎝ ⎛⎭⎪⎫100πt -π2表示,t ∈[0,+∞),则这种交流电电流在0.5秒内往复运行________次. 答案 25解析 周期T =2π100π=150(秒),从而频率为每秒50次,0.5秒往复运行25次.10.电流强度I (安培)随时间t (秒)变化的函数I =A sin(ωt +φ)的图象如图所示,则t =7120秒时的电流强度为______.答案 0解析 根据图象得A =10,由⎩⎪⎨⎪⎧1300ω+φ=π2,4300ω+φ=32π,∴⎩⎪⎨⎪⎧ω=100π,φ=π6,∴I =10sin ⎝⎛⎭⎪⎫100πt +π6.当t =7120秒时,I =10sin 6π=0.11.某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t =0时,点A 与钟面上标12的点B 重合,将A 、B 两点的距离d (cm)表示成t (s)的函数,则d =__________,其中t ∈[0,60]. 答案 10sin πt60解析 将解析式可写为d =A sin(ωt +φ)的形式,由题意易知A =10,当t =0时,d =0,得φ=0;当t =30时,d =10,可得ω=π60,所以d =10sin πt60.12.如图,一个水轮的半径为4 m ,水轮圆心O 距离水面2 m ,已知水轮每分钟转动5圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计算时间. (1)将点P 距离水面的高度z (m)表示为时间t (s)的函数; (2)点P 第一次到达最高点大约需要多少时间?解 (1)如图所示建立直角坐标系,设角φ⎝ ⎛⎭⎪⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角.OP 每秒钟内所转过的角为5×2π60=π6. 则OP 在时间t (s)内所转过的角为π6t .由题意可知水轮逆时针转动, 得z =4sin ⎝⎛⎭⎪⎫π6t +φ+2.当t =0时,z =0,得sin φ=-12,即φ=-π6.故所求的函数关系式为z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2.(2)令z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2=6,得sin ⎝⎛⎭⎪⎫π6t -π6=1,令π6t -π6=π2,得t =4, 故点P 第一次到达最高点大约需要4 s. 三、探究与创新13.已知某海滨浴场海浪的高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作:y =f (t ),下表是某日各时的浪高数据:(1)根据以上数据,求函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式; (2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动? 解 (1)由表中数据知周期T =12,∴ω=2πT =2π12=π6,由t =0,y =1.5,得A +b =1.5. 由t =3,y =1.0,得b =1.0. ∴A =0.5,b =1,∴y =12cos π6t +1.(2)由题知,当y >1时才可对冲浪者开放 ∴12cos π6t +1>1, ∴cos π6t >0,∴2k π-π2<π6t <2k π+π2,k ∈Z即12k -3<t <12k +3,k ∈Z .①∵0≤t ≤24,故可令①中k 分别为0,1,2, 得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8:00至晚上20:00之间,有6个小时时间可供冲浪者运动,即上午9:00至下午3:00.。

2019_2020学年高中数学第1章三角函数1.3.4三角函数的应用讲义苏教版必修4

2019_2020学年高中数学第1章三角函数1.3.4三角函数的应用讲义苏教版必修4

1.3.4 三角函数的应用三角函数模型的应用 (1)三角函数模型的应用①根据实际问题的图象求出函数解析式.②将实际问题抽象为与三角函数有关的简单函数模型. ③利用收集的数据,进行函数拟合,从而得到函数模型. (2)解答三角函数应用题的一般步骤思考:在函数y =A sin(ωx +φ)+b (A >0,ω>0)中,A ,b 与函数的最值有何关系? 提示:A ,b 与函数的最大值y max ,最小值y min 关系如下: (1)y max =A +b ,y min =-A +b ; (2)A =y max -y min2,b =y max +y min2.1.思考辨析(1)函数y =sin x 在⎝⎛⎭⎪⎫0,π2内是增函数.( )(2)函数y =3sin x -1的最大值为3.( )(3)直线x =π是函数y =sin x 的一条对称轴.( ) (4)函数y =sin [π(x -1)]的周期为2.( ) [答案] (1)√ (2)× (3)× (4)√ 2.求下列函数的周期:(1)y =A sin(ωx +φ)(ω≠0)的周期是T =________; (2)y =A cos(ωx +φ)(ω≠0)的周期是T =________; (3)y =A tan(ωx +φ)(ω≠0)的周期是T =________; [答案] (1)2π|ω| (2)2π|ω| (3)π|ω|3.某人的血压满足函数关系式f (t )=24sin 160πt +110,其中f (t )为血压,t 为时间,则此人每分钟心跳的次数为________.80 [∵T =2π160π=180,∴f =1T=80.]三角函数在物理学中的应用【例1】 已知电流I =A sin(ωt +φ)A >0,ω>0,|φ|<π2在一个周期内的图象如图.(1)根据图中数据求I =A sin(ωt +φ)的解析式;(2)如果t 在任意一段1150秒的时间内,电流I =A sin(ωt +φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?思路点拨:可先由图象确定电流I 的解析式,再由函数的性质确定ω的值. [解] (1)由图知,A =300.T2=1180-⎝ ⎛⎭⎪⎫-1900=1150, ∴T =175,∴ω=2πT=150π.I =300sin(150πt +φ).由⎝ ⎛⎭⎪⎫-1900,0为第一个关键点, ∴150π·⎝ ⎛⎭⎪⎫-1900+φ=0,∴φ=π6, ∴所求解析式为I =300sin ⎝⎛⎭⎪⎫150πt +π6,t ∈[0,+∞).(2)由题意T ≤1150,即2πω≤1150,∴ω≥300π≈942.5,∴所求ω的最小正整数值是943.1.三角函数模型在物理中的应用主要体现在简谐运动、电流强度、单摆、弹簧振子等随时间变化的问题,解决这类问题必须要清楚振幅、频率、周期、初相、相位的实际意义和表示方法.2.将图形语言转化成符号语言,根据图形信息利用待定系数法,求函数模型y =A sin(ωx +φ)中的未知参数后,再由解析式及性质解决具体问题.1.已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移s (cm)随时间t (s)的变化规律为s =4sin ⎝ ⎛⎭⎪⎫2t +π3,t ∈[0,+∞).用“五点法”作出这个函数的简图,并回答下列问题:(1)小球在开始振动(t =0)时的位移是多少?(2)小球上升到最高点和下降到最低点时的位移分别是多少? (3)经过多长时间小球往复振动一次? [解] 列表如下,(1)将t =0代入s =4sin ⎝ ⎛⎭⎪⎫2t +π3,得s =4sin π3=23,所以小球开始振动时的位移是2 3 cm.(2)小球上升到最高点和下降到最低点时的位移分别是4 cm 和-4 cm. (3)因为振动的周期是π,所以小球往复振动一次所用的时间是π s.三角函数在实际生活中的应用【例2】 如图所示,游乐场中的摩天轮匀速转动,每转动一圈需要12分钟,其中心O 距离地面40.5米,半径为40米,如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请回答下列问题:(1)求出你与地面的距离y (米)与时间t (分钟)的函数关系式; (2)当你第4次距离地面60.5米时,用了多长时间? 思路点拨:审清题意→建立函数模型→解答函数模型 →得出结论[解] (1)可以用余弦函数来表示该函数的关系式,由已知,可设y =40.5-40cos ωt ,t ≥0,由周期为12分钟可知,当t =6时,摩天轮第1次到达最高点,即此函数第1次取得最大值,所以6ω=π,即ω=π6.所以y =40.5-40cos π6t (t ≥0).(2)设转第1圈时,第t 0分钟时距地面60.5米,由60.5=40.5-40cos π6t 0,得cos π6t 0=-12,所以π6t 0=2π3或π6t 0=4π3,解得t 0=8或4.所以t =8分钟时,第2次距地面60.5米,故第4次距离地面60.5米时,用了12+8=20(分钟).三角函数在实际生活中的应用问题一般分两种类型(1)已知函数模型,利用题目中提供的数据和有关性质解决问题,其关键是求出函数解析式中的参数,将实际问题转化为三角方程或三角不等式,然后解方程或不等式,可使问题得以解决.(2)把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是建模.2.已知某游乐园内摩天轮的中心O 点距地面的高度为50 m ,摩天轮做匀速转动,摩天轮上的一点P 自最低点A 点起,经过t min 后,点P 的高度h =40·sin ⎝ ⎛⎭⎪⎫π6t -π2+50(单位:m),那么在摩天轮转动一圈的过程中,点P 的高度在距地面70 m 以上的时间将持续________分钟.4 [依题意,即40sin ⎝ ⎛⎭⎪⎫π6t -π2+50≥70,即cos π6t ≤-12,从而在一个周期内持续的时间为2π3≤π6t ≤4π3,4≤t ≤8,即持续时间为4分钟.]三角函数的数据拟合问题[探究问题]1.在利用已收集到的数据解决实际问题时,我们首先要对数据如何处理? 提示:先画样本数据散点图,通过分析其变化趋势确定合适的函数模型. 2.当散点图具有什么特征时,可以用正(余)弦函数模型来解决实际问题.提示:当散点图具有波浪形的特征时,便可考虑应用正(余)弦函数模型来解决实际问题. 【例3】 某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度y (米)随着时间t (0≤t ≤24,单位:小时)而周期性变化,每天各时刻t 的浪高数据的平均值如下表:(2)观察图,从y =at +b ,y =A sin(ωt +φ)+b ,y =A cos(ωt +φ)中选择一个合适的函数模型,并求出该拟合模型的解析式;(3)如果确定在一天内的7时至19时之间,当浪高不低于0.8米时才进行训练,试安排恰当的训练时间.思路点拨:画散点图―→选择函数模型―→解决实际问题 [解] (1)描出所给点如图所示:(2)由(1)知选择y =A sin(ωt +φ)+b 较合适. 令A >0,ω>0,|φ|<π. 由图知,A =0.4,b =1,T =12, 所以ω=2πT =π6.把t =0,y =1代入y =0.4sin ⎝ ⎛⎭⎪⎫π6t +φ+1,得φ=0. 故所求拟合模型的解析式为y =0.4sin π6t +1(0≤t ≤24).(3)由y =0.4sin π6t +1≥0.8,则sin π6t ≥-12,则-π6+2k π≤πt 6≤7π6+2k π(k ∈Z ),即12k -1≤t ≤12k +7(k ∈Z ),注意到t ∈[0,24],所以0≤t ≤7,或11≤t ≤19,或23≤t ≤24. 再结合题意可知,应安排在11时到19时训练较恰当.用三角函数解决实际问题的关键在于如何把实际问题三角函数模型化,而散点图起了关键的作用.解决这类题目的步骤如下:(1)搜集实际问题的数据,作出“散点图”;(2)观察散点图,用三角函数模型拟合散点图,得到函数模型; (3)通过图象或解析式研究函数的性质; (4)用得到的性质解决提出的实际问题.3.某港口的水深y (m)是时间t (0≤t ≤24,单位:h)的函数,下面是水深数据:t +b 的图象.(1)试根据以上数据,求出y =A sin ωt +b 的表达式;(2)一般情况下,船舶航行时,船底离海底的距离不少于4.5 m 时是安全的,如果某船的吃水深度(船底与水面的距离)为7 m ,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,则在港内停留的时间最多不能超过多长时间?(忽略进出港所用的时间)[解] (1)由拟合曲线可知,函数y =A sin ωt +b 在一个周期内由最大变到最小需9-3=6(h),此为半个周期,∴函数的最小正周期为12 h ,因此,2πω=12,ω=π6.又∵当t =0时,y =10; 当t =3时,取最大值13. ∴b =10,A =13-10=3.∴所求函数表达式为y =3sin π6t +10.(2)由于船的吃水深度为7 m ,船底与海底的距离不少于4.5 m ,故船舶在航行时水深y 应大于等于7+4.5=11.5(m).由拟合曲线可知,一天24 h ,水深y 变化两个周期. 令y =3sin π6t +10≥11.5,可得sin π6t ≥12.∴2k π+π6≤π6t ≤2k π+5π6(k ∈Z ),∴12k +1≤t ≤12k +5(k ∈Z ). 取k =0,则1≤t ≤5; 取k =1,则13≤t ≤17;取k =2时,则25≤t ≤29(不合题意).从而可知,该船在1点到5点或者13点到17点两个时间段可安全进港;船舶要在一天之内在港口停留时间最长,就应从凌晨1点进港,而下午的17点前离港,在港内停留的时间最长为16小时.教师独具1.本节课的重点是三角函数在实际问题中的应用,难点是三角函数在实际问题中的应用以及建立三角函数模型解决实际问题.2.本节课要牢记解三角函数应用问题的基本步骤 (1)审清题意读懂题目中的“文字”、“图象”、“符号”等语言,理解所反映的实际问题的背景,提炼出相应的数学问题.(2)建立函数模型整理数据,引入变量,找出变化规律,运用已掌握的三角函数知识、物理知识及其他相关知识建立关系式,即建立三角函数模型.(3)解答函数模型利用所学的三角函数知识解答得到的三角函数模型,求得结果. (4)得出结论将所得结果翻译成实际问题的答案.3.本节课要重点掌握三角函数模型的三类简单应用 (1)三角函数在物理中的应用. (2)三角函数在实际问题中的应用. (3)建立三角函数模型解决实际问题.1.如图为某简谐运动的图象,这个简谐运动往返一次需要的时间是( )A .0.2 sB .0.4 sC .0.8 sD .1.2 sC [由图象知周期T =0.8-0=0.8,则这个简谐运动需要0.8 s 往返一次.] 2.某地一天内的温度变化曲线满足y =3sin(0.2x +25)+15,则在一天内,该地的最大温差是________.6 [因为函数y =3sin(0.2x +25)+15的振幅为A =3,可以判断该地的最大温差是2A =6.]3.电流I 随时间t 变化的关系式是I =A sin ωt ,t ∈[0,+∞),若ω=10π rad/s ,A =5,则电流I 变化的周期是________,当t =160s 时,电流I =________.15 52 [由已知得I =5sin 10πt ,∴T =2π10π=15. 当t =160 s 时,I =5sin 10π·160=5sin π6=52.]4.一根细线的一端固定,另一端悬挂一个小球,当小球来回摆动时,离开平衡位置的位移S (单位:cm)与时间t (单位:s)的函数关系是S =6sin ⎝⎛⎭⎪⎫2πt +π6.(1)画出它的图象; (2)回答以下问题:①小球开始摆动(即t =0)时,离开平衡位置多少? ②小球摆动时,离开平衡位置的最大距离是多少?③小球来回摆动一次需要多少时间? [解] (1)周期T =2π2π=1(s).列表:(2)①小球开始摆动(即t =0),离开平衡位置为3 cm. ②小球摆动时离开平衡位置的最大距离是6 cm. ③小球来回摆动一次需要1 s(即周期).。

2019-2020年高中数学《三角函数的应用》教案1苏教版必修4

2019-2020年高中数学《三角函数的应用》教案1苏教版必修4

2019-2020年高中数学《三角函数的应用》教案1苏教版必修4【三维目标】:一、知识与技能1. 会由函数的图像讨论其性质;能解决一些综合性的问题。

2.会根据函数图象写出解析式;能根据已知条件写出中的待定系数.3.培养学生用已有的知识解决实际问题的能力二、过程与方法1. 通过具体例题和学生练习,使学生能根据函数图象写出解析式;能根据已知条件写出中的待定系数.2.并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

三、情感、态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

【教学重点与难点】:重点:待定系数法求三角函数解析式;难点:根据函数图象写解析式;根据已知条件写出中的待定系数.【学法与教学用具】:1. 学法:2. 教学用具:多媒体、实物投影仪.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题复习:1.由函数的图象到的图象的变换方法:方法一:先移相位,再作周期变换,再作振幅变换;方法二:先作周期变换,再作相位变换,再作振幅变换。

2.如何用五点法作的图象?3.对函数图象的影响作用二、研探新知函数[(,),0),sin(+∞∈+=x x A y ϕω其中的物理意义:函数表示一个振动量时::这个量振动时离开平衡位置的最大距离,称为“振幅”:往复振动一次所需的时间,称为“周期”:单位时间内往返振动的次数,称为“频率”:称为相位:x = 0时的相位,称为“初相”三、质疑答辩,排难解惑,发展思维1.根据函数图象求解析式例1 已知函数(,)一个周期内的函数图象,如下图 所示,求函数的一个解析式。

解:由图知:函数最大值为,最小值为,又∵,∴,由图知,∴,∴,又∵, ∴图象上最高点为,∴,即,可取,所以,函数的一个解析式为.2.由已知条件求解析式例2 已知函数(,,)的最小值是, 图象上相邻两个最高点与最低点的横坐标相差,且图象经过点,求这个函数的解析式。

高中数学 第1章(三角函数)函数y=sin(wx+f)的图象(2)教学案 苏教版必修4 教学案

高中数学 第1章(三角函数)函数y=sin(wx+f)的图象(2)教学案 苏教版必修4 教学案

某某省射阳县盘湾中学高中数学 第1章《三角函数》函数y=sin(wx+f)的图象(2)教学案 苏教版必修4教学目标:会用“五点法”画出函数y= Asin(x ωϕ+)的简图,能由正弦曲线通过平移、伸缩变换得到y= Asin(x ωϕ+)的图象,并在这个过程中认识到函数y=sinx 与y= Asin(x ωϕ+)的联系。

能根据图象确定函数解析式。

教学重点:函数y= Asin(x ωϕ+)的图象教学难点:函数y= Asin(x ωϕ+)的图象与正弦曲线的关系教学过程:一、问题情境:问题:函数y=3sin(2x 3π-)的振幅、周期、初相分别为多少?其图象可由正弦曲线如何变换得到?二、学生活动:探究:分别可以通过怎样的变换使得A 、ω、ϕ发生变化?方法:y=sinx 的图象-----------------------------→y=sin(x 3π-)的图象 -----------------------------------------→y=sin(2x 3π-)的图象 ----------------------------------------→y=3sin(2x 3π-)的图象 思考:你还有其它变换方法吗?三、知识建构:函数y= Asin(x ωϕ+)的图象可由正弦曲线变换得到:四、知识运用:例1、不用计算机和图形计算器,画出函数y=3sin(2x 3π-)的简图小结:例2、某地一天从6时至14时的温度变化曲线近似地满足y= Asin(x ωϕ+)+b ,(1)求这段时间的最大温差(2)写出这段曲线的函数解析式。

小结:练习: 书P40 4、5、6、7五、回顾反思:知识: 思想方法:六、作业布置:书P45 8(1)、9。

2019-2020年高中数学第一章第14课时三角函数的应用教学案苏教版必修4

2019-2020年高中数学第一章第14课时三角函数的应用教学案苏教版必修4

2019-2020年高中数学第一章第14课时三角函数的应用教学案苏教版必修4教学目标:1.能应用三角函数的图象与性质解决有关实际问题;2.体会三角函数是描述周期现象的重要数学模型.教学重点:三角函数的应用教学过程:Ⅰ.问题情境Ⅱ.建构数学Ⅲ.数学应用例1:在下图中点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3cm,周期为3s,且物体向右运动到距平衡位置最远处开始计时.(1)求物体对平衡位置的位移(cm)和时间(s)之间的函数关系式;(2)求物体在s时的位置.练习:在下图中点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为4cm,周期为4s,且物体向右运动到平衡位置处开始计时.(1)求物体对平衡位置的位移(cm)和时间(s)之间的函数关系式;(2)求物体在s时的位置.例2:一半径为4m的水轮,水轮圆心O距离水面2m,已知水轮每分钟转动4圈,如果水轮上点P从水中浮现时开始计时.(1)将点P距离水面的高度z(m)表示为时间t(s)的函数;(2)点P第一次到达最高点大约要多长时间?练习:一半径为4m的水轮,水轮圆心O距离水面m,已知水轮每分钟转动6圈,如果水轮上点P从水中浮现时开始计时.(1)将点P距离水面的高度z(m)表示为时间t(s)的函数;(2)点P第一次到达最高点大约要多长时间?Ⅳ.课时小结Ⅴ.课堂检测Ⅵ.课后作业书本P45 9,102019-2020年高中数学第一章第14课时空间几何体的体积教学案苏教版必修2教学目标:1. 通过对柱、锥、台体及球的研究,了解柱、锥、台及球的体积的求法,能运用公式求解;2. 培养学生空间想象能力和思维能力;3. 通过学习,使学生感受到几何体体积的求解过程,对自己空间思维能力影响。

从而增强学习的积极性.教学重点:柱、锥、台及球的体积教学过程:Ⅰ.问题情境在过去的学习中,我们已经接触过一些几何体的体积的求法及公式,哪些几何体可以求出体积?Ⅱ.建构数学1、柱、锥、台的体积公式2、球的体积及表面积公式Ⅲ.数学应用例1.有一堆相同规格的六角螺帽毛坯,共1000,毛坯底面正六边形边长为12,高是10,内孔直径是10那么这堆毛坯约多少个?练习.棱台的两个底面面积分别是245和80,截得这个棱台的棱锥的高为35,求这个棱台的体积.例2.一种奖杯由正四棱台、长方体及球(至下而上)组成,其中正四棱台上下底面边长分别为14和10,高为5,长方体的长、宽、高分别为6、8、20,球的直径为6,该奖杯的体积为多少.练习.两个平行于圆锥底面的平面将圆锥的高分成相等的三段,求圆锥被分成的三部分的体积之比.Ⅳ. 课时小结Ⅴ. 课堂检测Ⅵ.课后作业书本P57 2,4,5,6。

2019-2020年高中数学 1.3.4《三角函数的应用》教案 苏教版必修4

2019-2020年高中数学 1.3.4《三角函数的应用》教案 苏教版必修4

2019-2020年高中数学 1.3.4《三角函数的应用》教案苏教版必修4一、教学目标:1.掌握用待定系数法求三角函数解析式的方法;2.培养学生用已有的知识解决实际问题的能力;3.能用计算机处理有关的近似计算问题.二、重点难点:重点是待定系数法求三角函数解析式;难点是选择合理数学模型解决实际问题.三、教学过程:【创设情境】三角函数能够模拟许多周期现象,因此在解决实际问题中有着广泛的应用.【自主学习探索研究】1.学生自学完成P42例1点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3cm,周期为3s,且物体向右运动到距平衡位置最远处时开始计时.(1)求物体对平衡位置的位移x(cm)和时间t(s)之间的函数关系;(2)求该物体在t=5s时的位置.(教师进行适当的评析.并回答下列问题:据物理常识,应选择怎样的函数式模拟物体的运动;怎样求和初相位θ;第二问中的“t=5s时的位置”与函数式有何关系?)2.讲解p43例2(题目加已改变)2.讲析P44例3海水受日月的引力,在一定的时候发生涨落的现象叫潮汐,一般的早潮叫潮,晚潮叫汐.在通常的情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮是返回海洋.下面给出了某港口在某季节每天几个时刻的水深.(1)选用一个三角函数来近似描述这个港口的水深与时间的函数关系,并给出在整点时的近似数值.(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与海底的距离),该船何时能进入港口?在港口能呆多久?(3)若船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?问题:(1)选择怎样的数学模型反映该实际问题?(2)图表中的最大值与三角函数的哪个量有关?(3)函数的周期为多少?(4)“吃水深度”对应函数中的哪个字母?3.学生完成课本P45的练习1,3并评析.【提炼总结】从以上问题可以发现三角函数知识在解决实际问题中有着十分广泛的应用,而待定系数法是三角函数中确定函数解析式最重要的方法.三角函数知识作为数学工具之一,在以后的学习中将经常有所涉及.学数学是为了用数学,通过学习我们逐步提高自己分析问题解决问题的能力.四、布置作业:P46 习题1.3第14、15题2019-2020年高中数学 1.3.4三角函数的应用练习(含解析)苏教版必修4情景:如图,某大风车的半径为2 m,每12 s旋转一周,它的最低点O离地面0.5 m,风车圆周上一点A从最低点O开始,运动t(s)后与地面的距离为h(m).思考:你能求出函数h=f(t)的关系式吗?你能画出它的图象吗?1.已知函数类型求解析式的方法是________.答案:待定系数法2.在y=A sin(ωx+φ)的解析式确定中最关键是确定________,可通过________来确定.答案:ω周期3.三角函数平移变换改变图象的________,伸缩变换改变图象的________.答案:位置形状4.函数y =f (x )与y =f (|x |)图象关系是___________________________________________________________ __________________________________________________________.答案:y =f (x )在y 轴右侧的图象关于y 轴对称的图象,连同y =f (x )在y 轴右侧的图象在一起,即是y =f (|x |)的图象(也包括与y 轴的交点)5.函数y =f (x )与y =|f (x )|图象关系是___________________________________________________________ __________________________________________________________.答案:y =f (x )在x 轴下方的图象关于x 轴对称的图象,连同y =f (x )在x 轴上方的图象在一起,即是y =|f (x )|的图象(包括图象与x 轴交点)6.三角函数可以作为描述现实世界中________现象的一种数学模型. 答案:周期7.y =|sin x |是以________为周期的波浪型曲线. 答案:π8.在三角函数f (x )=A sin(ωx +φ)+b ,(A >0,ω>0)中,f (x )的最大值为M ,最小值为m ,则A =________,b =________,周期T =________,φ的值要利用________求得.答案:M -m 2M +m 2 2πω代点法9.用数学知识研究生活中的数学问题,应首先采集________,然后根据数据作出________,通过计算归纳函数关系式,再去研究它的性质,解决实际问题时最容易忽视的是__________________________________________________________.答案:数据 分析 实际问题中自变量的取值范围10.解三角函数的应用问题的基本步骤是________________________________________________________、 ______________、______________.答案:阅读理解,审清题意 收集整理数据,建立数学模型依据模型解答,求出结果 将所得结果转化成实际问题三角函数模型的应用三角函数的应用主要是其性质的应用,特别是三角函数周期性的应用,一些物理现象如单摆、匀速圆周运动等均用到三角函数的知识.建模的一般步骤数学应用题一般文字叙述较长,反映的事件背景新颖,知识涉及面广,这就要求有较强的阅读理解能力、捕捉信息的能力、归纳抽象的能力.解决此类函数应用题的基本步骤是:第一步,阅读理解,审清题意,读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景,在此基础上,分析出已知什么,求什么,从中提炼出相应的数学问题.第二步,根据所给模型,列出函数关系式.根据已知条件和数量关系,建立函数关系式,在此基础上将实际问题转化为一个函数问题.第三步,利用数学的方法将得到的常规函数问题(即数学模型)予以解答,求得结果.第四步,再将所得结论转译成原有问题的解答.基础巩固1.如果音叉发出的声波可用f(x)=0.002sin 520πt描述,那么音叉声波的频率是________.答案:2602.已知函数y =2sin ωx (ω>0)的图象与直线y +2=0的相邻两个公共点之间的距离为2π3,则ω的值为________. 答案:33.y =|sin 2x |的最小正周期是________. 答案:π24.下图是函数y =2sin(ωx +φ)⎝⎛⎭⎪⎫|φ|<π2的图象,则ω=________,φ=________.答案:2 π65.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P (x ,y ).若初始位置为P 0⎝⎛⎭⎪⎫32,12,当秒针从P 0(注此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系式为________.答案:y =sin ⎝ ⎛⎭⎪⎫-π30t +π66.若函数f (x )=A sin(ωx +φ)(A >0,ω>0)的初相为π4,且f (x )的图象过点P ⎝ ⎛⎭⎪⎫π3,A ,则函数f (x )的最小正周期的最大值为________.答案:8π37.(xx·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 解析:(1)因为f (t )=10-2⎝⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1.于是f (t )在[0,24)上的最大值为12,最小值为8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时实验室需要降温. 由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝⎛⎭⎪⎫π12t +π3<-12. 又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.能力升级8.关于x 的方程sin ωx =cos ωx 在区间⎣⎢⎡⎦⎥⎤b ,b +πω上解的个数判断正确的是( )A .只有一个解B .至少有一个解C .至少有两个解D .不一定有解解析:本题考查y =A sin(ωx +φ)与y =A cos(ωx +φ)的图象.由于y =sin ωx 与y =cos ωx 的周期是2πω,而区间⎣⎢⎡⎦⎥⎤b ,b +πω是半个周期的长度.y =sin ωx 与y =cos ωx在半个周期内至少有一个交点,最多有两个交点.∴sin ωx =cos ωx 在⎣⎢⎡⎦⎥⎤b ,πω+b 内至少有一个解.答案:B9.方程sin x =k 在⎣⎢⎡⎦⎥⎤π6,π上有两个不同解,则实数k 的取值范围是________.解析:作出y =sin x 和y =k 在⎣⎢⎡⎦⎥⎤π6,π上的图象,若两图象有两个交点,数形结合知12≤k <1.答案:⎣⎢⎡⎭⎪⎫12,110.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________.解析:y =f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π].在同一平面直角坐标系内画y =f (x )与y =k 的图象,如图.由图可知,当y =f (x )与y =k 的图象有且仅有两个不同交点时,k 的取值范围为1<k <3.答案:(1,3)11.试结合图象判断方程sin x =lg x 的实根的个数.解析:在同一平面直角坐标系中作出函数y =sin x 与函数y =lg x 的图象,如图所示,要求方程sin x =lg x 的实根个数,只需求函数y =sin x 与函数y =lg x 的图象的交点个数.由于函数y =lg x 的定义域为(0,+∞),且x >10时有y >1,所以交点只可能在区间(0,10)内.从图象可以看出,这时它们有3个交点,即方程sin x =lg x 有3个实根.12.函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()解析:∵y =xsin x 是偶函数,∴A 可排除;∵当x =2时,y =2sin 2>2,∴D 可排除;又∵当x =π6时,y =π6sinπ6=π3>1,∴B 可排除.故选C.答案:C13.如下图所示,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动,求点P 的纵坐标y 关于时间t 的函数关系,并求点的运动周期和频率.答案:y =r sin(ωt +φ)(t ≥0),T =2πω,f =ω2π14.下图为一个观览车示意图,该观览车半径为4.8 m ,圆上最低点与地面距离为0.8 m ,60 s 转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ度角到OB ,设B 点与地面距离为h .(1)求h 与θ间关系的函数解析式;(2)设从OA 开始转动,经过t 秒到达OB ,求h 与t 间的函数解析式.解析:(1)如图,过点O 作地面的平行线ON ,过点B 作ON 的垂线BM 交ON 于点M .当θ>π2时,∠BOM =θ-π2.h =|OA |+0.8+|BM |=5.6+4.8sin ⎝⎛⎭⎪⎫θ-π2.当0≤θ≤π2时,上述关系式也适合. ∴h =5.6+4.8sin ⎝⎛⎭⎪⎫θ-π2. (2)点A 在⊙O 上逆时针运动的角速度是π30rad/s. ∴t 秒转过的弧度数为π30t . ∴h =4.8sin ⎝ ⎛⎭⎪⎫π30t -π2+5.6,t ∈[0,+∞).15.据市场调查,某种商品一年内每件出厂价在6千元的基础上,按月呈f (x )=A sin(ωx +φ)+B 的模型波动(x 为月份),已知3月份达到最高价为8千元,7月份达到最低价为4千元,该商品每件的售价为g (x )(x 为月份),且满足g (x )=f (x -2)+2.(1)分别写出该商品每件的出厂价函数f (x ),售价函数g (x )的解析式;(2)问哪几个月能盈利?解析:(1)f (x )=A sin(ωx +φ)+B ,由题意,可得A =2,B =6,ω=π4,φ=-π4, ∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+6,1≤x ≤12且x ∈N *, g (x )=2sin ⎝ ⎛⎭⎪⎫π4x -34π+8,1≤x ≤12且x ∈N *. (2)由g (x )>f (x ),得sin π4x <22. 2k π+34π<π4x <2k π+94π,k ∈Z , ∴8k +3<x <8k +9,k ∈Z.∵1≤x ≤12,k ∈Z ,∴当k =0时,3<x <9.∴x =4,5,6,7,8.当k =1时,11<x <17,∴x =12.∴x =4,5,6,7,8,12,故4,5,6,7,8,12月份能盈利.16.以一年为一个周期调查某商品出厂价格及该商品在商店的销售价格时发现:该商品的出厂价格是在6元基础上按月份随正弦曲线波动的,已知3月份出厂价格最高为8元,7月份出厂价格最低为4元;而该商品在商店的销售价格是在8元基础上按月份随正弦曲线波动的,并已知5月份销售价格最高为10元,9月份销售价最低为6元.假设某商店每月购进这种商品m 件且当月能售完,请估计哪个月盈利最大,并说明理由.解析:设x 为月份,则由条件可得出厂价格函数为y 1=2sin ⎝ ⎛⎭⎪⎫π4x -π4+6,x ∈[1,12]且x ∈N *, 销售价格函数为y 2=2sin ⎝⎛⎭⎪⎫π4x -3π4+8, 则利润函数 y =m (y 2-y 1)=m ⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫π4x -3π4+8-2sin ⎝ ⎛⎭⎪⎫π4x -π4-6 =m ⎝⎛⎭⎪⎫2-22sin π4x , 所以,当x =6时,y =(2+22)m ,即6月份盈利最大.。

2019-2020学年高中数学第1章三角函数1.1.1任意角教案苏教版必修

2019-2020学年高中数学第1章三角函数1.1.1任意角教案苏教版必修
(3)若 是第三象限角,判断 是第几象限角?
课外作业
教 学 小 结
1、角是如何定义的?
2、角是如何分类的,其标准是什么?
3、象限角是如何定义的?
【建构数学】
1、角的定义
2、角的分类
3、象限角的定义
回忆:初中学过哪些角?
合作探究:
-3000,1500,-600,600,2100,3000,4200角分别是第几象限角?
其中哪些角的终边相同?
教学过程设计


二次备课
4、终边相同的角的表示:
所有与角 终边相同的角,连同角 在内,可构成一个集合
,
即任一与角 终边相同的角,都可以表示成角 与整数个周角的和.
注意: (1) ;(2) 是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差 的整数倍.
【数学运用】
例1、在00到3600范围内,找出与下列各角终边相同的角,并判定它是第几象限角.
2019-2020学年高中数学第1章三角函数1.1.1任意角教案苏教版必修
角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与 角终边相同的角(包括 角)的表示方法;
教学重难点
重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.
(1)6500(2)-1500(3)
例2、已知 与2400角的终边相同,判断 是第几象限角?
变式: 呢?
例3、讨论四个象限角的范围:
小结:
能否写出与600终边相同的角的集合?
练习.写出终边直线在 上的角的集合 =
思考:(1)写出终边在x轴正半轴上、负半轴上的角的集合. 写出终边在x轴上的角的集合.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学第1章《三角函数》三角函数的应用教学案苏
教版必修4
教学目标:会用三角函数的图象及性质解决一些简单的实际问题,体会三角函数是描述周期现象的重要数学模型。

注重渗透化归与转化的数学思想。

教学重点:三角函数模型的建立
教学难点:三角函数模型的建立
教学过程:
一、问题情境:
现实生活中有许多周期运动的现象,你能举一些例子吗?三角函数能够模拟许多周期现象,下面我们就研究三角函数在实际生活问题中的应用
问题:如图,点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3cm,周期为3s,且物体向右运动到距平衡位置最远处时开始计时.
(1)求物体对平衡位置的位移x(cm)和时间t(s)之间的函数关系;

2)求物体在t=5s时的位置.
二、学生活动:
合作解决上述问题:
三、知识建构:
应用三角函数模型解决实际问题的一般步骤:
四、知识运用:
例2、一半径为3m的水轮如图所示,水轮圆心O距离水面2m,已知水轮每分钟转动4圈,如果当水轮上点P从水中浮现时(图中点P0)开始计算时间.
(1)将点P距离水面的高度z (m) 表示为时间t(s)的函数;
(2)点P第一次到达最高点大约要多长时间?
例3、(P43案例)海水受日月的引力,在一定的时候发生涨落的现象叫潮汐,一般的早潮叫潮,晚潮叫汐. 在通常情况下,船在涨潮时驶进航道,考近船坞;卸货后落潮时返回海洋. 下面给出了某港口在某季节每天几个时刻的水深.
(1)选用一个三角函数来近似描述这个港口的水深与时间的函数关系,并给出在整点时的水深的近似数值.
练习:书P44 1、2、3、4
五、回顾反思:
知识:思想方法:
六、作业布置:
书P46 10、11。

相关文档
最新文档