矩阵特征值与特征向量在图像处理中的应用
线性代数中的特征值和特征向量的应用案例

线性代数中的特征值和特征向量的应用案例在数学中,线性代数是不可或缺的一部分,特别是在应用层面。
而线性代数中的一个重要概念是特征值和特征向量,它们在许多领域都有着广泛的应用。
本文将介绍特征值和特征向量的概念,并且举例说明它们在现实生活中的应用案例。
一、特征值和特征向量的概念在线性代数中,矩阵是一种经常使用的数据结构。
矩阵中的每一列和每一行都是一个向量。
而特征值和特征向量是指一个方阵在某个向量下的表现。
在一个矩阵中,如果存在一个向量v,满足Av=λv其中A是一个方阵,λ是一个标量,那么v就是A的特征向量,λ就是它所对应的特征值。
这个方程的解决了一个向量在经过一个矩阵的线性变换后,大小和方向的变化。
特征向量具有一个重要的性质,就是它所对应的特征值可以表示这个矩阵在这个方向上的缩放倍数。
比如,如果一个矩阵有一个特征向量v1,它所对应的特征值λ1=2,那么这个矩阵在v1的方向上就会被缩放2倍。
二、特征值和特征向量的应用案例1.机器学习中的主成分分析主成分分析(PCA)是一种机器学习算法,它可以用来对数据进行降维处理。
在PCA中,矩阵通过计算其特征向量来进行降维。
这些特征向量定义了一组“主成分”,它们是原始数据的线性组合。
这些主成分可以作为一个更高效的表示方式,用来代表原始数据,并且可以更好的进行数据分析。
2.图像处理中的压缩在图像处理中,特征值和特征向量可用于压缩图像。
比如,一个彩色图像可以看作是一个三维矩阵,其中每个像素点都有三个属性:红色、绿色和蓝色。
如果计算这个矩阵的特征向量,那么可以得到一个新的矩阵,其中只包含最重要的几个特征向量。
这样就可以使用更小的矩阵来表示整个图像。
3.矩阵的对角化在计算机科学中,矩阵的对角化是一种重要的操作。
一个方阵可以通过特征值和特征向量进行对角化处理,即将其转换为一个对角矩阵。
特定的矩阵的对角化过程可以有助于简化它们的计算和求解。
4.电力系统中的稳定性分析在电力系统中,稳定性分析是非常重要的。
矩阵特征值与特征向量

矩阵特征值与特征向量是线性代数中非常重要的概念,广泛应用于数学、物理、工程等领域。
本文将详细介绍矩阵特征值与特征向量的定义、性质以及其在实际问题中的应用。
首先,我们需要了解矩阵的特征值与特征向量的定义。
对于一个n阶方阵A,如果存在一个非零向量x使得Ax=λx,其中λ为一个常数,则称λ为矩阵A的特征值,x为矩阵A对应于特征值λ的特征向量。
特征值与特征向量是通过矩阵与向量的乘法关系定义出来的,并且特征值与特征向量总是成对出现的。
矩阵的特征值与特征向量有以下几个重要性质:1.特征值与特征向量的存在性:对于任意一个n阶方阵A,必然存在n个特征值和对应的特征向量。
特征值可以是实数也可以是复数。
2.特征向量的线性相关性:对于相同特征值λ的特征向量x和y,存在一个非零常数c,使得x=cy。
也就是说,特征向量存在线性相关性。
3.特征值的重复性:一个特征值可能对应多个线性无关的特征向量,称为重复特征值。
4.特征值与行列式:矩阵A的特征值都是其特征多项式的根。
特别地,矩阵的迹等于特征值之和,行列式等于特征值之积。
5.相似矩阵的特征值相同:如果两个矩阵A和B相似(即存在一个可逆矩阵P,使得B=P⁻¹AP),则它们有相同的特征值。
矩阵特征值与特征向量在实际问题中有广泛的应用。
以下举几个例子说明:1.物理学中的应用:矩阵特征值与特征向量在量子力学和振动分析中起到重要作用。
在量子力学中,矩阵表示了物理系统的哈密顿算符,其特征值与特征向量对应于能量和波函数。
在振动分析中,矩阵表示了系统的质量矩阵,其特征值与特征向量对应于自然频率和振型。
2.图像处理中的应用:特征值与特征向量广泛应用于图像处理和模式识别中。
通过计算图像矩阵的特征值和特征向量,可以提取出图像的主要特征,如边缘、纹理等,从而实现图像分类和识别。
3.经济学中的应用:矩阵特征值与特征向量在经济学中有很多应用,如马尔可夫链模型、投入产出模型等。
通过计算矩阵的特征值和特征向量,可以分析经济系统的稳定性、动态演化和结构关系。
特征值和特征向量的基本定义及运算

特征值和特征向量的基本定义及运算特征值和特征向量是线性代数中的两个重要概念,广泛应用于机器学习、图像处理、信号处理等领域中。
本文旨在介绍特征值和特征向量的基本定义及运算,并探讨其在实际中的应用。
一、特征值与特征向量的定义在线性代数中,矩阵是一个非常重要的概念。
一个 n × n 的矩阵 A 是由 n 行 n 列的元素组成的,并且可以用列向量的形式表示为 A = [a1, a2, ..., an]。
其中,ai 表示矩阵 A 的第 i 列的列向量。
矩阵 A 的特征向量是指一个非零向量 v,满足Av = λv,其中λ 是一个常数,称作该矩阵的特征值。
通常情况下,特征向量 v 与特征值λ 是成对出现的,即一个特征向量对应一个特征值。
二、特征值与特征向量的求解特征值和特征向量的求解是线性代数中的一个经典问题。
一般情况下,可以通过求解矩阵 A 的特征多项式来求解其特征值。
设矩阵 A 的特征多项式为f(λ) = |A - λI|,其中 I 表示单位矩阵。
则 A 的特征值即为方程f(λ) = 0 的根。
对于每个特征值λ,可通过解如下方程组来求解对应的特征向量:(A - λI)v = 0其中,v 表示特征向量,0 表示零向量。
上述方程组的解空间为 A - λI 的零空间,也称为矩阵 A 的特征子空间。
如果矩阵 A 的特征值λ 是重根,则λ 对应的特征向量有多个线性无关的向量。
此时,可求解齐次线性方程组 (A - λI)v = 0 的基础解系,从中选取线性无关的向量作为特征向量。
三、特征值与特征向量的性质特征值与特征向量有一些重要的性质,其中较为常见的包括:1. 特征值的和等于矩阵的迹设矩阵 A 的特征值为λ1, λ2, ..., λn,则有:λ1 + λ2 + ... + λn = tr(A)其中,tr(A) 表示矩阵 A 的迹,即主对角线上元素的和。
2. 特征值的积等于矩阵的行列式设矩阵 A 的特征值为λ1, λ2, ..., λn,则有:λ1 λ2 ... λn = |A|其中,|A| 表示矩阵 A 的行列式。
矩阵的特征值与特征向量的在工程中的应用

矩阵的特征值与特征向量的在工程中的应用矩阵的特征值与特征向量是线性代数中重要的概念,它们在工程中具有广泛的应用。
特征值与特征向量可以帮助我们了解矩阵的性质,从而在工程领域中解决各种实际问题。
本文将讨论特征值与特征向量在工程中的应用,并简要介绍一些具体例子。
首先,我们来定义特征值与特征向量。
对于一个n阶矩阵A,若存在一个非零向量v使得Av=λv,其中λ为实数,则称λ为A的特征值,v 为对应的特征向量。
在工程中,特征值与特征向量具有以下应用:1.特征值分析特征值分析是工程中最常见的应用之一,它可以帮助我们了解矩阵的性质。
例如,在结构力学中,特征值分析可以用于求解结构的固有频率和振型,从而了解结构的动力响应。
在电力系统中,特征值分析可以用于判断电力系统的稳定性。
2.主成分分析3.控制系统设计特征值与特征向量在控制系统设计中起到了重要作用。
例如,在稳定性分析中,我们可以通过计算系统矩阵的特征值,来判断系统的稳定性。
特征向量可以帮助我们了解系统的振荡模态以及系统响应的特性。
4.图像处理在图像处理中,特征值与特征向量可以用于图像压缩、图像识别等问题。
例如,在人脸识别中,我们可以将一张人脸图像表示为一个向量,然后通过计算特征向量来对图像进行特征提取和分类。
5.近似计算特征值与特征向量在数值计算中也有重要应用。
例如,在大规模矩阵求逆运算中,可以通过选取矩阵的最大特征值和对应的特征向量,来估计矩阵的逆。
这种近似计算方法可以大大减少计算量。
总之,矩阵的特征值与特征向量在工程中具有广泛的应用。
它们帮助我们了解矩阵的性质,解决各种实际问题。
特征值与特征向量在特征分析、主成分分析、控制系统设计、图像处理等领域发挥着重要作用,在实际应用中具有很高的价值。
工程师们可以运用特征值与特征向量的知识,更好地解决实际问题,提高工程应用的效果。
矩阵的特征值和特征向量的应用

矩阵的特征值和特征向量的应用矩阵的特征值和特征向量是线性代数中非常重要的概念,它们在许多领域中有广泛的应用。
本文将介绍特征值和特征向量的定义和计算方法,并探讨它们在实际问题中的应用。
1. 特征值和特征向量的定义在矩阵A中,如果向量v在进行线性变换后,仍然保持方向不变,只改变了长度,那么v称为A的特征向量,它所对应的标量λ称为A的特征值。
即满足下述等式:Av = λv其中,A是一个n阶方阵,v是一个n维非零向量,λ是一个标量。
2. 计算特征值和特征向量的方法要计算一个矩阵的特征值和特征向量,需要求解线性方程组(A-λI)x = 0,其中I是单位矩阵,x是一个非零向量。
解这个方程组,可以得到λ的值,即特征值,以及对应的特征向量。
3. 特征值与特征向量的性质- 特征值可以是实数或复数,特征向量通常是复数。
- 特征向量可以相互线性组合,但特征向量的数量不超过矩阵的阶数n。
- 特征值的个数等于矩阵的阶数n,不同特征值对应的特征向量线性无关。
4. 特征值和特征向量在几何中的应用矩阵的特征值和特征向量在几何中有重要的应用,可以帮助我们理解线性变换的性质。
例如,在二维空间中,对应于矩阵的特征向量可以表示空间中的特定方向,特征值代表了沿该方向进行线性变换的比例因子。
5. 特征值和特征向量在物理学中的应用在量子力学中,特征值和特征向量与物理量的测量和量子态的演化密切相关。
例如,在求解薛定谔方程时,特征值对应于能量的可能取值,特征向量对应于量子态的波函数。
6. 特征值和特征向量在数据分析中的应用特征值和特征向量在数据分析中也有广泛的应用。
例如,在主成分分析(PCA)中,特征向量可以帮助我们找到数据集中的主要变化方向,特征值可以衡量这些变化的重要性。
另外,在图像处理中,特征向量可以用于图像压缩和特征提取。
总结:矩阵的特征值和特征向量是线性代数中重要的概念,它们在几何、物理学和数据分析等领域都有广泛的应用。
通过计算特征值和特征向量,我们可以更好地理解线性变换的性质,同时也可以应用于解决实际问题。
特征值与特征向量的应用

特征值与特征向量的应用特征值与特征向量是线性代数中重要的概念,它们在许多领域中都有广泛的应用,如物理学、工程学和计算机科学等。
在本文中,我们将探讨特征值与特征向量的定义、性质以及它们在不同领域中的具体应用。
一、特征值与特征向量的定义与性质特征值是矩阵运算中的一个重要概念,它可以帮助我们了解矩阵的变换特性。
对于一个n×n的矩阵A,如果存在一个非零向量x,使得Ax=λx,其中λ是一个标量,那么λ就是矩阵A的特征值,x是矩阵A的特征向量。
特征向量与特征值有以下几个重要性质:1. 特征值可以是实数或复数;2. 特征值与特征向量是成对出现的,一个特征值可以对应多个特征向量;3. 特征向量不唯一,只要是与一个特征值对应的特征向量都可以。
特征值与特征向量的定义及其性质可以帮助我们更好地理解它们在实际问题中的应用。
二、特征值与特征向量在物理学中的应用特征值与特征向量在物理学中有广泛的应用。
例如,在量子力学中,波函数的时间演化可以通过求解薛定谔方程得到,其中的波函数就是特征向量,特征值则对应能量的值。
特征值的大小和符号决定了体系的稳定性和行为。
此外,在经典力学中,特征向量可以用于描述刚体的转动运动。
特征值告诉我们刚体的运动状态,如旋转的角速度和转动惯量等。
特征值与特征向量在物理学中的应用经常涉及到矩阵运算和计算特征值分解,能够帮助我们解决实际问题。
三、特征值与特征向量在工程学中的应用特征值与特征向量在工程学中也有广泛的应用。
例如,在结构动力学中,特征值可以用于判断结构物的稳定性。
通过求解结构物的特征值问题,可以得到结构物的固有频率,从而判断结构物是否会发生共振等问题。
此外,在信号处理领域中,特征值与特征向量被广泛应用于降维和数据压缩。
通过对数据进行特征值分解,可以将高维数据降低到低维空间,从而减少计算量和存储空间。
四、特征值与特征向量在计算机科学中的应用特征值与特征向量在计算机科学中也有着重要的应用。
例如,在图像处理中,特征值与特征向量被用于图像压缩和特征提取。
矩阵特征值与特征向量

矩阵特征值与特征向量在线性代数中,矩阵的特征值和特征向量是非常重要的概念。
它们在很多数学和工程领域都有广泛的应用。
本文将详细介绍矩阵特征值和特征向量的定义、性质以及计算方法。
一、特征值与特征向量的定义1. 特征值:对于一个n阶方阵A,如果存在一个非零向量X使得AX=kX,其中k为一个常数,那么k就是矩阵A的特征值。
我们可以把这个等式改写为(A-kI)X=0,其中I是单位矩阵。
这样,求解特征值就等价于求解矩阵(A-kI)的零空间。
2. 特征向量:特征向量是与特征值相对应的非零向量。
对于一个特征值k,其对应的特征向量X满足AX=kX。
二、特征值与特征向量的性质1. 特征值与特征向量是成对出现的,一个特征值对应一个特征向量。
2. 特征值的个数等于矩阵A的阶数。
特征值可以是实数或复数。
3. 特征向量可以乘以一个非零常数得到一个新的特征向量。
4. 如果矩阵A是实对称矩阵,那么其特征值一定是实数。
如果矩阵A是正定或负定矩阵,那么其特征值一定大于0或小于0。
5. 特征向量相互之间线性无关。
三、特征值与特征向量的计算方法1. 求特征值:求解特征值的常用方法是求解矩阵A的特征多项式的根。
特征多项式的形式为|A-kI|=0,其中|A-kI|表示矩阵A-kI的行列式。
2. 求特征向量:已知特征值k后,将k代入(A-kI)X=0即可得到特征向量。
可以使用高斯-约当消元法或者迭代法来求解。
四、矩阵特征值与特征向量的应用1. 特征值与特征向量广泛应用于机器学习和数据分析领域。
在主成分分析(PCA)中,我们可以通过计算数据的协方差矩阵的特征向量来实现数据降维和特征提取。
2. 特征值与特征向量也在图像处理和信号处理中有许多应用。
例如,在图像压缩算法中,我们可以利用矩阵的特征值和特征向量来实现图像的降噪和压缩。
3. 特征值和特征向量还可以应用于动力系统的稳定性分析。
通过求解动力系统的雅可比矩阵的特征值,我们可以判断系统的稳定性和临界点的类型。
矩阵特征值和特征向量的应用

矩阵特征值和特征向量的应用【矩阵特征值和特征向量的应用】1. 引言矩阵特征值和特征向量是线性代数中重要的概念,广泛应用于各个科学领域,如数学、物理、计算机科学等。
本文将探讨矩阵特征值和特征向量的定义、性质以及在实际应用中的重要性。
2. 矩阵特征值和特征向量的定义我们来了解矩阵特征值和特征向量的定义。
对于一个n阶方阵A,如果存在一个非零向量v,使得Av=λv,则称λ为矩阵A的特征值,v 为矩阵A的特征向量。
其中,λ是一个标量。
3. 矩阵特征值和特征向量的性质矩阵特征值和特征向量具有以下性质:- 特征值和特征向量是成对出现的,即一个特征值对应一个特征向量。
- 矩阵的特征值与其特征向量不变,即对于矩阵A的特征值λ和特征向量v,无论A如何进行线性变换,λ和v始终保持不变。
- 矩阵的特征值与其转置矩阵的特征值相同。
- 矩阵的特征值和特征向量可以包含复数。
4. 矩阵特征值和特征向量的应用矩阵特征值和特征向量在实际应用中具有广泛的应用价值。
以下是几个常见的应用领域:4.1 物理学在量子力学中,矩阵特征值和特征向量被用来描述量子态和量子变换。
特征值表示量子态所具有的物理量,特征向量则表示相应的态矢。
通过矩阵特征值和特征向量的计算,可以得到量子系统的能量谱、波函数等重要信息。
4.2 机器学习在机器学习领域,矩阵特征值和特征向量常用于降维和特征提取。
通过计算数据的协方差矩阵的特征值和特征向量,可以选择最重要的特征进行分析和建模,帮助机器学习算法更好地识别模式和进行预测。
4.3 图像处理图像处理中的很多算法都依赖于矩阵特征值和特征向量。
通过计算图像的协方差矩阵的特征值和特征向量,可以实现图像的主成分分析和图像压缩,对于图像降噪、边缘检测等方面具有重要作用。
4.4 电力系统分析在电力系统中,矩阵特征值和特征向量广泛应用于电力系统稳定性分析、故障诊断等方面。
通过计算电力系统的传输矩阵的特征值和特征向量,可以判断系统是否稳定,并提供故障发现和恢复的指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特征值与特征向量在图像处理中的应用
姓名:张x 学号:20092430 班级:2009121
摘要:正所谓学以致用,在长期以来的学习过程中,我们真正能够将所学到的知识运用到生活中的能有多少,我们对课本上那些枯燥的公式虽牢记于心,却不知道它的实际用途。
在学习了矩阵论以来,虽然知道很多问题的求法,就如矩阵特征值和特征向量,它们有何意义我们却一点不知。
我想纯粹的理知识已经吸引不了我们了,我们需要去知道它们的用途,下面就让我们一起来看看矩阵特征值与特征向量在图像处理中是如何发挥它们的作用的。
关键字:
特征值、特征向量、图像、
正文:
生活中的我们,每天清晨醒来,随之映入眼帘的就是各种形形色色的图像,我们确实也很难想象,在我们的生活中,图像的处理和矩阵特征值、特征向量有什么关系?首相我们先来了解下,何为特征值、特征向量。
定义:设是阶方阵,若有数和非零向量,使得
称数是的特征值,非零向量是对应于特征值的特征向量。
例如对,有及向量,使得,这说明
是的特征值,是对应于的特征向量。
特征值和特征向量的求法:
1.由得,并且由于是非零向量,故行列式,即
(称之为的特征方程)
由此可解出个根(在复数范围内),这就是的所有特征值。
2.根据某个特征值,由线性方程组解出非零解,这就是对应于特征值的特征向量。
特征值和特征向量的性质:
1 .,
2 .若是的特征向量,则对,也是的特征向量。
3 .若是的特征值,则是的特征值,从而是的特征值。
4 .是的个特征值,为依次对应的特征向量,若
各不相同,则线性无关。
我想在了解了特征值和特征向量的基本理论之后,你们很难想象,为什么这些知识会和图像有联系吧。
说实话,我自己也不是很清楚,我也是看了别人的理论讲解,才略微理解了一二。
让我们一起去了解下。
根据特征向量数学公式定义,矩阵乘以一个向量的结果仍是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,那么变换的效果是什么呢?这当然与方阵的构造有密切关系,比如可以取适当的二维方阵,使得这个变换的效果就是将平面上的二维向量逆时针旋转30度,这时我们可以问一个问题,有没有向量在这个变换下不改变方向呢?可以想一下,除了零向量,没有其他向量可以在平面上旋转30度而不改变方向的,所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量),所以一个特定的变换特征向量是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax=cx, cx是方阵A对向量x进行变换后的结果,但显然cx和x的方向相同)。
这里给出一个特征向量的简单例子,比如平面上的一个变换,把一个向量关于横轴做镜像对称变换,即保持一个向量的横坐标不变,但纵坐标取相反数,把这个变换表示为矩阵就是[1 0;0 -1](分号表示换行),显然[1 0;0 -1]*[a b]'=[a -b]'(上标'表示取转置),这正是我们想要的效果,那么现在可以猜一下了,这个矩阵的特征向量是什么?想想什么向量在这个变换下保持方向不变,显然,横轴上的向量在这个变换下保持方向不变(记住这个变换是镜像对称变换,那镜子表面上(横轴上)的向量当然不会变化),所以可以直接猜测其特征向量是[a 0]'(a不为0),还有其他的吗?有,那就是纵轴上的向量,这时经过变换后,其方向反向,但仍在同一条轴上,所以也被认为是方向没有变化,所以[0 b]'(b不为0)也是其特征向量。
综上所述,特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变换而言,特征向量指明的方向才是很重要的,特征值似乎不是那么重要;但是,当我们引用了Spectral theorem (谱定律)的时候,情况就不一样了。
Spectral theorem 的核心内容如下:一个线性变换(用矩阵乘法表示)可表示为它的所有的特征向量的一个线性组合,其中的线性系数就是每一个向量对应的特征值,写成公式就是:
我们知道,一个变换可由一个矩阵乘法表示,那么一个空间坐标系也可视作一个矩阵,而这个坐标系就可由这个矩阵的所有特征向量表示,用图来表示的话,可以想象就是一个空间张开的各个坐标角度,这一组向量可以完全表示一个矩阵表示的空间的“特征”,而他们的特征值就表示了各个角度上的能量(可以想象成从各个角度上伸出的长短,越长的轴就越可以代表这个空间,它的“特征”就越强,或者说显性,而短轴自然就成了隐性特征),因此,通过特征向量/值可以完全描述某一几何空间这一特点,使得特征向量与特征值在几何(特别是空间几何)及其应用中得以发挥。
矩阵论在图像中的应用比如有PCA 方法,选取特征值最高的k 个特征向量来表示一个矩阵,从而达到降维分析+特征显示的方法。
一般而言,这一方法的目的是寻找任意统计分布的数据集合之主要分量的子集。
相应的基向量组满足正交性且由它定义的子空间最优地考虑了数据的相关性。
将原始数据集合变换到主分量空间使单一数据样本的互相关性降低到最低点。
一下是其运用的原理:
设s j x j ,...,1:=是N 维向量的数据集合,m 是其均值向量:
有了特征向量集合,任何数据x 可以投影到特征空间(以特征向量为基向量)中的表示:
k
k s
j T
j j x j j j s
j j u d d s C m
x d d x s m 向量及满足下列条件的特征特征值求出其从大到小排列的协方差矩阵是:
是:
差别向量λ∑∑===-==1
1
11⎩⎨⎧≠===k l k l u u k
l k T l ,0,1,δT
N T k k y y y y m x u y ),...,,(,)(21=-=
相反地,任何数据x 可以表示成如下的线性组合形式:
如果用A 代表以特征向量为列向量构成的矩阵,则A T
定义了一个线性变换:
上述去相关的主分量分析方法可以用于降低数据的维数。
通过略去对应于若干较小特征值的特征向量来给y 降维。
例如,丢弃底下N-M 行得到N M ⨯的矩阵B ,并为简单起见假定均值m=0,则有:
它只是被舍弃的特征向量所对应的特征值的和。
通常,特征值幅度差别很大,忽略一些较小的值不会引起很大的误差。
上述方法是图象数据压缩的数学基础之一,通常被称为Principal Component Analysis (PCA)或Karhunen-Loeve (K-L)变换。
K-L 变换的核心过程是计算特征值和特征向量,有很多不同的数值计算方法。
一种常采用的方法是根据如下的推导:
∑=+=s
k k
k u y m x 1⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡==+=-=N x T y T A C A C A Ay m x m x A y λλ00()
(1 :
变换后的协方差矩阵为是正交矩阵)
∑+==
==N M k k
T MSE y B x x Bx y
1ˆˆˆλ为:
来近似。
近似的均方差仍可通过而
由于通常s<<N ,这种方法将求高阶矩阵的特征向量转化为求较低阶矩阵的特征向量的过程在图象数据分析中是很实用的。
K-L 变换是图象分析与模式识别中的重要工具,用于特征抽取,降低特征数据的维数。
例如,MIT-Media Lab 基于特征脸的人脸识别方法。
通过上述的理论,我们对特征值与特征向量在图像处理上的运用有了深入的了解,同时也感受到了知识的魅力在不停的渲染着我们的生活。
当然,特征值的魅力还不仅在于图像处理上,它在物理,材料,力学等方面都能一展拳脚,有人曾在一本线代书里这样说过“有振动的地方就有特征值和特征向量”。
同时让我对平时未能把握住的知识感到惋惜,因为知识对生活的改造实在是缤纷乐,所以现在的我们,首要任务还是学好知识,让知识去创造财富! 参考(基于特征向量的变换) 的特征向量。
就是可见得到
上式两边左乘的特征向量维考虑其中维T x i i
i i T i
i i T i
T s T x AA C Av Av Av AA A v Av A v s s A A d d A N N AA C ===⨯=⨯=μμ)()
,...,()(1。