Semi-Supervised Support Vector
物联网与机器学习的融合与发展考试

物联网与机器学习的融合与发展考试(答案见尾页)一、选择题1. 物联网技术可以应用于哪些场景中提高效率和效果?A. 智能家居B. 工业自动化C. 医疗健康D. 环境监测2. 在物联网设备收集到大量数据后,哪种算法最适合用于预测用户行为?A. 决策树B. 随机森林C. K-近邻D. 支持向量机3. 以下哪种类型的机器学习模型最适合处理高维数据?A. 线性回归B. 支持向量机C. 决策树D. 神经网络4. 为了防止过拟合,哪种正则化方法应该在训练过程中使用?A. L1正则化B. L2正则化C. Elastic Net正则化D. Dropout正则化5. 在进行特征选择时,以下哪些方法可以帮助消除冗余特征?A. 相关系数矩阵B. 主成分分析C. 决策树D. 聚类分析6. 哪种物联网设备可以提供实时的高精度定位服务?A. GPSB. RFIDC. 地图导航D. 激光雷达7. 哪种机器学习模型可以在没有明确目标类别的情况下进行分类?A. 监督学习B. 无监督学习C. semi-supervised学习D. unsupervised学习8. 当物联网设备数量增加时,以下哪种现象应该得到关注?A. 数据泄露B. 计算资源不足C. 网络安全D. 数据隐私9. 在训练物联网设备上的分类模型时,哪种优化策略可以提高模型的泛化能力?A. 交叉验证B. 早停C. dropoutD. 正则化10. 物联网与机器学习融合发展的未来趋势是?A. 更多人工智能算法的应用B. 更高效的特征处理方法C. 更多的设备之间实现互联互通D. 更好的数据安全和隐私保护11. 如何利用机器学习算法对物联网设备收集的数据进行分析和挖掘?A. 通过可视化工具进行数据探索B. 使用聚类算法对数据进行分类C. 采用降维技术减少数据维度D. 将数据分为训练集和测试集进行模型训练和评估12. 以下哪种机器学习模型适合处理分类和回归问题?A. SVMB. Neural NetworkC. Decision TreeD. Random Forest13. 哪种物联网技术可以提供大量的数据存储和处理能力?A. SQL数据库B. NoSQL数据库C. 关系型数据库D. 分布式文件系统14. 以下哪些方法可以用于降维?A. PCAB. t-SNEC. AutoencoderD. k-Means15. 在进行异常检测时,以下哪些方法可以有效地识别出异常样本?A. 基于统计学的方法B. 基于机器学习的方法C. 基于深度学习的方法D. 基于规则的方法16. 哪种机器学习模型可以自动调整学习超参数?A. 随机森林B. SVMC. Neural NetworkD. Gradient Boosting17. 在物联网环境中,以下哪些因素可能会影响模型的性能?A. 数据的准确性和完整性B. 设备的计算能力和存储容量C. 网络延迟和服务质量D. 特征选择的准确性18. 以下哪些技术可以用于实现物联网设备之间的通信和数据交换?A. ZigbeeB. Wi-FiC. BluetoothD. HTTP19. 在进行模型评估时,以下哪些指标可以用来衡量模型的性能?A. 准确率B. 精确率C. F1值D. AUC-ROC曲线20. 以下哪些方法可以用于特征提取和特征选择?A. Principal Component AnalysisB. t-SNEC. AutoencoderD. One-hot编码21. 在物联网中,如何将多个数据源整合到一个统一的分析平台中?A. 数据集成框架B. ETL工具C. 数据仓库D. API接口22. 以下哪种技术可以用于对文本数据进行向量化表示?A. Word2VecB. GensimC. Doc2VecD. TextCNN23. 哪种机器学习模型适合处理时间序列数据?A. 决策树B. SVMC. Recurrent Neural NetworkD. Support Vector Machine24. 在进行模型训练时,以下哪些方法可以提高模型的泛化能力?A. 交叉验证B. 早停C. dropoutD. 正则化25. 以下哪些算法可以用于降维?A. PCAB. t-SNEC. AutoencoderD. k-Means26. 哪种物联网设备可以提供低延迟的数据传输?A. LoRaB. ZigbeeC. Wi-FiD. Bluetooth27. 以下哪些技术可以用于构建物联网应用程序?A. 前端框架B. 后端框架C. 数据库管理系统D. 云服务提供商28. 哪种机器学习模型适合处理图像数据?A. 卷积神经网络B. 循环神经网络C. 决策树D. 支持向量机29. 在进行模型训练时,以下哪些方法可以提高模型的效率?A. 批量训练B. 小批量训练C. 随机梯度下降D. Adam优化器30. 以下哪些技术可以用于保障物联网数据的安全性?A. 加密算法B. 认证协议C. 防火墙D. 访问控制31. 在物联网中,如何对海量数据进行有效的分析和挖掘?A. 数据挖掘算法B. 大数据处理框架C. 分布式计算框架D. 云计算平台32. 以下哪种技术可以用于构建大规模的物联网网络?A. MQTTB. CoAPC. AMQPD. RESTful APIs33. 哪种机器学习模型可以用于处理分类和回归问题?A. 逻辑回归B. 决策树C. 支持向量机D. 神经网络34. 在进行特征提取时,以下哪些方法可以提高模型的性能?A. 特征缩放B. 特征选择C. 特征变换D. 特征组合35. 以下哪些技术可以用于对声音数据进行向量化表示?A. Mel-frequency cepstral coefficientsB. Linear predictionsC. Spectral featuresD. Time-domain features36. 哪种物联网设备可以提供高密度的传感器连接?A. 低功耗蓝牙B. ZigbeeC. IPv6D. 无线传感器网络37. 以下哪些机器学习算法可以用于处理推荐系统中的数据?A. collaborative filteringB. content-based filteringC. hybrid filteringD. matrix factorization38. 在进行模型评估时,以下哪些指标可以用来衡量模型的可靠性?A. 准确率B. 召回率C. F1值D. AUC-ROC曲线39. 以下哪些技术可以用于对物联网设备进行远程监控和管理?A. IoT平台B. M2M协议C. OCF联盟D. Eclipse Paho40. 哪种物联网设备可以提供高精度的位置服务?A. GPSB. GalileoC. GLONASSD. Beidou二、问答题1. 什么是物联网?2. 什么是机器学习?3. 物联网与机器学习如何融合?4. 物联网与机器学习融合有哪些应用场景?5. 如何利用机器学习优化物联网?6. 物联网与机器学习融合面临哪些挑战?7. 您认为物联网与机器学习融合将在未来带来哪些影响?8. 作为一名物联网开发工程师,您应该如何学习机器学习相关知识?参考答案选择题:1. ABD2. D3. D4. D5. B6. D7. B8. D9. A 10. ABCD11. D 12. B 13. B 14. AB 15. B 16. D 17. ABC 18. AB 19. AC 20.21. A 22. A 23. C 24. A 25. AB 26. B 27. A 28. A 29. D 30. AB31. B 32. A 33. D 34. B 35. A 36. B 37. A 38. B 39. A 40. D问答题:1. 什么是物联网?物联网是指通过互联网将各种信息感知设备、传输设备和智能处理设备连接起来,实现智能化管理和控制的技术。
异常检测中的半监督学习

异常检测中的半监督学习半监督学习是一种结合有标签和无标签数据进行训练的机器学习方法,可用于异常检测。
异常检测是数据挖掘领域的重要任务,它旨在识别与正常行为模式不一致的数据点。
在许多实际应用中,由于异常样本的稀缺性和获取困难性,标记异常样本的成本往往很高。
因此,半监督学习在异常检测中具有重要意义。
半监督学习通过使用少量有标签样本和大量无标签样本来进行模型训练。
与监督学习相比,它能够更好地利用大量未标记数据中潜在的信息,并提高模型性能。
在异常检测中应用半监督学习方法可以通过利用未标记数据中正常样本的信息来提高模型对正常行为进行建模,并识别出与正常行为不一致的异常点。
半监督学习方法可以分为基于生成模型和基于判别模型两种类型。
生成模型方法旨在对数据分布进行建模,并通过比较新样本与该分布之间的差异来判断其是否为异常点。
其中一个典型算法是基于概率图模型的LOF算法(Local Outlier Factor),它通过计算每个样本点与其邻域样本点之间的局部异常因子来进行异常检测。
此外,基于高斯混合模型的方法也广泛应用于半监督异常检测中。
与生成模型方法不同,判别模型方法直接学习样本的判别函数,通过判别函数对新样本进行分类来进行异常检测。
其中一个常用的算法是半监督支持向量机(Semi-Supervised Support Vector Machine),它通过最大化有标签样本和无标签样本之间的边界来学习一个判别函数。
此外,基于半监督聚类的方法也被广泛应用于半监督异常检测中。
尽管半监督学习在异常检测中具有许多优势,但仍然存在一些挑战和问题。
首先是如何选择合适的有标签样本和无标签样本。
不同选择策略可能导致不同的模型性能。
其次是如何处理数据分布不平衡问题。
在实际应用中,正常数据往往比异常数据多得多,这可能导致模型对正常数据过拟合而无法很好地识别出异常点。
此外,在实际场景中,数据分布可能会随时间发生变化,这对半监督异常检测方法提出了更高的要求。
半监督学习中的半监督支持向量机算法原理解析(Ⅱ)

在机器学习领域,半监督学习是一种重要的学习方式,它允许模型从带标签和未标签的数据中学习。
在半监督学习中,半监督支持向量机(Semi-Supervised Support Vector Machine)算法是一种常用的方法,它结合了监督学习和无监督学习的特点,可以在标签数据有限的情况下对未标签数据进行有效的分类。
本文将对半监督支持向量机算法的原理进行解析。
### 1. 支持向量机支持向量机(Support Vector Machine,SVM)是一种二分类模型,其基本原理是找到一个超平面,使得不同类别的样本点到该超平面的距离最大化。
在SVM 中,支持向量是距离超平面最近的样本点,它们决定了超平面的位置和方向。
SVM 通过最大化支持向量到超平面的距离,来使得分类边界更具有鲁棒性。
### 2. 半监督学习传统的监督学习需要大量标记好的数据作为训练集,但是在现实任务中,获取大量标记好的数据是非常困难和昂贵的。
而半监督学习则可以利用未标记的数据来提高模型的泛化能力。
在半监督学习中,除了标记好的数据外,还会利用未标记的数据来进行训练,从而提高模型的性能。
### 3. 半监督支持向量机半监督支持向量机算法是基于支持向量机的半监督学习方法。
在半监督支持向量机中,我们需要同时考虑标记好的数据和未标记的数据,以找到一个最优的超平面来进行分类。
该算法的目标是使得超平面对标记数据分类的同时,尽可能地使未标记数据远离超平面,从而提高分类的准确性。
### 4. 半监督支持向量机算法原理半监督支持向量机算法的原理是通过优化一个同时考虑标记数据和未标记数据的目标函数来学习模型。
其目标函数由两部分组成:一部分是标记数据的误差项,另一部分是未标记数据的一致性项。
通过最大化标记数据的间隔同时最小化未标记数据的一致性,来学习一个更为泛化的分类超平面。
### 5. 学习过程半监督支持向量机算法的学习过程可以分为以下几个步骤:1. 首先,通过标记数据训练一个初始的支持向量机模型;2. 然后,利用该模型对未标记数据进行预测,得到未标记数据的标签;3. 接着,将未标记数据的标签加入到训练集中,重新训练模型;4. 重复上述步骤,直到模型收敛或达到预定的迭代次数。
基于流形判别分析的半监督支持向量机

基于流形判别分析的半监督支持向量机郝勇智【摘要】半监督分类研究的主要内容是,如何有效地利用大量的无类别标签的数据对分类问题所具有的有用信息.该文提出了一种基于流形判别分析的半监督支持向量机(Semi-Supervised Support Vector Machine Based on Manifold-based Discriminant Analysis,简称MDASSVM).通过定义基于流形的类内离散度和类间离散度,充分利用流形判别分析的性质,进一步改进半监督支持向量机,在分类决策时同时考虑样本的边界信息、分布特征以及局部流形结构,该方法不仅继承了传统降维方法的优势,而且进一步提高降维效率.人造数据集和UCI中的部分实际数据集上的实验结果表明,与现有算法相比,数据集通过该算法降维后,能使半监督支持向量机有更高的分类精度.【期刊名称】《山西电子技术》【年(卷),期】2015(000)006【总页数】4页(P3-5,19)【关键词】流形判别分析;半监学习;支持向量机;分类;降维【作者】郝勇智【作者单位】中北大学计算机与控制工程学院,山西太原030051【正文语种】中文【中图分类】TP391.4传统机器学习问题分为两类:无监督学习和监督学习。
无监督学习仅仅利用为无标签样本集,而监督学习则需要大量有标签的样本集,但在很多实际应用中,获取少量的已标记数据通常需要较大的代价,但获取未标记数据的代价要小很多。
这就使得同时利用已标记样本集和未标记样本集的半监督学习方法快速发展起来。
支持向量机(SVM)是20 世纪90 年代由V.Vapnik 首先提出,它建立在统计学习理论的VC 维理论和结构风险最小化原理基础上的新型机器学习算法。
标准支持向量机具有良好的推广能力,已经被应用到很多场景中并发挥着重要作用。
标准支持向量机算法都属于监督学习的算法,倘若可以将半监督学习的思想很好地引入到标准支持向量机中,就能解决标准支持向量机依赖大量已标记样本的问题,进而改进监督分类方法[1]的性能,训练得到分类性能更好的分类器,从而获得更好的分类效果。
机器学习与人工智能领域中常用的英语词汇

机器学习与人工智能领域中常用的英语词汇1.General Concepts (基础概念)•Artificial Intelligence (AI) - 人工智能1)Artificial Intelligence (AI) - 人工智能2)Machine Learning (ML) - 机器学习3)Deep Learning (DL) - 深度学习4)Neural Network - 神经网络5)Natural Language Processing (NLP) - 自然语言处理6)Computer Vision - 计算机视觉7)Robotics - 机器人技术8)Speech Recognition - 语音识别9)Expert Systems - 专家系统10)Knowledge Representation - 知识表示11)Pattern Recognition - 模式识别12)Cognitive Computing - 认知计算13)Autonomous Systems - 自主系统14)Human-Machine Interaction - 人机交互15)Intelligent Agents - 智能代理16)Machine Translation - 机器翻译17)Swarm Intelligence - 群体智能18)Genetic Algorithms - 遗传算法19)Fuzzy Logic - 模糊逻辑20)Reinforcement Learning - 强化学习•Machine Learning (ML) - 机器学习1)Machine Learning (ML) - 机器学习2)Artificial Neural Network - 人工神经网络3)Deep Learning - 深度学习4)Supervised Learning - 有监督学习5)Unsupervised Learning - 无监督学习6)Reinforcement Learning - 强化学习7)Semi-Supervised Learning - 半监督学习8)Training Data - 训练数据9)Test Data - 测试数据10)Validation Data - 验证数据11)Feature - 特征12)Label - 标签13)Model - 模型14)Algorithm - 算法15)Regression - 回归16)Classification - 分类17)Clustering - 聚类18)Dimensionality Reduction - 降维19)Overfitting - 过拟合20)Underfitting - 欠拟合•Deep Learning (DL) - 深度学习1)Deep Learning - 深度学习2)Neural Network - 神经网络3)Artificial Neural Network (ANN) - 人工神经网络4)Convolutional Neural Network (CNN) - 卷积神经网络5)Recurrent Neural Network (RNN) - 循环神经网络6)Long Short-Term Memory (LSTM) - 长短期记忆网络7)Gated Recurrent Unit (GRU) - 门控循环单元8)Autoencoder - 自编码器9)Generative Adversarial Network (GAN) - 生成对抗网络10)Transfer Learning - 迁移学习11)Pre-trained Model - 预训练模型12)Fine-tuning - 微调13)Feature Extraction - 特征提取14)Activation Function - 激活函数15)Loss Function - 损失函数16)Gradient Descent - 梯度下降17)Backpropagation - 反向传播18)Epoch - 训练周期19)Batch Size - 批量大小20)Dropout - 丢弃法•Neural Network - 神经网络1)Neural Network - 神经网络2)Artificial Neural Network (ANN) - 人工神经网络3)Deep Neural Network (DNN) - 深度神经网络4)Convolutional Neural Network (CNN) - 卷积神经网络5)Recurrent Neural Network (RNN) - 循环神经网络6)Long Short-Term Memory (LSTM) - 长短期记忆网络7)Gated Recurrent Unit (GRU) - 门控循环单元8)Feedforward Neural Network - 前馈神经网络9)Multi-layer Perceptron (MLP) - 多层感知器10)Radial Basis Function Network (RBFN) - 径向基函数网络11)Hopfield Network - 霍普菲尔德网络12)Boltzmann Machine - 玻尔兹曼机13)Autoencoder - 自编码器14)Spiking Neural Network (SNN) - 脉冲神经网络15)Self-organizing Map (SOM) - 自组织映射16)Restricted Boltzmann Machine (RBM) - 受限玻尔兹曼机17)Hebbian Learning - 海比安学习18)Competitive Learning - 竞争学习19)Neuroevolutionary - 神经进化20)Neuron - 神经元•Algorithm - 算法1)Algorithm - 算法2)Supervised Learning Algorithm - 有监督学习算法3)Unsupervised Learning Algorithm - 无监督学习算法4)Reinforcement Learning Algorithm - 强化学习算法5)Classification Algorithm - 分类算法6)Regression Algorithm - 回归算法7)Clustering Algorithm - 聚类算法8)Dimensionality Reduction Algorithm - 降维算法9)Decision Tree Algorithm - 决策树算法10)Random Forest Algorithm - 随机森林算法11)Support Vector Machine (SVM) Algorithm - 支持向量机算法12)K-Nearest Neighbors (KNN) Algorithm - K近邻算法13)Naive Bayes Algorithm - 朴素贝叶斯算法14)Gradient Descent Algorithm - 梯度下降算法15)Genetic Algorithm - 遗传算法16)Neural Network Algorithm - 神经网络算法17)Deep Learning Algorithm - 深度学习算法18)Ensemble Learning Algorithm - 集成学习算法19)Reinforcement Learning Algorithm - 强化学习算法20)Metaheuristic Algorithm - 元启发式算法•Model - 模型1)Model - 模型2)Machine Learning Model - 机器学习模型3)Artificial Intelligence Model - 人工智能模型4)Predictive Model - 预测模型5)Classification Model - 分类模型6)Regression Model - 回归模型7)Generative Model - 生成模型8)Discriminative Model - 判别模型9)Probabilistic Model - 概率模型10)Statistical Model - 统计模型11)Neural Network Model - 神经网络模型12)Deep Learning Model - 深度学习模型13)Ensemble Model - 集成模型14)Reinforcement Learning Model - 强化学习模型15)Support Vector Machine (SVM) Model - 支持向量机模型16)Decision Tree Model - 决策树模型17)Random Forest Model - 随机森林模型18)Naive Bayes Model - 朴素贝叶斯模型19)Autoencoder Model - 自编码器模型20)Convolutional Neural Network (CNN) Model - 卷积神经网络模型•Dataset - 数据集1)Dataset - 数据集2)Training Dataset - 训练数据集3)Test Dataset - 测试数据集4)Validation Dataset - 验证数据集5)Balanced Dataset - 平衡数据集6)Imbalanced Dataset - 不平衡数据集7)Synthetic Dataset - 合成数据集8)Benchmark Dataset - 基准数据集9)Open Dataset - 开放数据集10)Labeled Dataset - 标记数据集11)Unlabeled Dataset - 未标记数据集12)Semi-Supervised Dataset - 半监督数据集13)Multiclass Dataset - 多分类数据集14)Feature Set - 特征集15)Data Augmentation - 数据增强16)Data Preprocessing - 数据预处理17)Missing Data - 缺失数据18)Outlier Detection - 异常值检测19)Data Imputation - 数据插补20)Metadata - 元数据•Training - 训练1)Training - 训练2)Training Data - 训练数据3)Training Phase - 训练阶段4)Training Set - 训练集5)Training Examples - 训练样本6)Training Instance - 训练实例7)Training Algorithm - 训练算法8)Training Model - 训练模型9)Training Process - 训练过程10)Training Loss - 训练损失11)Training Epoch - 训练周期12)Training Batch - 训练批次13)Online Training - 在线训练14)Offline Training - 离线训练15)Continuous Training - 连续训练16)Transfer Learning - 迁移学习17)Fine-Tuning - 微调18)Curriculum Learning - 课程学习19)Self-Supervised Learning - 自监督学习20)Active Learning - 主动学习•Testing - 测试1)Testing - 测试2)Test Data - 测试数据3)Test Set - 测试集4)Test Examples - 测试样本5)Test Instance - 测试实例6)Test Phase - 测试阶段7)Test Accuracy - 测试准确率8)Test Loss - 测试损失9)Test Error - 测试错误10)Test Metrics - 测试指标11)Test Suite - 测试套件12)Test Case - 测试用例13)Test Coverage - 测试覆盖率14)Cross-Validation - 交叉验证15)Holdout Validation - 留出验证16)K-Fold Cross-Validation - K折交叉验证17)Stratified Cross-Validation - 分层交叉验证18)Test Driven Development (TDD) - 测试驱动开发19)A/B Testing - A/B 测试20)Model Evaluation - 模型评估•Validation - 验证1)Validation - 验证2)Validation Data - 验证数据3)Validation Set - 验证集4)Validation Examples - 验证样本5)Validation Instance - 验证实例6)Validation Phase - 验证阶段7)Validation Accuracy - 验证准确率8)Validation Loss - 验证损失9)Validation Error - 验证错误10)Validation Metrics - 验证指标11)Cross-Validation - 交叉验证12)Holdout Validation - 留出验证13)K-Fold Cross-Validation - K折交叉验证14)Stratified Cross-Validation - 分层交叉验证15)Leave-One-Out Cross-Validation - 留一法交叉验证16)Validation Curve - 验证曲线17)Hyperparameter Validation - 超参数验证18)Model Validation - 模型验证19)Early Stopping - 提前停止20)Validation Strategy - 验证策略•Supervised Learning - 有监督学习1)Supervised Learning - 有监督学习2)Label - 标签3)Feature - 特征4)Target - 目标5)Training Labels - 训练标签6)Training Features - 训练特征7)Training Targets - 训练目标8)Training Examples - 训练样本9)Training Instance - 训练实例10)Regression - 回归11)Classification - 分类12)Predictor - 预测器13)Regression Model - 回归模型14)Classifier - 分类器15)Decision Tree - 决策树16)Support Vector Machine (SVM) - 支持向量机17)Neural Network - 神经网络18)Feature Engineering - 特征工程19)Model Evaluation - 模型评估20)Overfitting - 过拟合21)Underfitting - 欠拟合22)Bias-Variance Tradeoff - 偏差-方差权衡•Unsupervised Learning - 无监督学习1)Unsupervised Learning - 无监督学习2)Clustering - 聚类3)Dimensionality Reduction - 降维4)Anomaly Detection - 异常检测5)Association Rule Learning - 关联规则学习6)Feature Extraction - 特征提取7)Feature Selection - 特征选择8)K-Means - K均值9)Hierarchical Clustering - 层次聚类10)Density-Based Clustering - 基于密度的聚类11)Principal Component Analysis (PCA) - 主成分分析12)Independent Component Analysis (ICA) - 独立成分分析13)T-distributed Stochastic Neighbor Embedding (t-SNE) - t分布随机邻居嵌入14)Gaussian Mixture Model (GMM) - 高斯混合模型15)Self-Organizing Maps (SOM) - 自组织映射16)Autoencoder - 自动编码器17)Latent Variable - 潜变量18)Data Preprocessing - 数据预处理19)Outlier Detection - 异常值检测20)Clustering Algorithm - 聚类算法•Reinforcement Learning - 强化学习1)Reinforcement Learning - 强化学习2)Agent - 代理3)Environment - 环境4)State - 状态5)Action - 动作6)Reward - 奖励7)Policy - 策略8)Value Function - 值函数9)Q-Learning - Q学习10)Deep Q-Network (DQN) - 深度Q网络11)Policy Gradient - 策略梯度12)Actor-Critic - 演员-评论家13)Exploration - 探索14)Exploitation - 开发15)Temporal Difference (TD) - 时间差分16)Markov Decision Process (MDP) - 马尔可夫决策过程17)State-Action-Reward-State-Action (SARSA) - 状态-动作-奖励-状态-动作18)Policy Iteration - 策略迭代19)Value Iteration - 值迭代20)Monte Carlo Methods - 蒙特卡洛方法•Semi-Supervised Learning - 半监督学习1)Semi-Supervised Learning - 半监督学习2)Labeled Data - 有标签数据3)Unlabeled Data - 无标签数据4)Label Propagation - 标签传播5)Self-Training - 自训练6)Co-Training - 协同训练7)Transudative Learning - 传导学习8)Inductive Learning - 归纳学习9)Manifold Regularization - 流形正则化10)Graph-based Methods - 基于图的方法11)Cluster Assumption - 聚类假设12)Low-Density Separation - 低密度分离13)Semi-Supervised Support Vector Machines (S3VM) - 半监督支持向量机14)Expectation-Maximization (EM) - 期望最大化15)Co-EM - 协同期望最大化16)Entropy-Regularized EM - 熵正则化EM17)Mean Teacher - 平均教师18)Virtual Adversarial Training - 虚拟对抗训练19)Tri-training - 三重训练20)Mix Match - 混合匹配•Feature - 特征1)Feature - 特征2)Feature Engineering - 特征工程3)Feature Extraction - 特征提取4)Feature Selection - 特征选择5)Input Features - 输入特征6)Output Features - 输出特征7)Feature Vector - 特征向量8)Feature Space - 特征空间9)Feature Representation - 特征表示10)Feature Transformation - 特征转换11)Feature Importance - 特征重要性12)Feature Scaling - 特征缩放13)Feature Normalization - 特征归一化14)Feature Encoding - 特征编码15)Feature Fusion - 特征融合16)Feature Dimensionality Reduction - 特征维度减少17)Continuous Feature - 连续特征18)Categorical Feature - 分类特征19)Nominal Feature - 名义特征20)Ordinal Feature - 有序特征•Label - 标签1)Label - 标签2)Labeling - 标注3)Ground Truth - 地面真值4)Class Label - 类别标签5)Target Variable - 目标变量6)Labeling Scheme - 标注方案7)Multi-class Labeling - 多类别标注8)Binary Labeling - 二分类标注9)Label Noise - 标签噪声10)Labeling Error - 标注错误11)Label Propagation - 标签传播12)Unlabeled Data - 无标签数据13)Labeled Data - 有标签数据14)Semi-supervised Learning - 半监督学习15)Active Learning - 主动学习16)Weakly Supervised Learning - 弱监督学习17)Noisy Label Learning - 噪声标签学习18)Self-training - 自训练19)Crowdsourcing Labeling - 众包标注20)Label Smoothing - 标签平滑化•Prediction - 预测1)Prediction - 预测2)Forecasting - 预测3)Regression - 回归4)Classification - 分类5)Time Series Prediction - 时间序列预测6)Forecast Accuracy - 预测准确性7)Predictive Modeling - 预测建模8)Predictive Analytics - 预测分析9)Forecasting Method - 预测方法10)Predictive Performance - 预测性能11)Predictive Power - 预测能力12)Prediction Error - 预测误差13)Prediction Interval - 预测区间14)Prediction Model - 预测模型15)Predictive Uncertainty - 预测不确定性16)Forecast Horizon - 预测时间跨度17)Predictive Maintenance - 预测性维护18)Predictive Policing - 预测式警务19)Predictive Healthcare - 预测性医疗20)Predictive Maintenance - 预测性维护•Classification - 分类1)Classification - 分类2)Classifier - 分类器3)Class - 类别4)Classify - 对数据进行分类5)Class Label - 类别标签6)Binary Classification - 二元分类7)Multiclass Classification - 多类分类8)Class Probability - 类别概率9)Decision Boundary - 决策边界10)Decision Tree - 决策树11)Support Vector Machine (SVM) - 支持向量机12)K-Nearest Neighbors (KNN) - K最近邻算法13)Naive Bayes - 朴素贝叶斯14)Logistic Regression - 逻辑回归15)Random Forest - 随机森林16)Neural Network - 神经网络17)SoftMax Function - SoftMax函数18)One-vs-All (One-vs-Rest) - 一对多(一对剩余)19)Ensemble Learning - 集成学习20)Confusion Matrix - 混淆矩阵•Regression - 回归1)Regression Analysis - 回归分析2)Linear Regression - 线性回归3)Multiple Regression - 多元回归4)Polynomial Regression - 多项式回归5)Logistic Regression - 逻辑回归6)Ridge Regression - 岭回归7)Lasso Regression - Lasso回归8)Elastic Net Regression - 弹性网络回归9)Regression Coefficients - 回归系数10)Residuals - 残差11)Ordinary Least Squares (OLS) - 普通最小二乘法12)Ridge Regression Coefficient - 岭回归系数13)Lasso Regression Coefficient - Lasso回归系数14)Elastic Net Regression Coefficient - 弹性网络回归系数15)Regression Line - 回归线16)Prediction Error - 预测误差17)Regression Model - 回归模型18)Nonlinear Regression - 非线性回归19)Generalized Linear Models (GLM) - 广义线性模型20)Coefficient of Determination (R-squared) - 决定系数21)F-test - F检验22)Homoscedasticity - 同方差性23)Heteroscedasticity - 异方差性24)Autocorrelation - 自相关25)Multicollinearity - 多重共线性26)Outliers - 异常值27)Cross-validation - 交叉验证28)Feature Selection - 特征选择29)Feature Engineering - 特征工程30)Regularization - 正则化2.Neural Networks and Deep Learning (神经网络与深度学习)•Convolutional Neural Network (CNN) - 卷积神经网络1)Convolutional Neural Network (CNN) - 卷积神经网络2)Convolution Layer - 卷积层3)Feature Map - 特征图4)Convolution Operation - 卷积操作5)Stride - 步幅6)Padding - 填充7)Pooling Layer - 池化层8)Max Pooling - 最大池化9)Average Pooling - 平均池化10)Fully Connected Layer - 全连接层11)Activation Function - 激活函数12)Rectified Linear Unit (ReLU) - 线性修正单元13)Dropout - 随机失活14)Batch Normalization - 批量归一化15)Transfer Learning - 迁移学习16)Fine-Tuning - 微调17)Image Classification - 图像分类18)Object Detection - 物体检测19)Semantic Segmentation - 语义分割20)Instance Segmentation - 实例分割21)Generative Adversarial Network (GAN) - 生成对抗网络22)Image Generation - 图像生成23)Style Transfer - 风格迁移24)Convolutional Autoencoder - 卷积自编码器25)Recurrent Neural Network (RNN) - 循环神经网络•Recurrent Neural Network (RNN) - 循环神经网络1)Recurrent Neural Network (RNN) - 循环神经网络2)Long Short-Term Memory (LSTM) - 长短期记忆网络3)Gated Recurrent Unit (GRU) - 门控循环单元4)Sequence Modeling - 序列建模5)Time Series Prediction - 时间序列预测6)Natural Language Processing (NLP) - 自然语言处理7)Text Generation - 文本生成8)Sentiment Analysis - 情感分析9)Named Entity Recognition (NER) - 命名实体识别10)Part-of-Speech Tagging (POS Tagging) - 词性标注11)Sequence-to-Sequence (Seq2Seq) - 序列到序列12)Attention Mechanism - 注意力机制13)Encoder-Decoder Architecture - 编码器-解码器架构14)Bidirectional RNN - 双向循环神经网络15)Teacher Forcing - 强制教师法16)Backpropagation Through Time (BPTT) - 通过时间的反向传播17)Vanishing Gradient Problem - 梯度消失问题18)Exploding Gradient Problem - 梯度爆炸问题19)Language Modeling - 语言建模20)Speech Recognition - 语音识别•Long Short-Term Memory (LSTM) - 长短期记忆网络1)Long Short-Term Memory (LSTM) - 长短期记忆网络2)Cell State - 细胞状态3)Hidden State - 隐藏状态4)Forget Gate - 遗忘门5)Input Gate - 输入门6)Output Gate - 输出门7)Peephole Connections - 窥视孔连接8)Gated Recurrent Unit (GRU) - 门控循环单元9)Vanishing Gradient Problem - 梯度消失问题10)Exploding Gradient Problem - 梯度爆炸问题11)Sequence Modeling - 序列建模12)Time Series Prediction - 时间序列预测13)Natural Language Processing (NLP) - 自然语言处理14)Text Generation - 文本生成15)Sentiment Analysis - 情感分析16)Named Entity Recognition (NER) - 命名实体识别17)Part-of-Speech Tagging (POS Tagging) - 词性标注18)Attention Mechanism - 注意力机制19)Encoder-Decoder Architecture - 编码器-解码器架构20)Bidirectional LSTM - 双向长短期记忆网络•Attention Mechanism - 注意力机制1)Attention Mechanism - 注意力机制2)Self-Attention - 自注意力3)Multi-Head Attention - 多头注意力4)Transformer - 变换器5)Query - 查询6)Key - 键7)Value - 值8)Query-Value Attention - 查询-值注意力9)Dot-Product Attention - 点积注意力10)Scaled Dot-Product Attention - 缩放点积注意力11)Additive Attention - 加性注意力12)Context Vector - 上下文向量13)Attention Score - 注意力分数14)SoftMax Function - SoftMax函数15)Attention Weight - 注意力权重16)Global Attention - 全局注意力17)Local Attention - 局部注意力18)Positional Encoding - 位置编码19)Encoder-Decoder Attention - 编码器-解码器注意力20)Cross-Modal Attention - 跨模态注意力•Generative Adversarial Network (GAN) - 生成对抗网络1)Generative Adversarial Network (GAN) - 生成对抗网络2)Generator - 生成器3)Discriminator - 判别器4)Adversarial Training - 对抗训练5)Minimax Game - 极小极大博弈6)Nash Equilibrium - 纳什均衡7)Mode Collapse - 模式崩溃8)Training Stability - 训练稳定性9)Loss Function - 损失函数10)Discriminative Loss - 判别损失11)Generative Loss - 生成损失12)Wasserstein GAN (WGAN) - Wasserstein GAN(WGAN)13)Deep Convolutional GAN (DCGAN) - 深度卷积生成对抗网络(DCGAN)14)Conditional GAN (c GAN) - 条件生成对抗网络(c GAN)15)Style GAN - 风格生成对抗网络16)Cycle GAN - 循环生成对抗网络17)Progressive Growing GAN (PGGAN) - 渐进式增长生成对抗网络(PGGAN)18)Self-Attention GAN (SAGAN) - 自注意力生成对抗网络(SAGAN)19)Big GAN - 大规模生成对抗网络20)Adversarial Examples - 对抗样本•Encoder-Decoder - 编码器-解码器1)Encoder-Decoder Architecture - 编码器-解码器架构2)Encoder - 编码器3)Decoder - 解码器4)Sequence-to-Sequence Model (Seq2Seq) - 序列到序列模型5)State Vector - 状态向量6)Context Vector - 上下文向量7)Hidden State - 隐藏状态8)Attention Mechanism - 注意力机制9)Teacher Forcing - 强制教师法10)Beam Search - 束搜索11)Recurrent Neural Network (RNN) - 循环神经网络12)Long Short-Term Memory (LSTM) - 长短期记忆网络13)Gated Recurrent Unit (GRU) - 门控循环单元14)Bidirectional Encoder - 双向编码器15)Greedy Decoding - 贪婪解码16)Masking - 遮盖17)Dropout - 随机失活18)Embedding Layer - 嵌入层19)Cross-Entropy Loss - 交叉熵损失20)Tokenization - 令牌化•Transfer Learning - 迁移学习1)Transfer Learning - 迁移学习2)Source Domain - 源领域3)Target Domain - 目标领域4)Fine-Tuning - 微调5)Domain Adaptation - 领域自适应6)Pre-Trained Model - 预训练模型7)Feature Extraction - 特征提取8)Knowledge Transfer - 知识迁移9)Unsupervised Domain Adaptation - 无监督领域自适应10)Semi-Supervised Domain Adaptation - 半监督领域自适应11)Multi-Task Learning - 多任务学习12)Data Augmentation - 数据增强13)Task Transfer - 任务迁移14)Model Agnostic Meta-Learning (MAML) - 与模型无关的元学习(MAML)15)One-Shot Learning - 单样本学习16)Zero-Shot Learning - 零样本学习17)Few-Shot Learning - 少样本学习18)Knowledge Distillation - 知识蒸馏19)Representation Learning - 表征学习20)Adversarial Transfer Learning - 对抗迁移学习•Pre-trained Models - 预训练模型1)Pre-trained Model - 预训练模型2)Transfer Learning - 迁移学习3)Fine-Tuning - 微调4)Knowledge Transfer - 知识迁移5)Domain Adaptation - 领域自适应6)Feature Extraction - 特征提取7)Representation Learning - 表征学习8)Language Model - 语言模型9)Bidirectional Encoder Representations from Transformers (BERT) - 双向编码器结构转换器10)Generative Pre-trained Transformer (GPT) - 生成式预训练转换器11)Transformer-based Models - 基于转换器的模型12)Masked Language Model (MLM) - 掩蔽语言模型13)Cloze Task - 填空任务14)Tokenization - 令牌化15)Word Embeddings - 词嵌入16)Sentence Embeddings - 句子嵌入17)Contextual Embeddings - 上下文嵌入18)Self-Supervised Learning - 自监督学习19)Large-Scale Pre-trained Models - 大规模预训练模型•Loss Function - 损失函数1)Loss Function - 损失函数2)Mean Squared Error (MSE) - 均方误差3)Mean Absolute Error (MAE) - 平均绝对误差4)Cross-Entropy Loss - 交叉熵损失5)Binary Cross-Entropy Loss - 二元交叉熵损失6)Categorical Cross-Entropy Loss - 分类交叉熵损失7)Hinge Loss - 合页损失8)Huber Loss - Huber损失9)Wasserstein Distance - Wasserstein距离10)Triplet Loss - 三元组损失11)Contrastive Loss - 对比损失12)Dice Loss - Dice损失13)Focal Loss - 焦点损失14)GAN Loss - GAN损失15)Adversarial Loss - 对抗损失16)L1 Loss - L1损失17)L2 Loss - L2损失18)Huber Loss - Huber损失19)Quantile Loss - 分位数损失•Activation Function - 激活函数1)Activation Function - 激活函数2)Sigmoid Function - Sigmoid函数3)Hyperbolic Tangent Function (Tanh) - 双曲正切函数4)Rectified Linear Unit (Re LU) - 矩形线性单元5)Parametric Re LU (P Re LU) - 参数化Re LU6)Exponential Linear Unit (ELU) - 指数线性单元7)Swish Function - Swish函数8)Softplus Function - Soft plus函数9)Softmax Function - SoftMax函数10)Hard Tanh Function - 硬双曲正切函数11)Softsign Function - Softsign函数12)GELU (Gaussian Error Linear Unit) - GELU(高斯误差线性单元)13)Mish Function - Mish函数14)CELU (Continuous Exponential Linear Unit) - CELU(连续指数线性单元)15)Bent Identity Function - 弯曲恒等函数16)Gaussian Error Linear Units (GELUs) - 高斯误差线性单元17)Adaptive Piecewise Linear (APL) - 自适应分段线性函数18)Radial Basis Function (RBF) - 径向基函数•Backpropagation - 反向传播1)Backpropagation - 反向传播2)Gradient Descent - 梯度下降3)Partial Derivative - 偏导数4)Chain Rule - 链式法则5)Forward Pass - 前向传播6)Backward Pass - 反向传播7)Computational Graph - 计算图8)Neural Network - 神经网络9)Loss Function - 损失函数10)Gradient Calculation - 梯度计算11)Weight Update - 权重更新12)Activation Function - 激活函数13)Optimizer - 优化器14)Learning Rate - 学习率15)Mini-Batch Gradient Descent - 小批量梯度下降16)Stochastic Gradient Descent (SGD) - 随机梯度下降17)Batch Gradient Descent - 批量梯度下降18)Momentum - 动量19)Adam Optimizer - Adam优化器20)Learning Rate Decay - 学习率衰减•Gradient Descent - 梯度下降1)Gradient Descent - 梯度下降2)Stochastic Gradient Descent (SGD) - 随机梯度下降3)Mini-Batch Gradient Descent - 小批量梯度下降4)Batch Gradient Descent - 批量梯度下降5)Learning Rate - 学习率6)Momentum - 动量7)Adaptive Moment Estimation (Adam) - 自适应矩估计8)RMSprop - 均方根传播9)Learning Rate Schedule - 学习率调度10)Convergence - 收敛11)Divergence - 发散12)Adagrad - 自适应学习速率方法13)Adadelta - 自适应增量学习率方法14)Adamax - 自适应矩估计的扩展版本15)Nadam - Nesterov Accelerated Adaptive Moment Estimation16)Learning Rate Decay - 学习率衰减17)Step Size - 步长18)Conjugate Gradient Descent - 共轭梯度下降19)Line Search - 线搜索20)Newton's Method - 牛顿法•Learning Rate - 学习率1)Learning Rate - 学习率2)Adaptive Learning Rate - 自适应学习率3)Learning Rate Decay - 学习率衰减4)Initial Learning Rate - 初始学习率5)Step Size - 步长6)Momentum - 动量7)Exponential Decay - 指数衰减8)Annealing - 退火9)Cyclical Learning Rate - 循环学习率10)Learning Rate Schedule - 学习率调度11)Warm-up - 预热12)Learning Rate Policy - 学习率策略13)Learning Rate Annealing - 学习率退火14)Cosine Annealing - 余弦退火15)Gradient Clipping - 梯度裁剪16)Adapting Learning Rate - 适应学习率17)Learning Rate Multiplier - 学习率倍增器18)Learning Rate Reduction - 学习率降低19)Learning Rate Update - 学习率更新20)Scheduled Learning Rate - 定期学习率•Batch Size - 批量大小1)Batch Size - 批量大小2)Mini-Batch - 小批量3)Batch Gradient Descent - 批量梯度下降4)Stochastic Gradient Descent (SGD) - 随机梯度下降5)Mini-Batch Gradient Descent - 小批量梯度下降6)Online Learning - 在线学习7)Full-Batch - 全批量8)Data Batch - 数据批次9)Training Batch - 训练批次10)Batch Normalization - 批量归一化11)Batch-wise Optimization - 批量优化12)Batch Processing - 批量处理13)Batch Sampling - 批量采样14)Adaptive Batch Size - 自适应批量大小15)Batch Splitting - 批量分割16)Dynamic Batch Size - 动态批量大小17)Fixed Batch Size - 固定批量大小18)Batch-wise Inference - 批量推理19)Batch-wise Training - 批量训练20)Batch Shuffling - 批量洗牌•Epoch - 训练周期1)Training Epoch - 训练周期2)Epoch Size - 周期大小3)Early Stopping - 提前停止4)Validation Set - 验证集5)Training Set - 训练集6)Test Set - 测试集7)Overfitting - 过拟合8)Underfitting - 欠拟合9)Model Evaluation - 模型评估10)Model Selection - 模型选择11)Hyperparameter Tuning - 超参数调优12)Cross-Validation - 交叉验证13)K-fold Cross-Validation - K折交叉验证14)Stratified Cross-Validation - 分层交叉验证15)Leave-One-Out Cross-Validation (LOOCV) - 留一法交叉验证16)Grid Search - 网格搜索17)Random Search - 随机搜索18)Model Complexity - 模型复杂度19)Learning Curve - 学习曲线20)Convergence - 收敛3.Machine Learning Techniques and Algorithms (机器学习技术与算法)•Decision Tree - 决策树1)Decision Tree - 决策树2)Node - 节点3)Root Node - 根节点4)Leaf Node - 叶节点5)Internal Node - 内部节点6)Splitting Criterion - 分裂准则7)Gini Impurity - 基尼不纯度8)Entropy - 熵9)Information Gain - 信息增益10)Gain Ratio - 增益率11)Pruning - 剪枝12)Recursive Partitioning - 递归分割13)CART (Classification and Regression Trees) - 分类回归树14)ID3 (Iterative Dichotomiser 3) - 迭代二叉树315)C4.5 (successor of ID3) - C4.5(ID3的后继者)16)C5.0 (successor of C4.5) - C5.0(C4.5的后继者)17)Split Point - 分裂点18)Decision Boundary - 决策边界19)Pruned Tree - 剪枝后的树20)Decision Tree Ensemble - 决策树集成•Random Forest - 随机森林1)Random Forest - 随机森林2)Ensemble Learning - 集成学习3)Bootstrap Sampling - 自助采样4)Bagging (Bootstrap Aggregating) - 装袋法5)Out-of-Bag (OOB) Error - 袋外误差6)Feature Subset - 特征子集7)Decision Tree - 决策树8)Base Estimator - 基础估计器9)Tree Depth - 树深度10)Randomization - 随机化11)Majority Voting - 多数投票12)Feature Importance - 特征重要性13)OOB Score - 袋外得分14)Forest Size - 森林大小15)Max Features - 最大特征数16)Min Samples Split - 最小分裂样本数17)Min Samples Leaf - 最小叶节点样本数18)Gini Impurity - 基尼不纯度19)Entropy - 熵20)Variable Importance - 变量重要性•Support Vector Machine (SVM) - 支持向量机1)Support Vector Machine (SVM) - 支持向量机2)Hyperplane - 超平面3)Kernel Trick - 核技巧4)Kernel Function - 核函数5)Margin - 间隔6)Support Vectors - 支持向量7)Decision Boundary - 决策边界8)Maximum Margin Classifier - 最大间隔分类器9)Soft Margin Classifier - 软间隔分类器10) C Parameter - C参数11)Radial Basis Function (RBF) Kernel - 径向基函数核12)Polynomial Kernel - 多项式核13)Linear Kernel - 线性核14)Quadratic Kernel - 二次核15)Gaussian Kernel - 高斯核16)Regularization - 正则化17)Dual Problem - 对偶问题18)Primal Problem - 原始问题19)Kernelized SVM - 核化支持向量机20)Multiclass SVM - 多类支持向量机•K-Nearest Neighbors (KNN) - K-最近邻1)K-Nearest Neighbors (KNN) - K-最近邻2)Nearest Neighbor - 最近邻3)Distance Metric - 距离度量4)Euclidean Distance - 欧氏距离5)Manhattan Distance - 曼哈顿距离6)Minkowski Distance - 闵可夫斯基距离7)Cosine Similarity - 余弦相似度8)K Value - K值9)Majority Voting - 多数投票10)Weighted KNN - 加权KNN11)Radius Neighbors - 半径邻居12)Ball Tree - 球树13)KD Tree - KD树14)Locality-Sensitive Hashing (LSH) - 局部敏感哈希15)Curse of Dimensionality - 维度灾难16)Class Label - 类标签17)Training Set - 训练集18)Test Set - 测试集19)Validation Set - 验证集20)Cross-Validation - 交叉验证•Naive Bayes - 朴素贝叶斯1)Naive Bayes - 朴素贝叶斯2)Bayes' Theorem - 贝叶斯定理3)Prior Probability - 先验概率4)Posterior Probability - 后验概率5)Likelihood - 似然6)Class Conditional Probability - 类条件概率7)Feature Independence Assumption - 特征独立假设8)Multinomial Naive Bayes - 多项式朴素贝叶斯9)Gaussian Naive Bayes - 高斯朴素贝叶斯10)Bernoulli Naive Bayes - 伯努利朴素贝叶斯11)Laplace Smoothing - 拉普拉斯平滑12)Add-One Smoothing - 加一平滑13)Maximum A Posteriori (MAP) - 最大后验概率14)Maximum Likelihood Estimation (MLE) - 最大似然估计15)Classification - 分类16)Feature Vectors - 特征向量17)Training Set - 训练集18)Test Set - 测试集19)Class Label - 类标签20)Confusion Matrix - 混淆矩阵•Clustering - 聚类1)Clustering - 聚类2)Centroid - 质心3)Cluster Analysis - 聚类分析4)Partitioning Clustering - 划分式聚类5)Hierarchical Clustering - 层次聚类6)Density-Based Clustering - 基于密度的聚类7)K-Means Clustering - K均值聚类8)K-Medoids Clustering - K中心点聚类9)DBSCAN (Density-Based Spatial Clustering of Applications with Noise) - 基于密度的空间聚类算法10)Agglomerative Clustering - 聚合式聚类11)Dendrogram - 系统树图12)Silhouette Score - 轮廓系数13)Elbow Method - 肘部法则14)Clustering Validation - 聚类验证15)Intra-cluster Distance - 类内距离16)Inter-cluster Distance - 类间距离17)Cluster Cohesion - 类内连贯性18)Cluster Separation - 类间分离度19)Cluster Assignment - 聚类分配20)Cluster Label - 聚类标签•K-Means - K-均值1)K-Means - K-均值2)Centroid - 质心3)Cluster - 聚类4)Cluster Center - 聚类中心5)Cluster Assignment - 聚类分配6)Cluster Analysis - 聚类分析7)K Value - K值8)Elbow Method - 肘部法则9)Inertia - 惯性10)Silhouette Score - 轮廓系数11)Convergence - 收敛12)Initialization - 初始化13)Euclidean Distance - 欧氏距离14)Manhattan Distance - 曼哈顿距离15)Distance Metric - 距离度量16)Cluster Radius - 聚类半径17)Within-Cluster Variation - 类内变异18)Cluster Quality - 聚类质量19)Clustering Algorithm - 聚类算法20)Clustering Validation - 聚类验证•Dimensionality Reduction - 降维1)Dimensionality Reduction - 降维2)Feature Extraction - 特征提取3)Feature Selection - 特征选择4)Principal Component Analysis (PCA) - 主成分分析5)Singular Value Decomposition (SVD) - 奇异值分解6)Linear Discriminant Analysis (LDA) - 线性判别分析7)t-Distributed Stochastic Neighbor Embedding (t-SNE) - t-分布随机邻域嵌入8)Autoencoder - 自编码器9)Manifold Learning - 流形学习10)Locally Linear Embedding (LLE) - 局部线性嵌入11)Isomap - 等度量映射12)Uniform Manifold Approximation and Projection (UMAP) - 均匀流形逼近与投影13)Kernel PCA - 核主成分分析14)Non-negative Matrix Factorization (NMF) - 非负矩阵分解15)Independent Component Analysis (ICA) - 独立成分分析16)Variational Autoencoder (VAE) - 变分自编码器17)Sparse Coding - 稀疏编码18)Random Projection - 随机投影19)Neighborhood Preserving Embedding (NPE) - 保持邻域结构的嵌入20)Curvilinear Component Analysis (CCA) - 曲线成分分析•Principal Component Analysis (PCA) - 主成分分析1)Principal Component Analysis (PCA) - 主成分分析2)Eigenvector - 特征向量3)Eigenvalue - 特征值4)Covariance Matrix - 协方差矩阵。
机器学习基础课件

机器学习基础课件概述机器学习是人工智能领域中的一个重要分支,它通过利用数据和统计算法来使计算机系统自动地学习和改进性能。
在过去的几年中,机器学习已经在各个领域得到广泛应用,如自然语言处理、计算机视觉和数据挖掘等。
本课件将介绍机器学习的基础知识,包括机器学习的分类、常用的算法和评估方法等。
机器学习的分类在机器学习中,根据学习方式和任务类型的不同,可以将机器学习分为以下几类:1.监督学习(Supervised Learning):监督学习通过使用带有标签的数据作为输入和输出,并训练模型来预测新数据的标签。
常见的监督学习算法有线性回归、逻辑回归、决策树和支持向量机等。
2.无监督学习(Unsupervised Learning):无监督学习是指利用无标签的数据进行模型训练和预测。
常见的无监督学习算法有聚类、降维和关联规则挖掘等。
3.半监督学习(Semi-supervised Learning):半监督学习是介于监督学习和无监督学习之间的学习方式,它同时使用带标签和无标签的数据进行模型训练。
半监督学习可以减少标记数据的需求,提高模型的性能和泛化能力。
4.强化学习(Reinforcement Learning):强化学习是通过观察环境的状态和采取行动来学习最优策略的一种学习方式。
它包括智能体、环境和奖励机制三个要素。
常见的强化学习算法有Q-Learning和深度强化学习等。
常用的机器学习算法机器学习的算法种类繁多,根据任务不同,选择合适的算法对于模型的性能和效果至关重要。
以下介绍几种常用的机器学习算法:1.线性回归(Linear Regression):线性回归是一种用于预测连续型变量的监督学习算法。
它通过拟合一个线性模型来建立输入特征与输出之间的关系。
2.决策树(Decision Tree):决策树是一种基于树结构的有监督学习算法。
它通过在特征空间中划分样本集合来进行分类或回归。
决策树具有解释性强和易于理解的优点。
利用半监督学习进行数据标注和分类

利用半监督学习进行数据标注和分类半监督学习(Semi-supervised learning)是一种机器学习方法,它的目标是利用同时标记和未标记的数据来进行训练,以提高分类的准确性。
在很多实际情况下,标记数据的获取成本非常高昂,而未标记数据的获取成本则相对较低。
因此,半监督学习可以通过有效利用未标记数据来提高分类器的性能,在实际应用中具有广泛的应用前景。
本文将分为五个部分来探讨半监督学习在数据标注和分类中的应用。
首先,我们将介绍半监督学习的基本概念和原理,然后探讨不同的半监督学习方法。
接着,我们将讨论半监督学习在数据标注和分类中的具体应用场景,并探讨其优势和局限性。
最后,我们将总结半监督学习的研究现状,并展望未来的发展方向。
一、半监督学习的基本概念和原理半监督学习是一种利用标记和未标记数据的学习方法,它可以有效地利用未标记数据来提高分类器的性能。
在监督学习中,我们通常假设标记数据包含了足够的信息来训练分类器,然而在现实应用中,标记数据的获取成本很高,因此只有很少的数据是标记的。
相对的,未标记数据的获取成本相对较低,因此利用未标记数据来提高分类器的性能是非常具有吸引力的。
半监督学习的基本原理是利用未标记数据的分布信息来帮助分类器,因为未标记数据可以提供更广泛的信息,帮助分类器更好地拟合数据分布。
一般来说,半监督学习可以分为两种方法:产生式方法和判别式方法。
产生式方法利用未标记数据的分布信息来学习数据的生成过程,例如通过混合模型或者潜在变量模型来建模数据的分布。
而判别式方法则是直接利用未标记数据的分布信息来提高分类器的性能,例如通过在数据空间中引入一些约束来拟合未标记数据。
二、半监督学习的方法半监督学习有很多不同的方法,其中比较典型的包括自训练(Self-training)、标签传播(Label propagation)、半监督支持向量机(Semi-supervised Support Vector Machine,SSVM)、半监督聚类(Semi-supervised Clustering)等。
半监督学习中的半监督聚类算法详解

半监督学习(Semi-Supervised Learning)是指在训练过程中同时利用有标签和无标签的数据进行学习。
相比于监督学习和无监督学习,半监督学习更贴近实际场景,因为在实际数据中,通常有很多无标签的数据,而标记数据的获取往往十分耗时耗力。
半监督学习可以利用未标记数据进行模型训练,从而提高模型的性能和泛化能力。
在半监督学习中,半监督聚类算法是一个重要的研究方向,它旨在利用有标签的数据和无标签的数据进行聚类,以获得更好的聚类结果。
本文将对半监督聚类算法进行详细的介绍和解析。
半监督聚类算法的核心思想是利用有标签的数据指导无标签数据的聚类过程。
一般来说,半监督聚类算法可以分为基于约束的方法和基于图的方法两类。
基于约束的方法是通过给定的一些约束条件来引导聚类过程,例如必连约束(必须属于同一类的样本必须被分到同一簇中)和禁连约束(不属于同一类的样本不能被分到同一簇中)。
基于图的方法则是通过构建样本之间的图结构来进行聚类,例如基于图的半监督学习算法中常用的谱聚类算法。
在基于图的方法中,谱聚类算法是一种常用的半监督聚类算法。
谱聚类算法首先将样本之间的相似度表示为一个相似度矩阵,然后通过对相似度矩阵进行特征分解,得到样本的特征向量,再利用特征向量进行聚类。
在半监督学习中,谱聚类算法可以通过引入有标签数据的信息来指导聚类过程,从而提高聚类的准确性。
例如,可以通过构建一个带权图,其中节点代表样本,边的权重代表样本之间的相似度,有标签的样本可以通过设置固定的标签权重来指导聚类,从而使得相似的有标签样本更有可能被分到同一簇中。
除了谱聚类算法,基于图的半监督学习还有许多其他算法,例如标签传播算法(Label Propagation)、半监督支持向量机(Semi-Supervised SupportVector Machine)等。
这些算法都是通过在样本之间构建图结构,利用图的拓扑结构和样本的相似度信息来进行半监督学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abstract
We introduce a semi-supervised support vector machine (S3 VM) method. Given a training set of labeled data and a working set of unlabeled data, S3 VM constructs a support vector machine using both the training and working sets. We use S3 VM to solve the transduction problem using overall risk minimization (ORM) posed by Vapnik. The transduction problem is to estimate the value of a classification function at the given points in the working set. This contrasts with the standard inductive learning problem of estimating the classification function at all possible values and then using the fixed function to deduce the classes of the working set data. We propose a general S3 VM model that minimizes both the misclassification error and the function capacity based on all the available data. We show how the S3 VM model for 1-norm linear support vector machines can be converted to a mixed-integer program and then solved exactly using integer programming. Results of S3 VM and the standard 1-norm support vector machine approach are compared on eleven data sets. Our computational results support the statistical learning theory results showing that incorporating working data improves generalization when insufficient training information is available. In every case, S3 VM either improved or showed no significant difference in generalization compared to the traditional approach.
Semi-Supervised Support Vector Machines
Kristin P. Bennett∗ Department of Mathematical Sciences Rensselaer Polytechnic Institute Troy, NY 12180 bennek@ Ayhan Demiriz Department of Decision Sciences and Engineering Systems Rensselaer Polytechnic Institute Troy, NY 12180 demira@
∗ This paper has been accepted for publication in Proceedings of Neural Information Processing Systems, Denver, 1998.
1
ห้องสมุดไป่ตู้
INTRODUCTION
In this work we propose a method for semi-supervised support vector machines (S3 VM). S3 VM are constructed using a mixture of labeled data (the training set) and unlabeled data (the working set). The objective is to assign class labels to the working set such that the “best” support vector machine (SVM) is constructed. If the working set is empty the method becomes the standard SVM approach to classification [20, 9, 8]. If the training set is empty, then the method becomes a form of unsupervised learning. Semi-supervised learning occurs when both training and working sets are nonempty. Semi-supervised learning for problems with small training sets and large working sets is a form of semi-supervised clustering. There are successful semi-supervised algorithms for k-means and fuzzy c-means clustering [4, 18]. Clustering is a potential application for S3 VM as well. When the training set is large relative to the working set, S3 VM can be viewed as a method for solving the transduction problem according to the principle of overall risk minimization (ORM) posed by Vapnik at the NIPS 1998 SVM Workshop and in [19, Chapter 10]. S3 VM for ORM is the focus of this paper. In classification, the transduction problem is to estimate the class of each given point in the unlabeled working set. The usual support vector machine (SVM) approach estimates the entire classification function using the principle of statistical risk minimization (SRM). In transduction, one estimates the classification function at points within the working set using information from both the training and working set data. Theoretically, if there is adequate training data to estimate the function satisfactorily, then SRM will be sufficient. We would expect transduction to yield no significant improvement over SRM alone. If, however, there is inadequate training data, then ORM may improve generalization on the working set. Intuitively, we would expect ORM to yield improvements when the training sets are small or when there is a significant deviation between the training and working set subsamples of the total population. Indeed,the theoretical results in [19] support these hypotheses. In Section 2, we briefly review the standard SVM model for structural risk minimization. According to the principles of structural risk minimization, SVM minimize both the empirical misclassification rate and the capacity of the classification function [19, 20] using the training data. The capacity of the function is determined by margin of separation between the two classes based on the training set. ORM also minimizes the both the empirical misclassification rate and the function capacity. But the capacity of the function is determined using both the training and working sets. In Section 3, we show how SVM can be extended to the semi-supervised case and how mixed integer programming can be used practically to solve the resulting problem. We compare support vector machines constructed by structural risk minimization and overall risk minimization computationally on eleven problems in Section 4. Our computational results support past theoretical results that improved generalization can be obtained by incorporating working set information during training when there is a deviation between the working set and training set sample distributions. In three of ten real-world problems the semi-supervised approach, S3 VM , achieved a significant increase in generalization. In no case did S3 VM ever obtain a significant decrease in generalization. We conclude with a discussion of more general S3 VM algorithms.