第五章 相交线平行线复习
七年级下册《第五章 相交线与平行线》单元复习

七年级下册《第五章相交线与平行线》单元复习二、知识要点(一)相交线的有关概念1、邻补角:有公共顶点和一条公共边,且一个角的一边是另一个角的一边的反向延长线,像这样的两个角互为邻补角。
2、对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这种的两个角互为对顶角。
3、垂线:两条直线相交成直角时,叫做互相垂直,其中一条直线叫做另一条直线的垂线。
4、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5、垂线的性质:(1)过一点有且只有一条直线与已知直线垂直;(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。
(二)平行线的判定与性质1、平行线:在同一平面内,不相交的两条直线叫做平行线。
同一平面内,两条不重合直线的位置关系有平行和相交。
2、平行公理:经过直线外一点有且只有一条直线与已知直线平行。
3、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也相互平行。
4、平行线的判定:判定1:同位角相等,两直线平行。
判定2:同位角相等,两直线平行。
判定3:同旁内角互补,两直线平行。
5、平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,同位角相等。
性质3:两直线平行,同旁内角互补。
(三)命题1、命题:判断一件事情的语句叫做命题。
每个命题由题设和结论两部分组成;命题分为真命题和假命题。
2、一个经过推理证实得到的真命题,叫做定理;一个命题的正确性需要经过推理,才能做出判断,这个推理过程叫做证明。
(四)平移1、平移:在同一平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移。
2、平移的特征:(1)经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化。
(2)经过平移后,对应点所连的线段平行(或在同一直线上)且相等。
第五章相交线与平行线复习总结课件讲ppt

“过一点有且只有一条直线与已知直线平行”这句话对吗?为什么?
l
P
P
l
过直线外一点……
2.平行线的判定与性质
平行线的判定
平行线的性质
1、同位角相等,两直线平行 2、内错角相等,两直线平行 3、同旁内角互补,两直线平行 4、平行于同一条直线的两条直线平行
1、两直线平行,同位角相等 2、两直线平行,内错角相等 3、两直线平行,同旁内角互补
收获的季节
1. 如图,∵∠D=∠DCF(已知) ∴_____//___( ) 2. 如图,∵∠D+∠BAD=180°(已知) ∴____//_ _( ) 3.如图∵∠B=∠DCF(已知) ∴_____//___ (同位角相等,两直线平行)
D
练一练
3.分别过点A、B、C画对边BC、 AC、AB的垂线,垂足分别为D、E、F.
B
A
C
D
E
F
4.直线AB、CD相交于点O,OE是射线 ,∠1= 32° ,∠2=58° ,则OE与AB的位置关系是_________.
垂直
E
A
O
C
B
D
1
2
∵∠AOE= 180°-∠1-∠2= 90°(平角定义) ∴OE⊥AB(垂直定义)
AD
BC
AB
DC
内错角相等,两直线平行
同旁内角互补,两直线平 行
AB
DC
3.如图,不能判别AB∥CD的条件是( ) A. ∠B+ ∠BCD=180° B. ∠1= ∠2 C. ∠3= ∠4 D. ∠B= ∠5
B
AD∥BC
3.如图,已知直线a∥b,∠1=54°,那么∠2,∠3,∠4各是多少度?
第五章相交线和平行线章节复习总结

七年级下学期数学复习第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有且有的两个角是邻补角。
邻补角的性质:邻补角。
对顶角:一个角的两边分别是另一个叫的两边的,像这样的两个角互为对顶角。
对顶角的性质:对顶角。
例1如图,直线AB,CD,EF相交于点O,∠AOE=54°,∠EOD=90°,求∠EOB,∠COB的度数。
O CBA 1ODC BA212.平面内三条直线交点的个数有个。
3.如下图,O为直线AB上一点,∠COB=26°30′,则∠1=4.如上图,直线AB,CD相交于O,∠1-∠2=85°,∠AOC=垂线:垂线:两条直线相交成两条直线相交成时,叫做互相垂直,其中一条叫做另一条的。
形成的角称为直角,直角。
垂线的性质:性质1:。
性质2:最短。
例1.如果直线b⊥a,c⊥a,那么b c。
2.与一条已知直线垂直的直线有条。
E ODCBA3.A 村正南有一条公路MN ,由A 村到公路最近的路线是经过点A 作AD ⊥MN ,垂足为点D ,这种设计的理由是 ;B 村与A 村相邻,两村村民来往的最短路线是线段AB 的长,理由是 。
4.已知∠AOB 与∠BOC 互为邻补角,OD 是∠AOB 的平分线,OE 在∠BOC内,∠BOE=21∠EOC ,∠DOE=72°,求∠EOC 的度数。
平行线:平行线:在在 内, 的两条直线叫做平行线。
平行公理: 。
平行的传递性: 。
例1.在同一平面内,过直线l 外的两点A ,B 所作直线与直线l 的位置关系30°北北BA是 同位角、内错角、同旁内角:结合右边图形,哪些是同位角,内错角和同旁内角 同位角: 内错角: 同旁内角:例.1.一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,则∠ABC 等于( )A.135°B.105°C.75°D.45° 2.由点A 测得点B 的方向是平行线的判定:判定1: 。
七年级数学下册第五章相交线与平行线复习

B
二、问题研讨
3.如图,不能判别AB∥CD的条件是( ) A. ∠B+ ∠BCD=180° B. ∠1= ∠2 C. ∠3= ∠4 D. ∠B= ∠5
4.如图,已知AOB是一条直线,OM平分∠BOC,ON平分 ∠AOC,则图中互补的角有几对? 则其中互余的角有几对?
7. 如图OA⊥OC,OB⊥OD,且∠BOC=α,则∠AOD=________
B
1800-α
A
B
C
D
O
如图,已知AB∥CD,直线EF分别交AB、CD于点E 、F, ∠BEF的平分线与∠DFE的平分线相交于点P,你能说明∠P的度数吗?为什么?
如图,在长方形ABCD中,∠ADB=20°, 现将这一长方形纸片沿AF折叠,若使AB’ ∥BD, 则折痕AF与AB的夹角∠BAF应为多少度?
如图,已知DE、BF分别平分∠ADC 和∠ABC,∠1 =∠2, ∠ADC= ∠ABC 说明AB∥CD的理由。
11. 如图,直线EF过点A, D是BA延长线上的点 ,具备什么条件时,可以判定EF BC ? 为什么 ?
B
C
E
F
D
A
B
3对
4对
01
同角的补角相等;
02
等角的余角相等;
03
互补的角是邻补角;
04
对顶角相等;
说出下角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A. 1个 B. 2个 C. 3个 D. 4个
相交线与平行线
单击此处添加副标题
七年级第二学期期中复习系列
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
新版七下数学第五章相交线与平行线复习题五套

第五章相交线与平行线专题(一)相交线1.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠BOC=80°,求∠BOD和∠AOE的度数.2.如图,三条直线相交于点O,则∠1+∠2+∠3等于()A.90°B.120°C.180°D.360°,(第2题图)),(第3题图))3.如图,三条直线AB,CD,EF相交于点O,若∠BOE=4∠BOD,∠AOE=100°,则∠AOC 等于()A.30°B.20°C.15°D.10°4.如图,AB和CD相交于点O.(1)若∠1+∠3=50°,则∠3=__ __;(2)若∠1∶∠2=2∶3,则∠3=__ __;(3)若∠2-∠3=70°,则∠3=__ __.5.如图,两条直线AB,CD相交于点O,OE平分∠BOC,若∠1=30°,∠2=___ _,∠3=__ __.6.如图所示,直线AB,CD,EF相交于点O.(1)试写出∠AOC,∠AOE,∠EOC的对顶角;(2)试写出∠AOC,∠AOE,∠EOC的邻补角;(3)若∠AOC=40°,求∠BOD,∠BOC的度数.7.如图,一长方形纸片ABCD沿折痕EF对折,得到点D的对应点D′,点C的对应点C′,若∠BFE=50°,试求∠BFC′的度数.8.如图所示,已知直线AB,CD相交于点O,OE平分∠BOD,若∠3∶∠2=8∶1,求∠AOC 的度数.第五章相交线与平行线专题(二)平行线的判定1.如图所示,直线a ,b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件为( )A .①②B .①③C .①④D .③④2.如图所示,要得到DE ∥BC ,则需要的条件为( )A .CD ⊥AB ,GF ⊥AB B .∠4+∠5=180°C .∠1=∠3D .∠2=∠33.对于图中标记的各角,下列条件能够推理得到a ∥b 的是( )A .∠1=∠2B .∠2=∠4C .∠3=∠4D .∠1+∠4=180°4.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A +∠2=180°B .∠3=∠AC .∠1=∠4D .∠1=∠A5.)如图所示,下列判断不正确的是( )A .∵∠1=∠2,∴AE ∥BDB .∵∠1=∠2,∴AB ∥EDC .∵∠3=∠4,∴AB ∥CD D .∵∠5=∠BDC ,∴AE ∥BD6.如图,能说明AB ∥DE 的有( )①∠1=∠D ;②∠CFB +∠D =180°;③∠B =∠D ;④∠D =∠BFD.A .1个B .2个C .3个D .4个(第1题图)(第2题图) (第5题图)(第6题图)7.如图,给出下面的推理:①因为∠B =∠BEF ,所以AB ∥EF ;②因为∠B =∠CDE , 所以AB ∥CD ;③因为∠B +∠BDC =180°,所以AB ∥EF ;④因为AB ∥CD ,CD ∥EF , 所以AB ∥EF.其中正确的推理是( )A .①②③B .①②④C .①③④D .②③④9.如图,下列推理正确的是( )A .∵∠1=∠2,∴AB ∥CD B .∵∠1+∠2=180°,∴AB ∥CDC .∵∠3=∠4,∴AB ∥CD D .∵∠3+∠4=180°,∴AB ∥CD10.如图,已知直线EF 分别交CD ,AB 于点M ,N ,且∠EMD =65°,∠MNB =115°,则下列结论正确的是( )A .AE ∥CFB .AB ∥CDC .∠A =∠D D .∠E =∠F11.如图,BD 平分∠ABC ,若∠1=∠2,则( )A .AB ∥CD B .AD ∥BC C .AD =BC D .AB =CD12.如图所示,AC ⊥BC ,垂足为C ,∠B =50°,∠ACD =40°,则AB 与CD 的位置关系是 AB ∥CD__.13.如图所示,下列条件中:(1)∠B +∠BCD =180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B =∠5.能判定AB ∥CD的条件有 .(填序号),(第9题图)) ,(第10题图)) ,(第11题图)) ,(第12题图))14.(8分)如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°,直线AB,CD有何位置关系?说明理由.16.(10分)如图,已知直线a,b,c被直线d,e所截,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?17.(12分)如图,AC⊥EC,B,C,D在同一直线上,∠A=∠1,∠E=∠2,直线AB与DE平行吗?试说明理由.第五章相交线与平行线专题(三)平行线的性质1.如图,直线m ∥n ,∠α为( )A .70 B .65° C .50° D .40°2.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =70°,则∠FAG 的度数是( )A .155°B .145°C .110°D .35°3.如图,已知AB ∥CD ,∠1=130°,则∠2=__ .4.如图,EF ∥BC ,AC 平分∠BAF ,∠B =80°,求∠C 的度数5.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )A .60°B .50°C .40°D .30°6. 6.一张长方形的纸条,按如图方式折叠一下,已知∠3=120°,则∠1的度数为( )7.A .30° B .60° C .90° D .120°8.9. ,(第1题图)) ,(第2题图)) ,(第5题图)) ,(第6题图))10.7.(4分)如图,∠1=50°,∠2=140°,∠C =50°,则∠B =____.9.某次考古发掘出的一个梯形残缺玉片如下图,工作人员从玉片上量得∠A =115°,∠D =100°,已知梯形的两底AD ∥BC ,请你帮助工作人员求出另外两个角的度数,并说明理由.10.如图所示,点B 是△ADC 的边AD 的延长线上一点,DE ∥AC ,若∠C =50°, ∠BDE =60°,则∠CDB 的度数等于( )A .70°B .100°C .110°D .120°11.如图所示,已知AB ∥EF ∥DC ,EG ∥BD ,则图中与∠1相等的角共有( )A .6个B .5个C .4个D .2个12.如图所示,已知AB ∥CD ,BC ∥DE ,则∠B +∠D 的度数为____.13.如图,AC ∥BD ,AE 平分∠BAC 交BD 于点E ,若∠1=64°,则∠2=___ _.(第10题图) (第11题图), ( 第 7 题图 )14.(12分)如图所示,已知∠ABC=40°,∠ACB=60°,BO,CO分别平分∠ABC,∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.15.(12分)如图,直线AD与AB,CD相交于A,D两点,EC,BF与AB,CD相交于点E,C,B,F,如果∠1=∠2,∠B=∠C.小明在图上把两组相等角的信息标注出来后,略加分析,便发现CE∥BF,同桌的小慧说:“不光有这个发现,我还能得到∠A=∠D呢?”小明再深入其中,很快也明白了小慧是怎么得到∠A=∠D的了.你能帮助他们写出过程吗?16.(12分)如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在AB上.(1)试找出∠1,∠2,∠3之间的关系并说明理由;(2)如果点P在A,B两点之间运动时,问∠1,∠2,∠3之间的关系是否发生变化?(3)如果点P在A,B两点外侧运动时,试探究∠1,∠2,∠3之间的关系(点P和A,B不重合).第五章相交线与平行线专题(四)平行线的性质与判定的综合运用1.如图,直线AB ,CD 相交于点O ,OT ⊥AB 于点O ,CE ∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT 的度数为( ) A .30° B .45° C .60° D .120°2.如图,AB ∥CD ,∠DFE =135°,则∠ABE 的度数是( )A .30°B .45C .60°D .90°3.如图,a ,b ,c 为三条直线,且a ⊥c ,b ⊥c ,若∠1=70°,则∠2的度数为( )A .70°B .90°C .110°D .80°4.如图所示,已知∠1=∠2=∠3=55°,则∠4的度数是( )A .110°B .115°C .120°D .125°5.(4分)如图所示,已知∠1=∠2,∠3=80°,则∠4等于( )A .80°B .70°C .60°D .50°6.(4分)如图,已知直线a ∥b ,∠1=40°,∠2=60°,则∠3等于( )A .100°B .60°C .40°D .20°(第1题图)(第2题图) (第3题图)(第4题图)7.将一副直角三角板如图所示放置,使含30°角的三角板短直角边和含45°角 的三角板的一条直角边重合,则∠1的度数为__.8.如图所示是一大门的栏杆,AE 为地面,BA ⊥AE 于点A ,CD ∥AE ,则∠ABC +∠BCD= _9.(8分)如图,直线AB ,CD 分别与直线AC 相交于点A ,C ,与直线BD 相交于点B ,D.若∠1=∠2,∠3=75°,求∠4的度数.10.如图,AB ∥CD ,AE 交CD 于C ,∠A =34°,∠DEC =90°,则∠D 的度数为() A .17° B .34° C .56° D .124°11.如图,已知AB ∥CD ,∠C =65°,∠E =30°,则∠A 的度数为( )A .30°B .32.5°C .35°D .37.5°12.如图所示,AB ∥CD ∥EF ,则∠BAD +∠ADE +∠DEF 等于( )A .180°B .270°C .360°D .540°13.如图所示,∠A =60°,∠4=45°,DE ∥BC ,EF ∥AB ,则∠1=___ _, ∠2=__ __, ∠3=__ _,∠B =__ _,∠C =___ _. (第5题图) (第6题图,(第10题图)) ,(第11题图)(第7题图) (第8题图)14.如图,直线l1∥l2∥l3,点A ,B ,C 分别在直线l1,l2,l3上.若∠1=70°,∠2=50°,则∠ABC =____.15.如图,l ∥m ,等边△ABC 的顶点A 在直线m 上,则∠α=__.16.(8分)如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3.请问:AD 平分∠BAC 吗?若平分,请说明理由.17.(10分)如图所示,CD ⊥AB ,垂足为D ,F 是BC 上任意一点,EF ⊥AB ,垂足为E ,且∠1=∠2,∠3=80°,求∠BCA 的度数.18.(12分)如图所示,∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的大小关系,并(第12题图)(第13题图) ,(第14题图)),(第15题图)说明你的理由.第五章相交线与平行线专题(五)平行线的性质与判定变式训练【教材母题】(教材P36第8题(2)改编)如图,∠1+∠2=180°,∠3=108°,求∠4的度数.变式1.(2014·菏泽)如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°变式2.(2014·邵阳)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°,(第1题图)),(第2题图))变式3.(2014·聊城)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53°B.55°C.57°D.60°变式4.(2014·遵义)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=() A.30°B.35°C.36°D.40°,(第3题图)),(第4题图))变式5.如果一个角的两边分别与另一个角的两边平行,且一个角比另一个角的3倍少40°,则这两个角的度数分别为__变式6.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.变式7.如图所示,已知AD⊥BC于D,E是AB上一点,EF⊥BC于F,且∠1=∠2,试判断∠B与∠CDG的大小关系,并说明理由.变式8.如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.变式9.如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.变式10.若AB∥CD,∠1=∠2,∠3=∠4,AD与BC平行吗?为什么?变式11.如图,已知∠1=∠2,∠MAE=45°,∠FEG=15°,∠NCE=75°,EG平分∠AEC,试说明AB∥EF∥CD.变式12.(探究题)(1)如图①,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图②的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图③的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图④中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?。
第五章相交线与平行线复习课件(共37张ppt)

如图,两平面镜а、β的夹角为θ,入射光线AO平行于β入
射到а上,经两次反射后的反射光线 O' B 平行于а,则角
θ=__6_0__0度
分析 : 依题意有OA // ,O ' B // ,
а
B 且1 2,3 4,
O1 2
由OA // 得1 A 由O ' B //得4 ,5 2
2. 对顶角: (1)两条直线相交所构成的四个角中,
有公共顶点但没有公共边的两个角是对顶角。
如图(2). 1与2, 3与4是对顶角。
21
(1)
(2)一个角的两边分别是另一个角的两边的 反向延长线,这两个角是对顶角。
3. 邻补角的性质: 同角的补角相等。
1与3互补,2与3互补
3 12
4
种:(1)相交; (2)平行。 3. 平行线的基本性质: (1) 平行公理(平行线的存在性和唯一性)
经过直线外一点,有且只有一条直线与已知直线平行。 (2) 推论(平行线的传递性) 如果两条直线都和第三条直线平行, 那么这两条直线也互相平行。 4.同位角、内错角、同旁内角的概念 同位角、内错角、同旁内角,指的是一条直线分别与两条直线 相交构成的八个角中,不共顶点的角之间的特殊位置关系。 它们与对顶角、邻补角一样,总是成对存在着的。
内错角相等,两直线平行。 同旁内角互补,两直线平行。 在这五种方法中,定义一般不常用。
读下列语句,并画出图形
• 点p是直线AB外的一点, 直线CD经过点P,且与直 线AB平行;
• 直线AB、CD是相交直线, 点P是直线AB外的一点, 直线EF经过点P与直线 AB平行,与直线CD交于E.
A
P.
A
D
.P
第五章相交线与平行线期末复习

DBEACO 321EAC BD 第五章 相交线与平行线期末复习一、本章知识结构图:二、例题与习题:(一)对顶角和邻补角:1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图1,直线AB 、CD 、EF 都经过点O , 图中有 对对顶角。
3.如图1-2,若∠AOB 与∠BOC 是一对邻补角,OD 平分∠AOB ,OE 在∠BOC 内部,并且∠BOE =12∠COE ,∠DOE =72°。
求∠COE 的度数。
(二)垂线:已知:如图,在一条公路l 的两侧有A 、B 两个村庄.<1>现在乡政府为民服务,沿公路开通公交汽车,并在路边修建一个公共汽车站P ,同时修建车站P 到A 、B 两个村庄的道路,并要求修建的道路之和最短,请你设计出车站的位置,在图中画出点P 的位置,(保留作图的痕迹).并在后面的横线上用一句话说明道理. <2>为方便机动车出行,A 村计划自己出资修建一条由本村直达公路l 的机动车专用道路,你能帮助A 村节省资金,设计出最短的道路吗?,请在图中画出你设计修建的最短道路,并在后面的横线上用一句话说明道理. .三、同位角、内错角和同旁内角的判断1.如图3-1,按各角的位置,下列判断错误的是( )A 、∠1与∠2是同旁内角B 、∠3与∠4是内错角C 、∠5与∠6是同旁内角D 、∠5与∠8是同位角 2.如图3-2,与∠EFB 构成内错角的是 ,与∠FEB 构成同旁内角的是 .图3-2 图4-1 图4-2四、平行线的判定和性质:1.如图4-1, 若∠3=∠4,则 ∥ ;若AB ∥CD,则∠ =∠ 。
2.已知两个角的两边分别平行,其中一个角为52°,则另一个角为_____.3.两条平行直线被第三条直线所截时,产生的八个角中,角平分线互相平行的两个角是( )A.同位角B.同旁内角C.内错角D. 同位角或内错角4.如图4-2,要说明 AB ∥CD ,需要什么条件?试把所有可能的情况写出来,并说明理由。
第五章 相交线与平行线复习题附解析

第五章 相交线与平行线复习题附解析一、选择题1.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 22.下列各命题中,原命题成立,而它逆命题不成立的是( )A .平行四边形的两组对边分别平行B .矩形的对角线相等C .四边相等的四边形是菱形D .直角三角形中,斜边的平方等于两直角边的平方和3.如图,直角三角形ABC 的直角边AB =6,BC =8,将直角三角形ABC 沿边BC 的方向平移到三角形DEF 的位置,DE 交AC 于点G ,BE =2,三角形CEG 的面积为13.5,下列结论:①三角形ABC 平移的距离是4;②EG =4.5;③AD ∥CF ;④四边形ADFC 的面积为6.其中正确的结论是A .①②B .②③C .③④D .②④ 4.如图,直线a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=60°,则∠2的度数为( )A .45°B .35°C .30°D .25°5.如图,四边形ABCD 是正方形,直线a ,b ,c 分别通过A 、D 、C 三点,且a ∥b ∥c .若a 与b 之间的距离是3,b 与c 之间的距离是6,则正方形ABCD 的面积是( )A.36 B.45 C.54 D.646.如图,已知AB∥CD,BE和DF分别平分∠ABF和∠CDE,2∠E-∠F=48°,则∠CDE的度数为( ).A.16°B.32°C.48°D.64°7.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为()A.1个B.2个C.3个D.4个8.光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=()A.61°B.58°C.48°D.41°9.命题“垂直于同一条直线的两条直线互相平行”的条件是()A.垂直B.两条直线互相平行C.同一条直线D.两条直线垂直于同一条直线10.如图,△ABC经平移得到△EFB,则下列说法正确的有()①线段AC的对应线段是线段EB;②点C的对应点是点B;③AC∥EB;④平移的距离等于线段BF的长度.A.1 B.2 C.3 D.4二、填空题11.如图,直线l1∥l2∥l3,等边△ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角∠1=25°,则边AB与直线l1的夹角∠2=________.12.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=_____(度).13.如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.14.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.15.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有____对,内错角有_____对,同旁内角有_____对;(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有____对,内错角有___对,同旁内角有___对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有______对,内错角有_______对,同旁内角有______对.(用含n的式子表示)16.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.17.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为________.18.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=__________°.19.如图,∠AOB=60°,在∠AOB的内部有一点P,以P为顶点,作∠CPD,使∠CPD的两边与∠AOB的两边分别平行,∠CPD的度数为_______度.20.跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳l格或2格,那么人从格外跳到第6格可以有_________种方法.三、解答题21.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED . 求证:∠BED =∠B +∠D .彤彤是这样做的:过点E 作EF //AB ,则有∠BEF =∠B .∵AB //CD ,∴EF //CD .∴∠FED =∠D .∴∠BEF +∠FED =∠B +∠D .即∠BED =∠B +∠D .请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a //b ,点A ,B 在直线a 上,点C ,D 在直线b 上,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,且BE ,DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若∠ABC =60°,∠ADC =70°,求∠BED 的度数; (2)如图2,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,直接写出∠BED 的度数(用含有α,β的式子表示).22.如图①,已知直线12l l //,且3l 和12,l l 分别相交于,A B 两点,4l 和12,l l 分别相交于,C D 两点,点P 在线段AB 上,记1 23ACP BDP CPD ∠∠∠∠∠∠=,=,=.(1)若120,355︒︒∠=∠=,则2∠=_____;(2)试找出123∠∠∠,,之间的数量关系,并说明理由;(3)应用(2)中的结论解答下列问题;如图②,点A 在B 处北偏东42︒的方向上, 若88BAC ︒∠=,则点 A 在C 处的北偏西_____的方向上;(4)如果点P 在直线3l 上且在,A B 两点外侧运动时,其他条件不变,试探究1 23∠∠∠,,之间的关系(点 P 和,A B 两点不重合),直接写出结论即可.23.已知AB ∥CD ,点C 在点D 的右侧,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 相交于点E .(1)如图1,当点B 在点A 的左侧时,①若∠ABC =50º,∠ADC =70º,求∠BED 的度数;②请直接写出∠BED 与∠ABC ,∠ADC 的数量关系;(2)如图2,当点B 在点A 的右侧时,试猜想∠BED 与∠ABC ,∠ADC 的数量关系,并说明理由.24.已知直线AB CD ∥,直线EF 与直线AB 、CD 分别相交于点E 、F .(1)如图1,若160∠=︒,求2∠,3∠的度数;(2)若点P 是平面内的一个动点,连接PE 、PF ,探索EPF ∠、PEB ∠、PFD ∠之间的数量关系;①当点P 在图2的位置时,请写出EPF ∠、PEB ∠、PFD ∠之间的数量关系并证明; ②当点P 在图3的位置时,请写出EPF ∠、PEB ∠、PFD ∠之间的数量关系并证明; ③当点P 在图4的位置时,请直接写出EPF ∠、PEB ∠、PFD ∠之间的数量关系.25.问题情境:如图1,//AB CD ,128PAB ∠=︒,124PCD ∠=︒,求APC ∠的度数.小明的思路是过点P 作//PE AB ,通过平行线性质来求APC ∠.(1)按照小明的思路,写出推算过程,求APC ∠的度数.(2)问题迁移:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,当点P 在线段OB 上时,请直接写出APC ∠与α、β之间的数量关系.26.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)猜想BCD ∠与ACE ∠的数量关系,并说明理由;(2)若3BCD ACE ∠=∠,求BCD ∠的度数;(3)若按住三角板ABC 不动,绕顶点C 转动三角DCE ,试探究BCD ∠等于多少度时//CE AB ,并简要说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【详解】解:由图可知:矩形ABCD 中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).故选B .2.B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B.【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.3.B解析:B【解析】分析:(1)对应线段的长度即是平移的距离;(2)根据EC的长和△CEG的面积求EG;(3)平移前后,对应点的连线平行且相等;(4)根据平行四边形的面积公式求.详解:(1)因为点B,E是对应点,且BE=2,所以△ABC平行的距离是2,则①错误;②根据题意得,13.5×2=(8-2)EG,解得EG=4.5,则②正确;③因为A,D是对应点,C,F是对应点,所以AD∥CF,则③正确;④平行四边形ADFC的面积为AB·CF=AB·BE=6×2=12,则④错误.故选B.点睛:本题考查了平移的性质,平移的性质有:①平移只改变图形的位置,不改变图形的形状和大小;②平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等,对应角相等;对应点连线平行(或在同一条直线上)且相等.4.C解析:C【分析】由a与b平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.【详解】【解答】解:∵a∥b,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C.【点睛】本题考查了根据平行线的性质求角的度数,利用直角转化角是一种比较常见的方法,在一条直线上,3个角共顶点,且有一个角为直角,则另两个角的和为90°.5.B解析:B【分析】过A 作AM ⊥直线b 于M ,过D 作DN ⊥直线c 于N ,求出∠AMD =∠DNC =90°,AD =DC ,∠1=∠3,根据AAS 推出△AMD ≌△CND ,根据全等得出AM =CN ,求出AM =CN =4,DN =8,在Rt △DNC 中,由勾股定理求出DC 2即可.【详解】解:如图:过A 作AM ⊥直线b 于M ,过D 作DN ⊥直线c 于N ,则∠AMD =∠DNC =90°,∵直线b ∥直线c ,DN ⊥直线c ,∴∠2+∠3=90°,∵四边形ABCD 是正方形,∴AD =DC ,∠1+∠2=90°,∴∠1=∠3,在△AMD 和△CND 中1390AMD CND AD CD ⎧∠=∠⎪∠=∠=︒⎨⎪=⎩, ∴△AMD ≌△CND (AAS ),∴AM =CN ,∵a 与b 之间的距离是3,b 与c 之间的距离是6,∴AM =CN =3,DN =6,在Rt △DNC 中,由勾股定理得:DC 2=DN 2+CN 2=32+62=45,即正方形ABCD 的面积为45,故选:B .【点睛】本题主要考查了根据平行线的性质证明三角形全等,准确分析是解题的关键.6.B解析:B【解析】【分析】已知BE和DF分别平分∠ABF和∠CDE,根据角平分线分定义可得∠ABE=12∠ABF,∠CDF=12∠CDE;过点E作EM//AB,点F作FN//AB,即可得////AB CD EM//FN,由平行线的性质可得∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,由此可得∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,又因2∠BED-∠BFD=48°,即可得2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,由此即可求得∠CDE=32°.【详解】∵BE和DF分别平分∠ABF和∠CDE,∴∠ABE=12∠ABF,∠CDF=12∠CDE,过点E作EM//AB,点F作FN//AB,∵//AB CD,∴////AB CD EM//FN,∴∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,∴∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,∵2∠BED-∠BFD=48°,∴2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,∴∠CDE=32°.故选B.【点睛】本题考查了平行线的性质,根据平行线的性质确定有关角之间的关系是解决问题的关键. 7.B解析:B【分析】根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形;③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选B.【点睛】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.8.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B.【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.9.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.10.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.二、填空题11.【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35解析:035【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.12.75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.13.68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.14.24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和解析:24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和E有2对;A和F有2对.B和C有2对;B和D有2对;B和E有2对;B和F没有同旁内角.C和D有2对,C和E没有同旁内角,C和F有2对.D和E有2对;D和F有2对.E和F有2对.共有2×12=24对.故答案是:24.【点睛】本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键. 15.(1)4,2,2;(2)12,6,6;(3)2n(n-1),n(n-1),n(n-1)【解析】试题分析:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都解析:(1)4,2,2;(2)12,6,6;(3)2n(n-1),n(n-1),n(n-1)【解析】试题分析:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都在截线的两侧,又分别处在被截的两条直线中间的位置的角,根据同旁内角是两个角都在截线的同旁,又分别处在被截的两条直线中间的位置的角,可得答案.试题解析:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有4对,内错角有 2对,同旁内角有 2对.(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有 12对,内错角有 6对,同旁内角有 6对.(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有2n(n-1)对,内错角有 n(n-1)对,同旁内角有n(n-1)对,点睛:本题考查了同位角、内错角、同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.16.50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC 内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线解析:50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线BD平分∠FBC,∴∠5=12(180°﹣∠4)=12(180°﹣80°+2x)=50°+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5=180°﹣x﹣(80°﹣2x)﹣(50°+x)=180°﹣x﹣80°+2x﹣50°﹣x=50°.故答案为50°.点睛:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并理清图中各角度之间的关系是解题的关键.17.45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故答案为45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).18.30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA平分∠EOC,∴∠AOC=∠EOC=解析:30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA平分∠EOC,∴∠AOC=12∠EOC=30°(角平分线定义),∴∠BOD=30°(对顶角相等).故答案为:30.【点睛】本题考查由角平分线的定义,结合补角的性质,易求该角的度数.19.60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:(1)如图1,,(两直线平行,同位角相等),(两直线平行,内错解析:60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:PC OB PD OA,(1)如图1,//,//∠︒(两直线平行,同位角相等),∴=∠=AOBPDB60CPD∠︒(两直线平行,内错角相等);∴=∠=PDB60PC OB PD OA,(2)如图2,//,//∴=∠=∠︒(两直线平行,同位角相等),AOBPDB60∠=︒-∴∠=︒(两直线平行,同旁内角互补);DP D180120C P B∠的度数为60︒或120︒,综上,CPD故答案为:60或120.【点睛】本题考查了平行线的性质,依据题意,正确分两种情况讨论是解题关键.20.8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1解析:8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1格时,1种方法;当有1次跳2格,其他全部1格,有4种方法;当有2次跳2格时,其他全部1格,有3种方法;不存在3次或者更多跳2格的情况综上共有1+4+3=8种方法.【点睛】本题考查数列的递推式,实际上我们解题时抓住实际问题的本质,写出满足条件的数列,利用数列的递推式写出结果.三、解答题21.(1)65°;(2)11 18022αβ︒-+【分析】(1)如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考彤彤思考问题的方法即可求∠BED的度数;(2)如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考彤彤思考问题的方法即可求出∠BED的度数.【详解】(1)如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=30°,∠EDC=12∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;(2)如图2,过点E作EF∥AB,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD ,∴EF ∥CD ,∴∠FED =∠EDC .∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣12α +12β. 答:∠BED 的度数为180°﹣12α +12β. 【点睛】 本题考查了平行线的判定与性质以及角平分线的定义,解决本题的关键是熟练掌握平行线的判定与性质.22.(1)35︒;(2)123∠+∠=∠,理由见解析;(3)46︒;(4)当P 点在A 的上方时,321∠=∠-∠,当P 点在B 的下方时,312∠=∠-∠.【分析】(1)由题意直接根据平行线的性质和三角形内角和定理进行分析即可求解; (2)由题意过点P 作//PM AC ,进而利用平行线的性质进行分析证明即可;(3)根据题意过A 点作//AF BD ,则////A BD CE ,进而利用平行线的性质即可求解;(4)根据题意分当P 点在A 的上方与当P 点在B 的下方两种情况进行分类讨论即可.【详解】解:()1∵12l l //,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD 中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2,则有∠2=∠3-∠1=35︒,故答案为:35︒;()2123∠+∠=∠理由如下:过点P 作//PM AC//AC BD////AC PM BD ∴12CPM DPM ∴∠=∠∠=∠,12CPM DPM CPD ∴∠+∠=∠+∠=∠()3过A 点作//AF BD ,则////A BD CE ,则BAC DBA ACE ∠∠+∠=,故答案为:46︒;()4当P 点在A 的上方时,如图 2,∴∠1=∠FPC .∵14//l l ,∴2//PF l ,∴∠2=∠FPD∵∠CPD=∠FPD-∠FPC∴∠CPD=∠2-∠1,即321∠=∠-∠.当P 点在B 的下方时,如图 3,∴∠2=∠GPD∵12l l //,∴1//PG l ,∴∠1=∠CPG∵∠CPD=∠CPG-∠GPD∴∠CPD=∠1-∠2,即312∠=∠-∠.【点睛】本题考查平行线的判定与性质,利用了等量代换的思想,熟练掌握平行线的判定与性质是解答本题的关键.23.(1)①∠BED=60º;②∠BED=12∠ABC+12∠ADC;(2)∠BED=180º-1 2∠ABC+12∠ADC,理由见解析.【分析】(1)①过点E作EF∥AB,然后说明AB∥CD∥EF,再运用平行线的性质、角平分线的性质和角的和差即可解答;②利用平行线的性质和角平分线的性质即可确定它们的关系.(2)过点E作EF∥AB,再运用平行线的性质、角平分线的定义和角的和差即可确定它们的关系.【详解】(1)①如图1,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF,∠EDC=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∴∠ABC=50º,∠ADC=70º∴∠ABE=12∠ABC=150252⨯=°°,∠EDC=12∠ADC=170352⨯︒=︒, ∴∠BEF=25º,∠DEF=35º,∴∠BED=∠BEF+∠DEF=25º+35º=60º;②∵AB ∥CD∴AB ∥CD ∥EF∴∠ABE=∠BEF=12∠ABC ,∠EDC=∠DEF=12∠ADC ;. ∴∠BED=∠BEF +∠DEF =12∠ABC+12∠ADC ∴∠BED=12∠ABC+12∠ADC (2)如图2,过点E 作EF ∥AB .∵AB ∥CD∴AB ∥CD ∥EF∴∠EDC=∠DEF ,∵∠ABE+∠BEF=180º,∴∠BEF=180º-∠ABE .∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠ABE=12∠ABC ,∠DEF=12∠ADC , ∴∠BED=∠BEF+∠DEF=180º-12∠ABC+12∠ADC .【点睛】本题考查了平行线的判定与性质,添加辅助线构造平行线并灵活利用平行线的性质是解答本题的关键.24.(1)360∠=︒;(2)①EPF PEB PFD ∠=∠+∠,证明见解析;②360EPF PEB PFD ︒∠+∠+∠=,证明见解析;③EPF PEB PFD ∠=∠-∠或EPF PFD PEB ∠+∠=∠.【分析】(1)根据对顶角相等求∠2,根据两直线平行,同位角相等求∠3;(2)①过点P 作MN ∥AB ,根据平行线的性质得∠EPM =∠PEB ,且有MN ∥CD ,所以∠MPF =∠PFD ,然后利用等式性质易得∠EPF =∠PEB +∠PFD .②③的解题方法与①一样,分别过点P 作MN ∥AB ,然后利用平行线的性质得到三个角之间的关系.【详解】(1)解:∵12∠=∠,160∠=︒,∴260∠=︒;∵AB CD ∥,∴3160∠=∠=︒ .(2)①EPF PEB PFD ∠=∠+∠.过点P 作MN AB ,则EPM PEB ∠=∠.∵AB CD ∥,MN AB , ∴MN CD ∥,∴MPF PFD ∠=∠,∴EPM MPF PEB PFD ∠+∠=∠+∠,即EPF PEB PFD ∠=∠+∠.②360EPF PEB PFD ︒∠+∠+∠=,过点P 作MN AB ,则180PEB EPN ∠+∠=︒,∵AB CD ∥,MN AB , ∴MN CD ∥,∴180NPF PFD ∠+∠=︒,∴360PEB EPN NPF PFD ∠+∠+∠+∠=︒.即360EPF PEB PFD ︒∠+∠+∠=.③EPF PEB PFD ∠=∠-∠或EPF PFD PEB ∠+∠=∠.写对一种即可.理由:如图4,过点P 作PM ∥AB ,∵AB ∥CD ,MP ∥AB ,∴MP∥CD,∴∠PEB=∠MPE,∠PFD=∠MPF,∵∠EPF+∠FPM=∠MPE,∴∠EPF+∠PFD=∠PEB.【点睛】本题主要考查了平行公理的推论和平行线的性质,结合图形作出辅助线构造出三线八角是解决此题的关键.25.(1)108°;(2)∠APC=α+β,理由见解析;(3)∠APC=β-α.【分析】(1)过P作PE∥AB,先推出PE∥AB∥CD,再通过平行线性质可求出∠APC;(2)过P作PE∥AB交AC于E,先推出AB∥PE∥DC,然后根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案;(3)过点P作PE∥AB交OA于点E,同(2)中方法根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°;(2)∠APC=α+β.理由如下:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)∠APC=β-α.理由如下:过点P作PE∥AB交OA于点E,同(2)可得,α=∠APE ,β=∠CPE ,∴∠APC=∠CPE-∠APE=β-α.【点睛】本题主要考查了平行线的性质与平行公理,解题的关键是过拐点作平行线,利用平行线的性质解决问题.26.(1)180BCD ACE ∠+∠=︒,理由详见解析;(2)135°;(3)BCD ∠等于150︒或30时,//CE AB .【分析】(1)依据∠BCD=∠ACB+∠ACD=90°+∠ACD ,即可得到∠BCD+∠ACE 的度数;(2)设∠ACE=α,则∠BCD=3α,依据∠BCD+∠ACE=180°,即可得到∠BCD 的度数; (3)分两种情况讨论,依据平行线的性质,即可得到当∠BCD 等于150°或30°时,CE//4B.【详解】解:(1)180BCD ACE ∠+∠=︒,理由如下:90BCD ACB ACD ACD ∠=∠+∠=︒+∠,∴90BCD ACE ACD ACE ∠+∠=︒+∠+∠9090180=︒+︒=︒;(2)如图①,设ACE α∠=,则3BCD α∠=,由(1)可得180BCD ACE ∠+∠=︒,∴3180αα+=︒,∴45α=,∴3135BCD α∠==︒;(3)分两种情况:①如图1所示,当//AB CE 时,180120BCE B ∠=︒-∠=︒, 又90DCE ∠=︒,∴36012090150BCD ∠=︒-︒-︒=︒;②如图2所示,当//AB CE 时,60BCE B ∠=∠=︒, 又90DCE ∠=︒,∴906030BCD ∠=︒-︒=︒.综上所述,BCD ∠等于150︒或30时,//CE AB .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O'
β
所以∠3=60°
即θ =60°
6、两直线平行,同位角的平分线互相平行。
如图,已知AB∥CD,MN交分别AB、 M CD于E、F,EG、FH分别平分∠MEG A 和 ∠EFD,求证:EG ∥ FH
1
G 2
E
B H
D
C
F N
7、两直线平行,内错角的平分线互相平行。
如图,已知AB∥CD,MN交分别AB、 M CD于E、F,EG、FH分别平分∠AEN A 和 ∠EFD,求证:EG ∥ FH
知识回顾:六
平行线的判定:
1、根据定义。(不常用) 2、同位角相等,两直线平行。 3、内错角相等,两直线平行。
4、同旁内角互补,两直线平行。
5、平行于同一条直线的两条直线平行。 (平行线的传递性) 6、垂直于同一条直线的两条直线平行。
知识回顾:五
平行线的性质:
1、两直线平行,同位角相等、内错角相等、同 旁内互补。 2、平行于同一条直线的两条直线平行。 3、垂直于同一条直线的两条直线平行。 4、两直线平行,同位角的平分线互相平行。 5、两直线平行,内错角的平分线互相平行。
D
A
解:设∠AOC=2x°,则∠AOD=3x° 因为∠AOC+∠AOD=180° 所以2x°+3x°=180°
O
解得x=36° B 所以∠AOC=2x=72° ∠BOD=∠AOC=72° 答: ∠BOD的度数是72°
C
在解决与角的计算有关的问题时,经常用到 代数方法。
知识回顾:二
垂 线
1.垂线的定义: 两条直线相交,所构成的四个角中,有一 个角是90°时,就说这两条直线互相垂直。其中一条直线 叫做另一条直线的垂线。它们的交点叫垂足。 2. 垂线的性质: (1)过一点有且只有一条直线与已知直线 垂直。(2): 直线外一点与直线上各点连结的所有线段中, 垂线段最短。简称:垂线段最短。 3.点到直线的距离: 从直线外一点到这条直线的垂线段的 长度,叫做点到直线的距离。
C
A
3 E 1 7 5 4 2 8 6
截线
D B
被截线
F
E A
三线八角
C
34 2 1 6 5 7 8
截线
B D
被截线
F
同位角是:∠1和∠8; ∠2和∠7; ∠3和∠6; ∠4和∠5. 内错角是:∠1和∠6; ∠2和∠5. 同旁内角是: ∠1和∠5;∠2和∠6.
练 一 练 如图中的∠1和∠2是同位角吗? 为什么?
例1. 判断下列语句,是不是命题,如果是命 题,是真命题,还是假命题?
(1)画线段AB=2cm (2)直角都相等;
(3)两条直线相交,有几个交点?
(4)如果两个角不相等,那么这两个角不是对顶角。
(5)相等的角都是直角;
分析: 因为(1)、(3)不是对某一件事作出判断的句子,所以 (1)、(3)不是命题。 解. (1)、(3)不是命题; (2)、(4)、(5)是命题; (2)、(4)都是 真命,(5)是假命题。
A′ C′
A
B′ C
B
举例
例1 判断题 (1) 两条直线相交,以交点为公共顶点的两角是对顶角。 (2) 一个角与它的邻补角是有特殊关系的两个互补的角。 (3) 有公共顶点且相等的两个角是对顶角。 (4) 两条相交直线构成的四个角中,不相邻的两个角是对顶角。 (5) 对顶角的补角也相等。 (6) 一条直线的垂线只有一条。 (7) 过直线外一点P与直线a上一点Q,可画一条直线与直线a垂直。 (× ) (√ ) (× ) (√ ) (√ ) (× ) (× )
解: 选C
填空题
例2. 如图所示,△ABC平移到△A′B′C′的位置,则点A的 A′ 点B的对应点是____ B′ C′。 对应点是____, ,点C的对应点是____
A'B ' 线段AB的对应线段是___________ ,线段BC的对应线段是
B ' C ' ,线段AC的对应线段是_______ A ' C ' 。∠BAC的对应 ______
A ' B ' C ' ,∠ACB的 B ' A ' C ' ,∠ABC的对应角是_________ 角是________
沿着射线AA′ A ' C ' B ' 。△ABC的平移方向是_____________ 对应角是_________ (或BB′,或CC′)的方向 线段AA′的长 ___________________________ ,平移距离是_____________ (________________________________ 或线段BB′的长或线段CC′的长 。
2. 命题的组成: 每个命题是由题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。
命题常写成“如果……,那么……”的形式。或 “若……, 则……”等形式。
3. 真命题和假命题: 命题是一个判断,这个判断可能是正确的, 也可以是错误的。由此可以把命题分成真命题和假命题。
真命题就是: 如果题设成立,那么结论一定成立的命题。 假命题就是: 如果题设成立时,不能保证结论总是成立的命题。
4.如遇到线段与线段,线段与射线,射线与射线,线段 或射线与直线垂直时,特指它们所在的直线互相垂直。
5.垂线是直线,垂线段特指一条线段是图形,点到直线距 离是指垂线段的长度,是指一个数量,是有单位的。
知识回顾:三
三线八角
1、同位角的位置特征是: (1)在截线的同旁, (2)在被截两直线的同方向。
2、内错角的位置特征是: (1)在截线的两旁, (2)在被截两直线之间。 3、同旁内角的位置特征是: (1)在截线的同旁, (2)在被截两直线之间。
相 交 线
两条 直线 相交
邻补角
一般情况
邻补角互补 对顶角相等 存在性和唯一性
垂线段最短
点到直 线的距 离
对顶角 垂直
特殊
两条直线被 第三条所截
同位角、内错角、同旁内角 平行线的判定 平行线的性质 两条平行线的距离 命题
平行公理及其推论 平 行 线
平移
平移的特征
知识回顾:一
1.互为邻补角:两条直线相交所构成的四了角中,有公共顶点且 有一条公共边的两个角是邻补角.如图(1) 1与2是邻补角。 2. 对顶角: (1)两条直线相交所构成的四个角中,有 公共顶点但没有公共边的两个角是对顶角。 2 1 如图(2). 1与2, 3与4是对顶角。 (2)一个角的两边分别是另一个角的两边的 反向延长线,这两个角是对顶角。
例2. 如图给出下列论断: (1)AB//CD (2)AD//BC (3)∠A=∠C以上,其中两个作为题设,另一个作为 结论,用 “如果……,那么……”的形式,写出一 个你认为正确的命题。
A C
D
分析: 不妨选择(1)与(2)作条件,由 平行性质 “两直线平行,同旁内角 互补”可得∠A=∠C,故满足要求。 由(1)与(3)也能得出(2)成立,由(2) 与(3)也能得出(1)成立。
例3. 如图,已知:AC∥DE,∠1=∠2,试证明 A D AB∥CD。
1
证明: ∵由AC∥DE (已知)
∴ ∠ACD= ∠2 ∵ ∠1=∠2(已知) ∴ ∠1=∠ACD (等量代换) ∴AB ∥ CD (内错角相等,两直线平行)
B C
2 E
(两直线平行,内错角相等)
例4.已知 EF⊥AB,CD⊥AB,∠EFB=∠GDC, 求证:∠AGD=∠ACB。 证明:
G C
E
1
2
B H
D
F N
8、两直线平行,同旁内角的平分线互相垂直。
如图,已知AB∥CD,MN交分别AB、 M CD于E、F,EG、FG分别平分∠BEF A 和 ∠EFD,求证:EG ⊥FG
C
B
1
E
2 G D
F N
1. 命题的概念: 判断一件事情的句子,叫做命题。
命 题
命题必须是一个完整的句子; 这个句子必须对某件事情做出 肯定或者否定的判断。两者缺一不可。
∵ EF⊥AB,CD⊥AB (已知) ∴ AD∥BC (垂直于同一条直线的两条直线互相平行) ∴ ∠EFB= ∠DCB D (两直线平行,同位角相等)
A
∵ ∠EFB=∠GDC (已知) ∴ ∠DCB=∠GDC (等量代换) ∴ DG∥BC (内错角相等,两直线平行) ∴ ∠AGD=∠ACB (两直线平行,同位角相等)
(1)
3. 邻补角的性质: (1)邻补角相等; (2)邻补角的平分线互相垂直。
3
1 4 (2)
2
4. 对顶角性质:(1)对顶角相等 (2)对顶角的平分线在同一直线上。
5. n条直线相交于一点,就有
n(n-1) 对对顶角。
例1.直线AB与CD相交于O,∠AOC : ∠AOD = 2 : 3 求∠BOD的度数。
E B F
G C
例5. 两块平面镜的夹角应为多少度?
如图,两平面镜а、β的夹角为θ,入射光线AO平行于β入 射到а上,经两次反射后的反射光线O'B平行于а,且 ∠1=∠2,∠3=∠4,则角θ=_____ 60 0 度 分析:由题意有OA//β,O'B∥a 且∠1=∠2,∠3=∠4, а B 由OA//β, ∠1=∠θ O 1 O‘B∥a,∠4=∠θ,∠2=∠5 A 2 所以∠3=∠4 =∠5=∠θ θ 354 因为∠3+∠4+∠5 =180°
对应点所连的线段平行且相等。
例1. 在以下生活现象中,不是平移现象的是 A.站在运动着的电梯上的人 B.左右推动的推拉窗扇
C.小李荡秋千运动
D.躺在火车上睡觉的旅客 分析: A、B、D属平移,在一个位置取两点连 成一条线,在另一个位置再观察这条线段,发 现是平行的,而C同样取两点连成一条线段,运 动到另一位置时,可能已不平行