线性规划

合集下载

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它在实际问题中具有广泛的应用,例如生产计划、资源分配、运输问题等。

本文将对线性规划的相关知识点进行总结,包括线性规划的基本概念、模型建立、解法以及应用场景等方面。

一、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。

目标函数通常表示为一个关于决策变量的数学表达式。

2. 约束条件:线性规划的解必须满足一系列线性等式或不等式,称为约束条件。

约束条件可以包括等式约束和不等式约束。

3. 决策变量:线性规划的解决方案通常涉及一组决策变量,这些变量的值可以被调整以满足约束条件并优化目标函数。

4. 可行解:满足所有约束条件的解称为可行解。

可行解的集合构成了可行域。

二、线性规划模型的建立1. 建立目标函数:根据问题的具体要求,将目标转化为数学表达式,并确定是最大化还是最小化。

2. 建立约束条件:根据问题的限制条件,将约束条件转化为线性等式或不等式。

3. 确定决策变量:根据问题的决策变量,定义需要优化的变量。

4. 确定变量的取值范围:根据问题的实际情况,确定决策变量的取值范围。

三、线性规划的解法1. 图解法:对于二维线性规划问题,可以使用图形方法进行求解。

通过绘制约束条件的直线和目标函数的等高线,找到目标函数的最优解。

2. 单纯形法:单纯形法是一种常用的线性规划求解方法,适用于多维线性规划问题。

通过迭代计算,找到目标函数的最优解。

3. 整数规划法:当决策变量需要取整数值时,可以使用整数规划方法进行求解。

整数规划问题通常比线性规划问题更复杂,求解难度更大。

四、线性规划的应用场景1. 生产计划:线性规划可以用于制定最优的生产计划,以最大化利润或最小化成本。

通过考虑资源限制和需求量,可以确定最佳的生产数量和产品组合。

2. 资源分配:线性规划可以用于优化资源的分配,以达到最大的效益。

例如,可以通过线性规划确定最佳的人员调度、物资采购和设备配置方案。

第二章线性规划

第二章线性规划



线性规划要研究的两类问题中都包含有约束条件和目 标函数。用数学的方式描述,规划的目的就是在给定 的限制条件(或称约束条件)下,求目标函数的极值 问题(包括极小值和极大值)。
2
线性规划的数学模型
3
解: 设产品 的产量为:1 , 产品 的产量为:x2 x
4
5
6
7

配料问题:由若干种不同价格、不同成分含量的原料,用 不同的配比混合调配出一些不同规格的产品,在原料的供 应量限制和保证产品成分含量的前提下,如何进行配料来 获取最大利润或使总成本最低。
15
2.2.3 线性规划求解的可能结局
1、有唯一的最优解
2、有无穷多个最优解 (将目标函数改为 z=4x1+3x2 )
x2
max z 4 x1 3 x2 x1 2 x2 5 2 x x 4 1 2 s.t. 4 x1 3 x2 9 x1 , x2 0
3x1 2 x2 4 x3 3
3x1 2 x2 4 x3 xs 3
剩余变量
变量xs实际上是原式左端减去右端的差,即 :
xs 3x1 2 x2 4 x3 3
当约束条件是“ ”型的不等式时,只要将该约 束条件左端减去一个非负的剩余变量即可化为等式。 无论是松弛变量还是剩余变量在决策中都不产生实际价 值,因此它们在目标函数中的系数都应该为零。有时也将松 29 弛变量和剩余变量统称为松弛变量。
2x1+x2=4 D C
x1+2x2=5 B 4x1+3x2=9 O A x1
16
3、无界解
指线性规划问题有可行解,但是 在可行域,目标函数值是无界的, 因而达不到有限最优值。因此线 性规划问题不存在最优解。

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结一、概述线性规划是运筹学中的一种数学方法,用于解决线性约束条件下的最优化问题。

它的目标是在给定的约束条件下,找到使目标函数取得最大(或者最小)值的变量取值。

二、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。

通常用z表示。

2. 约束条件:线性规划的变量需要满足一系列线性等式或者不等式,这些等式或者不等式称为约束条件。

3. 变量:线性规划中的变量是决策问题中需要确定的值,可以是实数或者非负实数。

4. 可行解:满足所有约束条件的变量取值称为可行解。

5. 最优解:在所有可行解中,使目标函数取得最大(或者最小)值的变量取值称为最优解。

三、标准形式线性规划问题可以通过将不等式约束转化为等式约束来转化为标准形式,标准形式的线性规划问题如下:最小化:z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙx₁, x₂, ..., xₙ ≥ 0其中,c₁, c₂, ..., cₙ为目标函数的系数;aᵢₙ为约束条件的系数;b₁, b₂, ...,bₙ为约束条件的常数;x₁, x₂, ..., xₙ为变量。

四、解法线性规划问题的解法主要有下列两种方法:1. 图形法:适合于二维或者三维的线性规划问题,通过绘制约束条件的直线或者平面,找到可行域和最优解。

2. 单纯形法:适合于多维的线性规划问题,通过迭代计算,找到最优解。

单纯形法是一种高效的算法,广泛应用于实际问题中。

五、常见应用线性规划在实际问题中有广泛的应用,以下是一些常见的应用场景:1. 生产计划:确定最佳的生产方案,以最大化利润或者最小化成本。

2. 运输问题:确定最佳的物流方案,以最小化运输成本。

3. 资源分配:确定最佳的资源分配方案,以最大化效益或者最小化浪费。

线性规划知识点

线性规划知识点

线性规划知识点一、概述线性规划是一种数学优化方法,用于求解线性约束条件下的最优解。

它在经济、管理、工程等领域有着广泛的应用。

线性规划的基本思想是在一组线性约束条件下,寻找使目标函数达到最大或最小的变量取值。

二、线性规划模型线性规划模型由三部分组成:决策变量、目标函数和约束条件。

1. 决策变量决策变量是问题中需要决策的量,通常用符号x表示。

决策变量的取值会影响目标函数的值。

2. 目标函数目标函数是需要优化的函数,通常用符号f(x)表示。

线性规划中的目标函数是线性的,可以是最大化或最小化。

3. 约束条件约束条件是对决策变量的限制条件,通常用不等式或等式表示。

线性规划中的约束条件也是线性的。

三、线性规划的解法线性规划可以使用不同的解法求解,常见的有图形法、单纯形法和内点法。

1. 图形法图形法适用于二维线性规划问题,通过绘制约束条件的直线和目标函数的等值线,找到最优解的图形位置。

2. 单纯形法单纯形法适用于多维线性规划问题,通过迭代计算,从初始可行解出发,逐步靠近最优解。

3. 内点法内点法是一种近年来发展起来的线性规划求解方法,通过在可行域内不断搜索,逐步趋近最优解。

四、线性规划的应用线性规划在实际问题中有着广泛的应用,以下是一些常见的应用领域:1. 生产计划线性规划可以用于确定生产计划中各种资源的最优分配,以满足生产需求并最大化利润。

2. 运输问题线性规划可以用于解决运输问题,确定各个供应点到需求点的最优运输方案,以最小化总运输成本。

3. 金融投资线性规划可以用于优化投资组合,确定不同资产的投资比例,以最大化投资收益或最小化风险。

4. 人力资源管理线性规划可以用于人力资源管理,确定员工的最优分配方案,以满足工作需求并最小化成本。

五、线性规划的局限性线性规划虽然在很多问题中有着广泛的应用,但也存在一些局限性:1. 线性假设线性规划要求目标函数和约束条件都是线性的,这在某些实际问题中可能不符合实际情况。

2. 单一最优解线性规划只能得到一个最优解,而在某些问题中可能存在多个最优解。

运筹学基础-线性规划(方法)

运筹学基础-线性规划(方法)
问题描述
线性规划问题通常由三个基本部分组成,即决策变量、约束条件 和目标函数。决策变量是问题中需要求解的未知数,约束条件是 限制决策变量取值的条件,目标函数是要求最大或最小的函数。
线性规划的应用领域
01
02
03
04
生产计划
在制造业中,线性规划可以用 于制定最优的生产计划,以最 大化利润或最小化成本。
02
线性规划的基本概念
线性方程组
线性方程组是由多个线性方程组成的数学模型,描 述了多个变量之间的线性关系。
线性方程组可以用矩阵和向量表示,通过矩阵运算 和代数方法求解。
线性方程组有多种解法,如高斯消元法、LU分解、 迭代法等。
约束条件与目标函数
02
01
03
约束条件是限制变量取值的条件,通常表示为变量的 上界、下界或等式约束。
目标函数是描述问题目标的数学表达式,通常是最小 化或最大化的线性或非线性函数。
约束条件和目标函数共同构成了线性规划问题的数学 模型。
线性规划的解
线性规划的解是指满足 所有约束条件并使目标 函数取得最优值的变量 取值。
线性规划问题可能有多 个解,也可能无解或无 界解。
最优解的性质包括最优 性、可行性和唯一性。
最优解可以通过求解线 性方程组或使用专门的 优化软件获得。
03
线性规划的求解方法
单纯形法
01
基本概念
单纯形法是一种求解线性规划问题的迭代算法,通过 不断迭代寻找最优解。
02 1. 初始化 选择一个初始可行解,并确定初始基可行解。
03
2. 迭代
根据目标函数系数和约束条件系数,计算出单纯形表 格,然后进行迭代更新。
运筹学基础-线性规划(方法)

线性规划基本模型

线性规划基本模型
单纯形法是一种求解线性规划问题的经 典算法,其基本思想是通过不断迭代来 寻找最优解。
在每次迭代中,单纯形法会根据目标函数的 系数和约束条件,通过一系列的数学运算, 将问题转化为更简单的形式,直到找到最优 解或确定无解。
单纯形法具有简单易懂、易于实现 的特点,是解决线性规划问题最常 用的方法之一。
对偶问题
等式约束
等式约束优化是指在优化问题中包含等式约束的线性规划问题。等式约束通常 表示决策变量之间的关系,满足等式约束是找到最优解的必要条件。
求解算法
对于包含等式约束的线性规划问题,可以采用一些特殊的算法进行求解,如消 元法或拉格朗日乘子法。这些算法能够更高效地处理等式约束,并找到最优解。
05
线性规划的扩展模型
线性规划基本模型
• 线性规划概述 • 线性规划的基本概念 • 线性规划的求解方法 • 线性规划的优化方法 • 线性规划的扩展模型 • 线性规划的实际应用案例
01
线性规划概述
定义与特点
定义
线性规划是一种数学优化方法,通过 在一定的约束条件下最大化或最小化 一个线性目标函数,来找到一组变量 的最优解。
现状
目前,线性规划已经发展成为一 个成熟的学科分支,有许多成熟 的算法和软件工具可用于解决各 种实际问题。
02
线性规划的基本概念
线性方程组
线性方程组
01
线性规划问题通常由一组线性方程组成,这些方程描述了决策
变量之间的关系。
线性方程的解
02
线性方程组可能有多个解,但在线性规划中,我们通常只关心
满足特定约束条件的解。
资源利用
线性规划可以确定最佳的资源利用方案,包括原材料、设备、劳动力等,以最小化生产成本或最大化 利润。

线性规划法

线性规划法

线性规划法线性规划法(Linear Programming)是一种数学模型和优化方法,用于解决线性约束条件下的最优决策问题。

线性规划法被广泛应用于经济、管理、工程等领域中的决策问题,可以帮助决策者在有限的资源条件下,实现最优的目标。

线性规划法的核心思想是将问题转化为数学模型,即线性规划模型。

该模型包括目标函数、决策变量和约束条件三个要素。

目标函数是决策问题的数学表达,用于衡量达到最优目标的程度。

通常,目标函数是一个线性函数,可用代数式表示。

决策变量是决策问题中可以被决策者调整的变量,根据实际情况选取。

决策变量的取值会直接影响目标函数的结果。

约束条件是决策问题中各种限制条件,例如资源约束、技术约束等。

约束条件可以是等式约束或不等式约束,也可以是单个约束或多个约束。

线性规划法的基本思路是通过优化算法,对线性规划模型进行求解,找到使目标函数取得最大(或最小)值的决策变量取值。

常见的线性规划求解算法有单纯形法、对偶单纯形法、内点法等。

在应用线性规划法解决实际问题时,需要经过以下步骤:1. 建立数学模型:根据实际问题的特点和需求,确定目标函数和约束条件,制定出线性规划模型。

2. 求解线性规划模型:根据所选的求解算法,对线性规划模型进行求解。

通常,求解算法会根据目标函数和约束条件的特点,进行适当的优化,减少计算量。

3. 分析和解释结果:对求解结果进行分析和解释,评估结果的合理性和可行性。

如果结果满足实际需求,则可以进行下一步决策;如果不满足,则需要根据实际情况,对模型进行优化或修改。

线性规划法的优点在于能够在有限的资源条件下,寻找到最优的决策解。

它可以帮助决策者进行定量分析和优化决策,提高决策的效果和效率。

同时,线性规划法的应用范围广泛,可以应用于各种实际问题中。

然而,线性规划法也存在一些局限性。

首先,线性规划法只适用于具有线性目标函数和线性约束条件的问题,对于非线性问题不适用;其次,线性规划法只能得到局部最优解,无法保证找到全局最优解;此外,线性规划法会受到数据误差、模型假设等因素的影响,需要进行敏感性分析和可行性分析。

线性规划的定义及解题方法

线性规划的定义及解题方法

线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。

它的实际应用十分广泛,例如管理学、经济学、物流学等领域。

线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。

本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。

一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。

它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。

通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。

在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。

这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。

例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。

这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。

二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。

决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。

2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。

3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。

例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。

4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。

它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划问题建模求解实例分析
产品甲 产品乙 产品丙 工时限制 单件铸造工时(小时) 单件机加工工时(小时) 单件装配工时(小时) 自产铸件成本(元/件) 外协铸件成本(元/件) 机加工成本(元/件) 装配成本(元/件) 产品售价(元/件) 5 6 3 3 5 2 3 23 10 4 2 5 6 1 2 18 7 8 2 4 3 2 16 8000 12000 10000
应用EXCEL工具求解线性规划问题
三、线性规划问题解的表现
EXCEL建模求解,其解的结果在“规划 求解结果”对话框中提示: 1、唯一最优解为“找到一个解”
2、无穷多最优解为“满足条件有多个解”
3、无解为“未找到可行解”
线性规划问题建模求解实例分析
(一)生产计划问题 例1:某工厂生产甲、乙、丙三种产品,都要经过铸造、 机加工(包括本场和外包的)和装配三个车间。甲、乙 两种产品的铸件可以外包协作,也可自行生产,但 产品丙必须在本厂铸造才能保证质量。数据见表。 问:公司为了获得最大利润,甲、乙、丙三种产品 应各生产多少件?甲、乙两种产品的铸件应由本公 司铸造和由外包协作各多少件?
方案。一般要求其非负。
约束条件:反映所给问题的客观限制及完成任务的
具体要求,一般表示为一组决策变量的线性等式或
不等式。
目标函数:问题所要达到的目标。一般表示为决策
变量的线性函数,取最大值或最小值。
线性规划问题基本理论及方法

建模步骤:
确定决策变量:根据决策问题,确定 找出约束条件:找出所有的限制条件,写出其
2
n
(, ) b2

a x a x ... a x (, )b x , x , x ,...,x 0
m1 1 m2 2 mn n 1 2 3 n
m
线性规划问题基本理论及方法

例1:假设:每周各生产门和窗x1、x2个。 建立线性规划模型如下: Max Z=300x1+500x2 x1≤4 2x2≤12 3x1+2x2≤18 x1、x2≥0
主要内容


线性规划问题基本理论及方法
应用EXCEL工具求解线性规划问题 线性规划问题建模求解实例分析 线性规划问题的影子价格及灵敏度 分析
线性规划问题基本理论及方法



线性规划(Linear Programming):运筹学中理论最完善、 方法最成熟、应用最广泛的一个分支。 1939年,前苏联数学家康脱洛维奇(L.V.Kantorovich)提出 ,1947年,美国数学家丹捷格(G.B.Dantring)提出线性规 划的求解方法—单纯形法。 主要研究两类问题:
线性规划问题建模求解实例分析
例2: 某工厂生产A、B种产品,均需经过两道工序,每生产1吨A 产品需要经过第一道工序加工2小时,第二道工序加工3小时; 每生产1吨B产品需要经过第一道工序加工3小时,第二道工序加 工4小时。可供利用的第一道工序工时为15小时;第二道工序工 时为25小时。 生产产品B的同时可产出副产品C,每生产1吨产品B,可同 时得到2吨产品C而不需要外加任何费用。副产品C一部分可以赢 利,但剩下的只能报废,报废需要有一定的费用。 出售产品A每吨能赢利400元;出售产品B每吨能赢利800元; 出售副产品C每吨能赢利300元;当剩余的产品C报废时,每吨 损失费为200元。经市场预测,在计划期内产品C的最大销售量 为5吨。 问:如何安排A、B两种产品的产量可使工厂总盈利最大?
线性规划模型的描述
单位产品的生产时间(小时)
车间 1 门 1 窗 0
每周可获得的生产 时间(小时)
4
2
3
0
3
2
2
12
18
单位利润(元)
300
500
问题: • 该工厂如何安排这两种新产品的每周生产计划,才能使总 利润最大? • 如果要增加资源,首先应该增加哪种资源? • 这些资源出租或出售,应如何定价? • 如果产品市场价格发生变化、产品加工工艺发生改变,原 生产方案是否需要调整?
投资项目
1 2 3 4
风险(%)
18 6 10 4
红利(%)
4 5 9 7
增长率(%)
22 7 12 8
信用度
4 10 2 10
5
6
12
8
6
8
15
8
4
6
应用EXCEL工具求解线性规划问题

假设: xi为每种投资项目的投资额。 建立线性规划模型如下:
MinZ=0.18x1+0.06x2+0.10x3+0.04x4+0.12x5+0.08x6

图解法求解步骤:
建立x1Ox2平面直角坐标系。 将所有约束条件的临界值(直线)标于坐
标系中,得出可行域(所有可行解的集合) 。
给目标函数赋一值,在坐标系中划出相应
直线,在可行域中移动,找出其极值方向的 交点,即为该问题的最优解。
线性规划问题基本理论及方法

解的性质:
线性规划问题的可行域都是凸多边形(可能无
可行域无界
唯一解
无穷解
唯一解
无穷解
无解
一定无解
线性规划问题基本理论及方法

单纯形法求解步骤:
将线性规划模型转化为标准型(目标函数求极大、
约束条件为等式、决策变量大于0); 找出初始基本可行解(即:m个约束条件中存在m个 单位列向量,组成单位矩阵); 检验初始基本可行解是否为最优解?(若所有非基 变量的检验数σj≤0,则基本可行解为最优解); 如果不是最优解,进行迭代,求出新的基本可行解 。(根据最小比值原则选择出基变量和进基变量)
表达式。
x=(x1,x2,x3,…,xn)
明确目标函数:写出目标函数的最大值(或最
小值)。
线性规划问题基本理论及方法
max( min ) )z
11 1
cxபைடு நூலகம்
1
12
22
1
c 2 x 2 ... c n
1n n 1
x
n
S.t
a x a x ... a x
21 1 2 2n
a x a x ... a x (, )b

单纯形法计算过程在单纯形表中具体实现。
应用EXCEL工具求解线性规划问题
应用EXCEL求解线性规划问题步骤:
建立线性规划 数学模型 建立EXCEL 表格模型
EXCEL求解 结果分析
应用EXCEL 求解
应用EXCEL工具求解线性规划问题
一、在EXCEL电子表格中建立线性规划模型 1、把相关数据输入到EXCEL电子表格中

应用EXCEL工具求解线性规划问题
二、在EXCEL电 子表格中求解 线性规划问题
1、求解参数设置: “数据”——” 规划求解“,弹 出“规划求解参 数”对话框,设 置求解相关参数。
应用EXCEL工具求解线性规划问题
2、约束的设置: 单击 “添加”,弹出“添加约束”, 添加约束条件。
应用EXCEL工具求解线性规划问题
线性规划问题基本理论及方法

求解步骤:
找出初始基本可行解(一般选择原点); 检验初始基本可行解是否为最优解; 如果不是,寻找新的基本可行解; 再次进行检验,直到找出最优解为止。

对于两个变量的线性规划问题,可用图解法 ;对于两个以上变量问题,采用单纯形法求 解。
线性规划问题基本理论及方法
应用EXCEL工具求解线性规划问题
2)复制、粘贴方法: 在E7中输入:C7*$(保持不变)
C$12+D7*$D$12 复制E7单元格到E8、E9 3)公式法:
在E7中输入: =SUMPRODUCT(C7:D7,$C$12:$D$12)
复制E7单元格到E8、E9
应用EXCEL工具求解线性规划问题
(3)总利润计算:
应用EXCEL工具求解线性规划问题
应用EXCEL工具求解线性规划问题
应用EXCEL工具求解线性规划问题

课堂练习2 :
某公司受人委托,准备用120万元投资A和B两中基金,其中:A基金的 单位投资额为50万元,年回报率为10%, B基金的单位投资额为100万元, 年回报率为4%.委托人要求在每年的年回报金额至少达到6万元的基础上 要求投资风险最小50x1 *10%+100x2*4%.minz=8x1+3x2据测定每单位A 基金的投资风险指数为8,每单位B基金的投资风险指数为3,风险指数越 大表明投资风险越大.委托人要求在基金B中的投资额不少于30万元.为 了使总的投资风险指数最小,该公司应该在基金A(x1)和B(x2)中各投资多 少单位?这时每年的回报金额是多少?
应用EXCEL工具求解线性规划问题

课堂练习1:
某家具制造厂生产五种不同规格的家具.
每件家具都要经过机械成型、打磨、上漆等几
个主要生产工序.每件家具的每道工序所使用
的时间及每道工序的可用时间、每种家具的利
润等数据如下表。问工厂应如何安排生产,才 能使总利润最大?
应用EXCEL工具求解线性规划问题
现有资源有限,如何合理安排,使以最少的人力、物力完成任务
? 任务确定后,如何计划、安排,使在完成任务的前提下,资源消 耗最低?

可解决生产调度、合理下料、配料问题、产品配套问题、 运输问题等问题。
线性规划问题基本理论及方法

数学模型:有三个要素组成:
决策变量:一组定值代表所给问题的一个具体解决
3、求解及结果
单击“求解”,开始规划求解。弹出“规划求解 结果”对话框。选择“保存规划求解结果”。
应用EXCEL工具求解线性规划问题
4、电子表格显示结果: 单击“确定”,在电子表格的可变单元格、 输出单元格及目标单元格出现求解结果。
相关文档
最新文档