线性规划的概念及图解法
合集下载
管理运筹学第二章 线性规划的图解法

B、约束条件不是等式的问题:
若约束条件为 ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量si ,使它等于约束右 边与左边之差 si=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,si 也具有非负约束,即si≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn+si = bi
第二章 线性规划 的图解法
一、线性规划的概念 二、线性规划问题的提出 三、线性规划的数学模型 四、线性规划的图解法 五、线性规划解的情况 六、LP图解法的灵敏度分析
一、线性规划的概念
线性规划Linear Programming 简称LP,是一 种解决在线性约束条件下追求最大或最小的 线性目标函数的方法。 线性规划的目标和约束条件都可以表示成线 性的式子。
max z 3 x1 2 x2
2 x1 x2 ≤ 10 设备B台时占用 s.t. x1 x2 ≤ 8 x , x ≥ 0 产量非负 1 2
决策变量 (decision variable) 目标函数 (objective function) 约束条件 (subject to)
-ai1
x1-ai2 x2- … -ain xn = -bi 。
例1.3:将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 ≤15.7 4.1 x1 + 3.3 x3 ≥8.9 x1 + x2 + x3 = 38 x 1 , x 2 , x3 ≥ 0
线性规划(图解法)

D
max Z
可行域
(7.6,2) , )
34.2 = 3X1+5.7X2
X1 + 1.9X2 = 3.8(≥) X1 - 1.9X2 = 3.8 (≤) L0: 0=3X1+5.7X2
oபைடு நூலகம்
x1
图解法
min Z=5X1+4X2 x2
X1 + 1.9X2 = 10.2 (≤)
Page 18
43=5X1+4X2 8=5X1+4X2 此点是唯一最优解 (0,2) , )
图解法
线性规划问题的求解方法 一般有 两种方法 图解法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
Page 1
适用于任意变量、 适用于任意变量、但必需将 一般形式变成标准形式
下面我们分析一下简单的情况—— 下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题, 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。 性规划基本原理和几何意义等优点。
• 有效与无效 紧与松)约束:与最优解相关的约束为有效 有效与无效(紧与松 约束 紧与松 约束: (紧)约束。 紧 约束 约束。 • 最优解:总是在可行域的边界上,一般由可行域的顶 最优解:总是在可行域的边界上, 点表示。 点表示。 • 可行域:由约束平面围起来的凸多边形区域,可行域 可行域:由约束平面围起来的凸多边形区域, 个可行解。 内的每一个点代表一 个可行解。
20
无可行解(即无最优解 无可行解 即无最优解) 即无最优解
10
O
10
第一章 线性规划

(1-8)
例 1.5 (汽油混合问题) 一种汽油的特性可用两个指标描述:其点火性用“辛烷数” 描述,其挥发性用“蒸汽压力”描述,某炼油厂有四种标准汽油,设其标号分别为 1,2, 3,4,其特性及库存量见表 1.5,将上述标准汽油适量混合,可得到两种飞机汽油,其标 号分别为 1,2,这两种飞机汽油的性能指标及产量需求见表 1.6,问应如何根据库存情况 适量混合各种标准汽油,使既满足飞机汽油的性能指标,而产量又为最高。
注:前苏联的尼古拉也夫斯克城住宅兴建计划采用了上述模型,共用了 12 个变量,10 个约束条件。
表 1.2 资源 住宅体系 砖混住宅 壁板住宅 大模住宅 资源限量 造价 (元/m2) 105 135 120 110000 (千元 钢材 (公斤/m2) 12 30 25 20000 (吨) 例 1.2 的数据表 水泥 (公斤/m2) 110 190 180 150000 (吨) 砖 (块/m2) 210 —— —— 147000 (千块) 人工 (工日/m2) 4.5 3.0 3.5 4000 (千工日)
3.线性规划模型的一般形式 以 MAX 型、≤约束为例 决策变量: x1 ,
(1-4)
, xn
目标函数: Maxz = c1 x1 +
+ cn x n
⎧a11 x1 + + a1n x n ≤ b1 ⎪ ⎪ 约束条件: s.t.⎨ ⎪a m1 x1 + + a mn x n ≤ bm ⎪ ⎩ x1 , , x n ≥ 0
2
Maxz = x1 + x 2 + x3 ⎧0.105 x1 + 0.135 x 2 + 0.120 x3 ≤ 110000 ⎪0.012 x1 + 0.030 x 2 + 0.025 x3 ≤ 20000 数学模型为: ⎪0.110 x1 + 0.190 x 2 + 0.180 x 3 ≤ 150000 (1-3) s.t ⎨ 0.210 x ≤ 147000 ⎪0.00451 x + 0.003x 2 + 0.0035 x 3 ≤ 4000 ⎪x , x , x 1 ≥ 0 ⎩ 1 2 3
例 1.5 (汽油混合问题) 一种汽油的特性可用两个指标描述:其点火性用“辛烷数” 描述,其挥发性用“蒸汽压力”描述,某炼油厂有四种标准汽油,设其标号分别为 1,2, 3,4,其特性及库存量见表 1.5,将上述标准汽油适量混合,可得到两种飞机汽油,其标 号分别为 1,2,这两种飞机汽油的性能指标及产量需求见表 1.6,问应如何根据库存情况 适量混合各种标准汽油,使既满足飞机汽油的性能指标,而产量又为最高。
注:前苏联的尼古拉也夫斯克城住宅兴建计划采用了上述模型,共用了 12 个变量,10 个约束条件。
表 1.2 资源 住宅体系 砖混住宅 壁板住宅 大模住宅 资源限量 造价 (元/m2) 105 135 120 110000 (千元 钢材 (公斤/m2) 12 30 25 20000 (吨) 例 1.2 的数据表 水泥 (公斤/m2) 110 190 180 150000 (吨) 砖 (块/m2) 210 —— —— 147000 (千块) 人工 (工日/m2) 4.5 3.0 3.5 4000 (千工日)
3.线性规划模型的一般形式 以 MAX 型、≤约束为例 决策变量: x1 ,
(1-4)
, xn
目标函数: Maxz = c1 x1 +
+ cn x n
⎧a11 x1 + + a1n x n ≤ b1 ⎪ ⎪ 约束条件: s.t.⎨ ⎪a m1 x1 + + a mn x n ≤ bm ⎪ ⎩ x1 , , x n ≥ 0
2
Maxz = x1 + x 2 + x3 ⎧0.105 x1 + 0.135 x 2 + 0.120 x3 ≤ 110000 ⎪0.012 x1 + 0.030 x 2 + 0.025 x3 ≤ 20000 数学模型为: ⎪0.110 x1 + 0.190 x 2 + 0.180 x 3 ≤ 150000 (1-3) s.t ⎨ 0.210 x ≤ 147000 ⎪0.00451 x + 0.003x 2 + 0.0035 x 3 ≤ 4000 ⎪x , x , x 1 ≥ 0 ⎩ 1 2 3
第一章线性规划-模型和图解法

a22 am2
a1n
a2n amn
(P1,
P2 ,
, Pn )
用向量表示时,上述模型可写为:
max(min)Z CX
s.t
n j 1
Pj x j
(, )b
X 0
线性规划问题可记为矩阵和向量的形式:
max(min)Z CX
s.t
AX
X
(, )b 0
max(min)Z CX
x21 x23
x14
x23
x32
x41
xij 0(i 1, ,4;
15
x22 x31 12
x23 x32
j 1, ,4)
10 20
二。线性规划问题的数学模型 下面从数学的角度来归纳上述三个例子的共同点。 ①每一个问题都有一组变量---称为决策变量,一般记为
x1, x2 , , xn. 对决策变量每一组值:(x1(0) , x2(0) , xn(0) )T 代表了
表1-3
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
表1-4
单位;元/100m2
1个月 2个月 3个月 4个月
2800 4500 6000 7300
表1-2
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
max(min) Z c1x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn (, )b1
s.t
a21x1
a22 x2
a2n xn
(, )b2
am1x1 am2 x2 amnxn (, )bm
第1.2节 线性规划问题的图解法

x1 20 * x 2 100
* * z 1240
27
2 规划问题求解的几种可能结果
2)无穷多最优解
max z 12 x1 8 x2 2 x1 x2 160 1 1 x1 x2 40 3 3 3 x1 2 x2 260 x1 , x2 0
max z 12 x1 10 x2 2 x1 x2 160 1 1 x x2 40 1 3 3 3 x1 2 x2 260 x1 , x2 0
23
x2 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
max z 12 x1 10 x2 2 x1 x2 160 1 1 x1 x2 40 3 3 3 x1 2 x2 260 x1 , x2 0
工序 花瓶种类 占用材料 (盎司) 艺术加工 (小时) 储存空间 (一单位) 利润值 (元)
大花瓶
1/3x1+1/3x2=40 (60,40)
x1
22
160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 图1 花瓶问题的图解法
图解法的基本步骤:
(4)确定最优解。最优解是可行域中使目标
函数值达到最优的点,当目标函数直线由原点 开始沿法线方向向右上方移动时,z 值开始增 大,一直移到目标函数直线与可行域相切时为 止,切点即为最优解。
18
图解法的基本步骤:
(3)作出目标函数。由于
z 是一个待求的目 标函数值,所以目标函数常用一组平行虚线表 示,离坐标原点越远的虚线表示的目标函数值 越大。
管理运筹学第二章线性规划的图解法

02
图解法的基本原理
图解法的概念
图解法是一种通过图形来直观展示线性规划问题解的方法。它通过在坐标系中绘 制可行域和目标函数,帮助我们理解问题的结构和最优解的位置。
图解法适用于线性规划问题中变量和约束条件较少的情况,能够直观地展示出最 优解的几何意义。
图解法的步骤
确定决策变量和目标函数
明确问题的决策变量和目标函数,以便在图 形中表示。
目标函数是要求最小化或最大化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
LINDO是一款开源的线性规划求解器,用 户可以免费使用。
软件工具的使用方法
Excel
用户需要先在Excel中设置好线性规划模型,然后使 用“数据”菜单中的“规划求解”功能进行求解。
Gurobi/CPLEX/LINDO
这些软件通常需要用户先在软件界面中输入线性规划 模型,然后通过点击“求解”按钮进行求解。
实例三:分配问题
总结词
分配问题是指如何根据一定的分配原则 或目标,将有限的资源分配给不同的需 求方,以最大化整体效益。
VS
详细描述
分配问题在实际生活中广泛存在,如物资 分配、任务分配等。通过图解法,可以将 分配问题转化为线性规划模型,并利用图 形直观地展示最优解的资源分配方案。在 分配问题中,通常需要考虑不同需求方的 重要性和优先级,以及资源的有限性等因 素,以实现整体效益的最大化。
第1章 2 线性规划问题的图解法

其中c 令 Z=2x1+3x2=c, 其中c为任选的一个常 数 , 在图中画出直线 2x1+3x2=c, 即对应着一 组可行的生产结果, 组可行的生产结果,使两种产品的总利润达到 c。 。 这样的直线有无数条, 且相互平行, 这样的直线有无数条 , 且相互平行 , 称 只要画两条 这样的直线为目标函数等值线。只要画两条 目标函数等值线 等值线, 目标函数等值线,如令 x2 c=0和c=6,可看出目 = 和 ,可看出目
x2
4x1 ≤ 16 C D
| 1 | 2 | 3 | 4
4 x2 ≤ 16
最优解 (4, 2)
x1 + 2x2 ≤ 8
| 6 | 7 | 8 | 9
A
0
E
| 5
x1
图解法求解步骤
由全部约束条件作图求出可行域; 由全部约束条件作图求出可行域; 作目标函数等值线,确定使目标函数 作目标函数等值线, 最优的移动方向; 最优的移动方向; 平移目标函数的等值线,找出最优点, 平移目标函数的等值线,找出最优点, 算出最优值。 算出最优值。
练习1答案
max z=x1+3x2 s.t. x1+ x2≤6 -x1+2x2≤8 x1 ≥0, x2≥0
x2 6
最优解(4/3,14/3)
4
可行域
-8 0
目标函数等值线
6
x1
练习2 某公司由于生产需要,共需要A, 练习 :某公司由于生产需要,共需要 , B两种原料至少 两种原料至少350吨(A,B两种材料有 两种原料至少 吨 , 两种材料有 一定替代性),其中A原料至少购进 ),其中 原料至少购进125 一定替代性),其中 原料至少购进 但由于A, 两种原料的规格不同 两种原料的规格不同, 吨。但由于 ,B两种原料的规格不同, 各自所需的加工时间也是不同的, 各自所需的加工时间也是不同的,加工每 原料需要2个小时 吨A原料需要 个小时,加工每吨 原料需 原料需要 个小时,加工每吨B原料需 小时, 个加工小时。 要1小时,而公司总共有 小时 而公司总共有600个加工小时。 个加工小时 又知道每吨A原料的价格为 万元,每吨B 原料的价格为2万元 又知道每吨 原料的价格为 万元,每吨 原料的价格为3万元 万元, 原料的价格为 万元,试问在满足生产需 要的前提下,在公司加工能力的范围内, 要的前提下,在公司加工能力的范围内, 如何购买A, 两种原料 两种原料, 如何购买 ,B两种原料,使得购进成本 最低? 最低?
第二章线性规划的图解法

➢ 答案:
X2 ➢ 最优解为: x1 =15 ,x2=10 40 ➢ 最优值为:z*=2500×15+1500×10
➢
30
=52500
3x2=75
20
(15,10)
10
O
10
20
30
40
50 X1
3x1+2x2=65
2x1+x2=40
五、线性规划问题解的情况
➢ 例1.5的最优解只有一个,这是线性规划问题 最一般的解的情况,但线性规划问题解的情 况还存在其它特殊的可能:无穷多最优解、 无界解或无可行解。
... am1x1+am2x2 +…+amnxn≤( =, ≥ )bm x1 ,x2 ,… ,xn ≥ ( ≤) 0 或无约束
xj为待定的决策变量; cj为目标函数系数,或价值系数、费用系数; aij为技术系数; bj为资源常数,简称右端项; 其中i=1,2,…m; j=1,2,…n
可以看出,一般LP模型的特点: A、决策变量x1,x2,x3,……xn表示要寻求
O
100 200 300
X1
3、无界解的情况
➢若将例1.5的线性规划模型中约束条件1、2的 不等式符号改变,则线性规划模型变为:
➢ 目标函数:Max z= 50x1+100 x2 约束条件:x1+x2 ≥ 300 2x1+x2 ≥ 400 x2≤250 x1 ≥0, x2 ≥0
B、定义决策变量;
C、用决策变量的线性函数形式写出所要追求 的目标,即目标函数;
D、用一组决策变量的等式或不等式来表示在 解决问题过程中所必须遵循的约束条件。
三、线性规划的数学模型
1、LP模型的一般形式 目标函数:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关定义:
决策变量的一组取值便构成了线性规划问题的一个解; 满足约束条件的解称为可行解; 所有可行解构成的集合称为可行解集; 使目标函数达到所追求极值的可行解称为最优解; 最优解所对应的目标函数值称为最优值。
二、
线性函数.
线性规划的表现形式
一般形式:目标函数和所有的约束条件都是设计变量的 目标函数:Max (Min)z = c1 x1 + c2 x2 + … + cn xn 约束条件:
数学规划模型
实际问题中 的优化模型 x~决策变量 数 学 规 划
Min(或Max) z f ( x), x ( x1 ,x n ) s.t. g i ( x) 0, i 1,2, m
f(x)~目标函数 线性规划 非线性规划 整数规划
T
gi(x)0~约束条件
线性规划问题(LP): 一组线性不等式约束下求线性目标函数 的极大值或极小值问题。
Ⅰ 1 0 3 7.4 0
Ⅳ 1 2 0 7.1 0.3
Ⅴ 0 1 3 6.6 0.8
解:设第一种下料方式用掉x1根管料;
第二种下料方式用掉x2根管料;第三
种下料方式用掉x3根管料;第四种下
料方式用掉x4根管料;第五种下料方
式用掉x5根管料;变量x1 x2 x3 x4 x5 即为决策变量。
数学模型为:
解:设购买A种原料为x1,B种原料为x2,可建立以下
数学模型:
目标函数:Min S = 2x1 + 3 x2
约束条件:
s.t. x1 + x2 ≥ 350
决策变量为:x1, x2
x1 ≥ 125
2 x1 + x2 ≤ 600 x1 , x2 ≥ 0
s.t. 是subject to的缩写。意思为“满足 于,受约束于”
一、概念的引出
例1:某中药厂用当归作原料制成当归丸与当归膏,
生产1盒当归丸需要5个劳动工时,使用2kg当归
原料,销售后获得利润160元;生产1盒当归膏需
要2个劳动工时,使用5kg当归原料,销售后获得 利润80元;工厂现有可供利用的劳动工时为4000 工时,可供使用的当归原料为5800kg,为避免当 归原料存放时间过长而变质,要求把5800kg当归
建模过程
1.理解要解决的问题,了解解题的目标和条件;
2.定义决策变量( x1 ,x2 ,… ,xn ),每一 组值表示一个方案;
3.用决策变量的线性函数形式写出目标函数,确 定最大化或最小化目标;
4.用一组决策变量的等式或不等式表示解决问题 过程中必须遵循的约束条件
三、线性规划问题的数学模型 • • • • 物 资 运 输 问 题 条 件 下 料 问 题 原 料 搭 配 问 题 生 产 安 排
s.t.
a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2
…… …… am1 x1 + am2 x2 + … + amn xn ≤ ( =, ≥ )bm x1 , x2 , … , xn ≥ 0
条件下料问题2
某车间有一批长度为7.4m的同型钢 管,因生产需要,需将其截成长2.9m、 2.1m、1.5m三种不同长度的管料。 若三种管料各需100根,问应如何下 料,才能使得用料最省?写出数学模 型。
分析:
规格/m 2.9 2.1 1.5 合计/m 料头/m 下料方案 方案 Ⅱ Ⅲ 2 0 0 2 1 2 7.3 7.2 0.1 0.2
原料都用掉。问工厂如何安排生产,才能使得两种
产品销售后获得的总利润最大?
解
设工厂生产x1盒当归丸与x2瓶当归膏,
可建立以下数学模型:
max S 160x1 80x 2 5x1 2x 2 4000 2x1 5x 2 5800 x 0, 整数(i 1,2) i
购进125吨。但由于A,B两种原料的规格不同,各自所
需的加工时间也是不同的,加工每吨A原料需要2个小时, 加工每吨B原料需要1小时,而公司总共有600个加工小
时。又知道每吨A原料的价格为2万元,每吨B原料的价
格为3万元,试问在满足生产需要的前提下,在公司加 工能力的范围内,如何购买A,B两种原料,使得购进成 本最低?
210cm的角钢截得3根长60cm的角钢。现
这三种下料方式应该混合使用。
解:设第一种下料方式用掉x1根角钢;
第二种下料方式用掉x2根角钢;第三 种下料方式用掉x3根角钢;变量x1 x2 x3即为决策变量。
数学模型为:
min S x1 x2 x3 2 x1 x2 150 2 x1 3x3 330 x 0, 整数(i 1,2,3) i
条件下料问题1
某家具厂需要长80cm的角钢与长 60cm的角钢,它们皆从长210cm的 角钢截得。现在对长80cm角钢的需 要量为150根,对长60cm角钢的需 要量为330根。问工厂应如何下料, 才能使得用料最省?写出数学模型。
分析:共有三种下料方式,第一种是将1
根长210的角钢截得2根长80cm的角钢; 第二种是将1根长210的角钢截得1根长 80cm和2根60cm的角钢;第三种是将
min S x x x x x
1 2 3 4 1 2 4 5
x 2 x x 100 2 x 2 x x 100 3 x x 2 x 3 x 100 x 0, 整数( i 1, 2, 3,4,5)
基本线性规划形式
目标函数:
约束条件:
Max(Min)S = c1 x1 + c2 x2 + … + cn xn
s.t.
a11 x1 + a12 x2 + … + a1n xn ≤b1 a21 x1 + a22 x2 + … + a2n xn ≤ b2
…… …… am1 x1 + am2 x2 + … + amn xn ≤ bm x1 ,x2 ,… ,xn ≥ 0,bi ≥0
目标函数为:
max S 160x1 80x 2
约束条件为:
5x1 2x 2 4000 2x1 5x 2 5800 x 0, 整数 (i 1,2) i
决策变A,B两种原料至少 350吨(A,B两种材料有一定替代性),其中A原料至少