新人教版七年级下册数学教案 第九章 不等式与不等式组 9.2 实际问题与一元一次不等式(一)

合集下载

七年级数学下册第九章单元教学设计

七年级数学下册第九章单元教学设计

七年级数学下册第九章《不等式与不等式组》单元教学设计一、单元教学要素分析(一)教材所处的地位和作用:不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容而且也是学生后续学习的重要基础。

本章教科书在学生学习一元一次方程,二元一次方程组的基础上开始研究简单的不等关系,通过前面的学习,学生已初步体会到生活中量与量之间的关系是众多而且复杂的,但面对大量的同类量,最容易使人想到的就是它们有大小之分。

在此之前学生已初步经历了建立方程模型解决一些实际问题的“数学化”过程为分析量与量之间的关系积累了一定的经验,以此为基础展开不等式的学习顺理成章。

教科书首先通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解,解集以及不等式的概念。

然后具体研究一元一次不等式的解,解集,解集的数轴表示,一元一次不等式的解法以及一元一次不等式的简单应用,通过具体实例渗透一元一次不等式,一元一次方程的内在联系。

最后研究一元一次不等式组的解,解集,一元一次不等式组的解法以及一元一次不等式组的简单应用。

(二)教学重点难点:重点:1、不等式的意义,不等式的基本性质。

2、解简单的一元一次不等式,并能在数轴上表示一元一次不等式的解集。

3、解一元一次不等式组并会在数轴上确定其解集。

4、根据具体问题中的数量关系列出一元一次不等式组解决简单的实际问题。

难点:1、解一元一次不等式组并会在数轴上确定其解集。

2、根据具体问题中的数量关系列出一元一次不等式组解决简单的实际问题。

(三)学情分析:在学生已经学习了一元一次方程的解法及其应用,相对来说学这一部分有了一定的基础,在不等式解法上与方程的解法是雷同的,但是在解不等式系数化为1时又很容易出错。

在列方程解应用题的基础上将寻找等量关系转变为寻找不等关系。

另外,确定不等式组的解集的方法,在应用题中利用不等式解决实际问题要到现实意义都是容易出错的地方。

二、单元教学目标(一)知识与技能:1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型,进一步发展符号感。

人教版七级数学(下册)第九章不等式和不等式组教案

人教版七级数学(下册)第九章不等式和不等式组教案

授课教师:授课时间:授课班级:第九章不等式与不等式组9.1.1不等式及其解集教案目标:1、知识与技能:了解不等式和一元一次不等式的概念2、过程与方法:理解不等式的解和解集,能正确表示不等式的解集。

3、情感态度与价值观:在不等式知识的学习过程中增强同学之间的合作意识。

教案重难点:不等式、一元一次不等式、不等式的解、解集的概念是重点;不等式解集的理解与表示是难点。

教案过程:一、情景导入一辆匀速行驶的汽车在11:20时距离A地50千M,要在12:00以前驶过A地,车速应该具备什么条件?题目中有等量关系吗?没有。

那是什么关系呢?从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千M 所用的时间不到2/3小时,即汽车驶过A地的时间小于2/3小时。

从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千M,即汽车2/3小时走的路程大于50千M。

这些是不等关系。

二、不等式的概念若设车速为每小时x千M,你能用一个式子表示上面的关系吗?50/x<2/3 ①或2/3x>5 ②像①②这样用“>”或“<”号表示大小关系的式子,是不等式。

我们还见过像a+2≠a这样用“≠”号表示的式子,也是不等式。

“>”、“<”、“≠”叫做不等号,不等号也可以写成“≤”、“≥”的形式。

总之,用不等号连接起来的式子叫做不等式。

思考1:下列式子中哪些是不等式?[投影2](1)a+b=b+a (2)-3>-5 (3)x≠l(4)x十3>6 (5) 2m< n (6)2x-3我们看到有些不等式不含未知数,有些不等式含有未知数。

类似于一元一次方程,含有一个未知数,并且未知数的次数是1的不等式,叫做一元一次不等式。

注意:像①中分母含有未知数的不等式不是一元一次不等式,这一点与一元一次方程类似。

三、不等式的解和解集思考2:[投影3]判断下列数中哪些能使不等式2/3x > 50成立:76,73,79,80,74. 9,75.1,90,6076, 79,80, 75.1,90能使不等式2/3x > 50成立。

最新人教版七年级数学下册 第九章 《不等式与不等式组》教案

最新人教版七年级数学下册 第九章 《不等式与不等式组》教案

本章复习整体设计教材分析本章所学知识是在学生学习了一元一次方程和二元一次方程组的基础上研究简单的不等关系.首先通过具体实例建立不等式,探索不等式的性质,了解一般不等式的解、解集以及解不等式的概念;然后具体研究一元一次不等式、一元一次不等式组的解、解集、解集在数轴上的表示、一元一次不等式和一元一次不等式组的解法及其简单应用.通过探究这些问题,可以进一步提高学生的类比能力,逐步渗透数学建模思想,初步体会方程与不等式的内在联系与区别.本章重点、难点是一元一次不等式及一元一次不等式组的解法.在本章的复习中,主要从两方面进行:一是帮助学生理清本章知识结构,通过引导师生共同梳理知识,建构知识框架;二是掌握一元一次不等式组的解法以及解决实际问题的数学建模训练.课时分配1课时教学目标1.归纳本章学过的知识,使学生系统地理解本章有关概念;正确掌握不等式的性质;熟练地解一元一次不等式和一元一次不等式组及它们的应用;2.通过回顾与总结,培养并提高学生归纳、对比及分析问题和解决问题的能力.教学重难点教学重点:不等式的性质及解一元一次不等式(组).教学难点:本章知识结构与框架的建立.教学方法设计典型例题,利用问题展开探索、交流.在学生掌握基本内容的基础上,教师引导学生进一步提炼、构建知识体系,科学地进行小结与归纳.在此基础上,通过学生尝试解决问题,以及师生之间、生生之间的讨论交流,使学生对数学思想方法的认识更深刻,对解决问题的策略把握得更灵活.教学过程一、熟悉知识体系设计说明通过引领学生回忆本章的知识要点,形成知识框架,让学生对本章知识有一个整体的把握,同时了解各知识之间的内在联系.二、知识要点回顾(一)基础知识设计说明以填空的形式引导学生回忆全章的有关知识,使学生掌握的知识更加深刻、系统.1.不等式、不等式的解、不等式的解集、解不等式用符号“<”或“>”表示大小关系的式子叫做不等式;用“≠”“≥”“≤”表示不等关系的式子也是不等式;使不等式成立的__________叫做不等式的解;一般地,一个含有未知数的不等式的__________,组成这个不等式的解集;求__________的过程叫做解不等式.2.不等式的性质性质1:不等式两边加(或减)__________,不等号的方向__________;性质2:不等式两边乘(或除以)__________,不等号的方向__________;性质3:不等式两边乘(或除以)__________,不等号的方向__________.3.一元一次不等式只含有__________,并且未知数的最高次数是__________,这样的不等式叫做一元一次不等式.4.解一元一次不等式的步骤与解一元一次方程相类似,基本步骤是:____________________,特别注意:当系数化为1时,不等式两边同乘(或除以)同一个负数,不等号的方向__________.5.不等式解法与方程解法的对比从形式上看,一元一次不等式与一元一次方程是类似的.在学习一元一次方程时利用等式的两个基本性质求得一元一次方程的解,按“类比”思想考虑问题自然会推断出,若用不等式的三条性质,采用与解一元一次方程相类似的步骤去解一元一次不等式,可求得一元一次不等式的解集.例如:解下列方程和不等式:2+x 2=2x -13+1; 2+x 2≥2x -13+1. 解:3(2+x )=2(2x -1)+6 1.去分母: 解:3(2+x )≥2(2x -1)+6,6+3x =4x -2+6 2.去括号: 6+3x ≥4x -2+6 3x -4x =-2+6-6 3.移项: 3x -4x ≥-2+6-6-x =-2 4.合并同类项: -x ≥-2x =2 5.系数化为1: x ≤2∴x =2是原方程的解. ∴x ≤2是原不等式的解集. 方程的解在数轴上的表示 不等式的解集在数轴上的表示点评:解一元一次不等式与解一元一次方程的步骤虽然完全相同,但是要注意步骤1和5,如果乘数或除数是负数时,解不等式时要改变不等号的方向.6.一元一次不等式组的解集一元一次不等式组的解集:一元一次不等式组中各不等式的解集的__________叫做这个不等式组的解集.7.解一元一次不等式组的步骤(1)求出不等式组中每个不等式的解集;(2)借助数轴找出各解集的公共部分;(3)写出不等式组的解集.求公共部分的规律:大大取大,小小取小,大小小大取中间,大大小小无解.例 解不等式组⎩⎪⎨⎪⎧ 2x -1>x +1, ①x +8<4x -1. ②解:解不等式①,得x >2,解不等式②,得x >3.在数轴上表示不等式①②的解集所以这个不等式组的解集是x >3.8.列一元一次不等式组解实际问题的一般步骤(1)审题;(2)__________;(3)根据不等关系列不等式组;(4)__________;(5)检验并作答.以上填空题答案省略.教学说明在教学过程中,借助前面的知识框架,以提问的方式引导学生回顾以上知识点,有些知识点要借助具体问题帮助学生回忆,如一元一次不等式的解法、一元一次不等式组的解法等.由于学生有的知识遗忘了,有的知识不能很好地用数学语言表达,教师应有充分的耐心听学生说完,并注意及时规范学生的不准确的表述.通过以上复习,使学生把全章知识串起来,使全章知识系统化、条理化、全面化.(二)例题精讲例1 解不等式:x +3(x +1)8>1-x -52. 思考:(1)不等式的性质3你知道吗?(2)解一元一次不等式通常有哪几个步骤?(3)在去分母时,通常应注意哪两点?解:去分母,得8x +3(x +1)>8-4(x -5),去括号,得8x +3x +3>8-4x +20,移项,得8x +3x +4x >8+20-3,合并同类项,得15x >25,系数化为1,得x >53. 在解不等式的过程中,去分母时,不能漏乘每一项,并且要注意添括号、去括号及移项的过程中,要注意符号的变化,尤其系数化为1时,系数若为负数,一定要注意不等号方向的变化.只要抓住这几点,解一元一次不等式的知识便可掌握.例2 当x 为何值时,代数式2x +13-1的值不小于3+5x 4的值? 思考:(1)“不小于”怎样用数学符号表示?“不大于”呢?(2)解此类问题首先应干什么?解:依题意,得2x +13-1≥3+5x 4, ∴4(2x +1)-12≥3(3+5x ).8x -15x ≥9+12-4,-7x ≥17,∴x ≤-177. ∴当x ≤-177时,代数式2x +13-1的值不小于3+5x 4的值. 例3 x 取哪些正整数时,代数式3-x -14的值不小于代数式3(x +2)8的值? 解:依题意,得3-x -14≥3(x +2)8. 去分母,得24-2(x -1)≥3(x +2),去括号,得24-2x +2≥3x +6,移项,得-2x -3x ≥6-24-2,合并同类项,得-5x ≥-20,系数化为1,得x ≤4,x ≤4的正整数解为x =1,2,3,4.答:当x 取1,2,3,4时,代数式3-x -14的值不小于代数式3(x +2)8的值. 点评:此题是带有附加条件的不等式,这时应先求不等式的解集,再在解集中,找出满足附加条件的解.例4 已知不等式5(x -2)+8<6(x -1)+7的最小整数解为方程2x -ax =3的解.求代数式4a -14a的值.思路分析:本例是一道不等式、方程、求代数式的值交融于一体的综合题,必须各个击破,一个问题一个问题的解决,便可攻破,这也是解综合题的常用方法.解:5(x -2)+8<6(x -1)+7,5x -10+8<6x -6+7,5x -6x <-6+7+10-8,-x <3,∴x >-3.∴此不等式的最小整数解为x =-2.∵x =-2为方程2x -ax =3的解,∴2×(-2)-a ·(-2)=3.∴a =72. 当a =72时,4a -14a =4×72-1472=14-4=10. 例5 解不等式组⎩⎪⎨⎪⎧ x -32+3≥x +1,①1-3(x -1)<8-x ,②并写出该不等式组的整数解.解:解不等式①,得x ≤1,解不等式②,得x >-2,所以不等式组的解集为-2<x ≤1.因为x 取整数,所以x =-1,0,1.所以不等式组的整数解为-1,0,1.例6 工程队原计划6天内完成300土方的工程,第一天完成60土方,现决定比原计划提前两天超额完成,问后几天每天平均至少要完成多少土方?思考:(1)列一元一次方程解应用题有哪些步骤?(2)如何依题意找相等关系?(3)如何根据题意找不等关系来解决一元一次不等式应用题?解:设后几天每天平均完成x 土方,根据题意,得60+(6-1-2)x ≥300,解之,得x ≥80.答:每天平均至少要完成80土方.例7 一堆玩具分给若干个小朋友,若每人分2件,则剩余3件;若前面每人分3件,则最后一人能分到玩具,但分到的玩具数不足2件.求小朋友的人数与玩具数.分析:由于最后一人能分到玩具,但分到的玩具数不足2件,所以该问题应该是建立不等式模型来解决.解:若设有x 个小朋友,则玩具有(2x +3)件,分到3件玩具的小朋友有(x -1)个,另一个小朋友分到玩具,但分到的玩具数不足2件,这样我们就可以得到不等式组⎩⎪⎨⎪⎧ (2x +3)-3(x -1)>0,(2x +3)-3(x -1)<2,解不等式,得4<x <6, 因为x 取整数,所以x =5.所以玩具有2×5+3=13(件).三、巩固训练,熟练技能1.不等式-x >-2的解集是( ).A .x >2B .x >-2C .x <2D .x <-22.不等式2x -7<5-2x 的正整数解有( ).A .1个B .2个C .3个D .4个3.不等式组⎩⎪⎨⎪⎧ x -2<0,x ≥1的解集为( ). A .1≤x <2 B .x ≥1 C .x <2 D .无解4.不等式组⎩⎪⎨⎪⎧3x ≤6,x +1>0的整数解是__________.5.解不等式组⎩⎪⎨⎪⎧ x -3(x -1)≤7,1-2-5x 3<x .6.m 取何值时,关于x 的方程x 6-6m -13=x -5m -12的解大于1? 7.某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校求出所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2 000元、1 800元,请你选择最省钱的一种租车方案.答案:1.C 2.B 3.A 4.0,1,2 5.-2≤x <-12. 6.解关于x 的方程,得x =3m -15,由于方程的解大于1,所以3m -15>1. 解得m >2.7.解:(1)设租用甲种汽车x 辆,则租用乙种汽车(8-x )辆.由题意,得⎩⎪⎨⎪⎧40x +30(8-x )≥290,10x +20(8-x )≥100,解得5≤x ≤6. 即共有两种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)第一种租车方案的费用为5×2 000+3×1 800=15 400(元);第二种租车方案的费用为6×2 000+2×1 800=15 600(元).所以第一种租车方案更省钱.教学说明这一环节是为了评价本节课的教学效果,检验教学目标的达成情况,教师可根据学生反馈的具体情况作适当的评价与弥补,从而达到巩固提高的目的.四、总结反思,情意发展设计说明围绕下面四个问题,师生共同总结本节课的学习收获.1.哪些本已遗忘的知识得到巩固?2.哪些知识有新的认识?3.本章主要蕴涵了哪种数学思想?4.结合你自己的复习情况,谈谈你还有什么疑问?教学说明通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中会不断进步,同时促使学生形成良好的反思习惯.五、课堂小结1.本节重点复习归纳了本章的基础知识,提高了学生各知识点的综合应用能力.2.用到的主要思想方法是数形结合思想、类比思想、模型化思想.通过一元一次不等式解法的学习,领会转化的数学思想;通过在数轴上表示一元一次不等式的解集与运用数轴确定一元一次不等式组的解集,进一步领会数形结合的思想;通过实际问题的应用,进一步领会模型化思想.3.注意的问题:复习时将平时易错的知识点、感到疑难的问题做重点处理,不留尾巴.六、布置作业课本复习题9 第7,8题.七、拓展练习1.关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( ).A .0B .-3C .-2D .-12.已知一元一次不等式组⎩⎪⎨⎪⎧ x <a ,x <b (a ≠b )的解集为x <a ,则( ). A .a >b B .a <b C .a >b >0 D .a <b <03.一元一次不等式组⎩⎪⎨⎪⎧x >a ,x >b 的解集是x >a ,则a 与b 的关系为( ). A .a ≥b B .a ≤b C .a ≥b >0 D .a ≤b <04.不等式-0.5y +1≥0的正整数解有( ).A .1个B .2个C .3个D .无数个 5.不等式⎩⎪⎨⎪⎧ 2x >-3,x -1≤8-2x 的最小整数解为( ).A .-1B .0C .2D .36.不等式组⎩⎪⎨⎪⎧ 2x +4≤0,12x +2>0的整数解为__________.7.已知关于x 的不等式组⎩⎪⎨⎪⎧ x -a ≥0,3-2x >-1的整数解有5个,求a 的取值范围.8.某校准备在甲、乙两家公司为毕业班学生制作一批纪念册.甲公司提出:每册收材料费5元,另收设计费1 500元;乙公司提出:每册收材料费8元,不收设计费.(1)请写出制作纪念册的册数与甲公司的收费的关系式;(2)请写出制作纪念册的册数与乙公司的收费的关系式;(3)如果学校派你去甲、乙两家公司订做纪念册,你会选择哪家公司?答案:1.D 2.B 3.A 4.B 5.A 6.-3,-27.解:不等式组⎩⎪⎨⎪⎧ x -a ≥0,3-2x >-1可化为⎩⎪⎨⎪⎧x ≥a ,x <2, 由于它有解集,所以解集为a ≤x <2,它的解集中包含五个整数,这五个整数依次为1,0,-1,-2,-3,反映在数轴上,a 只需-4<a ≤-3.点评:要求不等式组的解集符合一些条件,先找到这个解集,然后把它描述在数轴上,结合条件得到结论.8.解:设学校准备制作x 册纪念册,则甲公司收费y 甲元,乙公司收费y 乙元,则(1)y 甲=5x +1 500;(2)y 乙=8x .(3)若两家收费相同时,5x +1 500=8x ,解得x =500;若甲家收费较少时,即5x +1 500<8x ,解得x >500;若乙家收费较少时,即5x +1 500>8x ,解得x <500.所以,当x =500时,选择甲、乙两家都一样;当x >500时,选择甲公司;当x <500时,选择乙公司.评价与反思 本节复习是以“问题串”的形式引导学生回顾梳理主要知识点,构建知识体系——通过典型例题探究加深对主要思想方法的理解,掌握常用的解题方法.在教学中,关注学生是否认真思考,相互交流与合作,以及学生对问题的理解情况,使学生在反思和交流的基础上构建合理的知识体系.借助典型例题重点强化利用一元一次不等式(组)进行计算,训练学生解不等式(组)及利用不等式(组)解决问题的技能,从而提高他们运用所学知识去分析问题和解决问题的能力.。

七年级数学下册第九章不等式与不等式组9.1不等式9.1.1不等式及其解集教案(新版)新人教版

七年级数学下册第九章不等式与不等式组9.1不等式9.1.1不等式及其解集教案(新版)新人教版

第九章不等式与不等式组9.1 不等式9.1.1 不等式及其解集【教学目标】知识技能目标1.了解不等式的意义,能用不等式刻画事物间的相互关系;学会用观察、类比、猜测解决问题.2.通过解决简单的实际问题,使学生自发地寻找不等式的解,理解不等式的解集.3.会把不等式的解集正确地表示在数轴上.过程性目标经历现实生活不等关系的探究过程,体会建立不等模型的思想;通过不等式解集在数轴上表示的探究,渗透数形结合思想.情感态度目标培养学生创新地思考问题的态度和细致地解决和求证问题的意识,产生学数学、爱数学的思想感情. 【重点难点】重点:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.难点:正确理解不等式解集的意义.【教学过程】一、创设情境①两个体重相同的孩子正在跷跷板上做游戏,现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢?②一辆匀速行驶的汽车在11:20时距离A地50千米.要在12:00之前到达A地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗?从时间上来看:<;从路程上看:x>50.二、新知探究探究点1:不等式的定义问题1:观察引入中两个式子的特点:<和x>50.问题2:类比等式的定义,给这样的式子下个定义.要点归纳:像这样用符号“<”或“>”表示大小关系的式子,叫做不等式.强调:a+2≠a-2也是不等式.【即时训练】判断下列各式是不是不等式?①3<4;②x+3≠0;③4x-2y≤0;④7n-5≥2;⑤3x2+2>0;⑥5m+3=8.答案:①②③④⑤是,⑥不是强调:符号“≥”读作“大于或等于”,也可以说是“不小于”;符号“≤”读作“小于或等于”,也可以说是“不大于”.探究点2:不等式的解(解集)及其表示问题1:创设情境中要使汽车在12:00之前到达A地,你认为车速应该为多少呢?问题2:车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?问题3:我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.上面所说的这些数,哪些是不等式x>50的解呢?问题4:判断下列数中哪些是不等式x>50的解:76,73,79,80,74.9,75.1,90,60.你能找出这个不等式其他的解吗?它到底有多少个解?这些解应满足什么条件?你从中发现了什么规律?(有,有无数个,它们都需要满足x>75)问题5:已知x1=1,x2=2,请在数轴上表示出x1,x2的位置,根据数轴判断x<1,x>2,1<x<2各对应数轴的哪一部分?如图所示:用数轴表示不等式的解集步骤及注意事项:第一步:画数轴;第二步:定界点;第三步:定方向.“>”“<”是空心;“≥”“≤”是实心.“>”“≥”向右画;“<”“≤”向左画.要点归纳:1.我们把使不等式成立的未知数的值叫做不等式的解.2.一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.例题讲解例1 设某数为x,根据某数与2的差小于3,列出关系式并结合数轴取点验证.解析x-2<3.分別取x=-2,-1,0,1,3.1,5,6,10.代入不等式,其中x=-2,-1,0,1,3.1代入后不等式成立,所以x=-2,-1,0,1,3.1是不等式x-2<3的解;x=5,6,10不是不等式x-2<3的解;这个不等式的解集表示为x<5.例2 在数轴上表示下列不等式的解集(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1解析如图:【方法总结】用数轴表示不等式的解集,应记住下面的规律:1.大于向右画,小于向左画.2.>,<画空心圆.三、检测反馈1.把不等式x+1≥0的解集在数轴上表示出来,则正确的是 ( )2.设A,B,C表示三种不同物体,先用天平称了两次,情况如图所示,则这三个物体按质量从大到小应为( )A.A>B>CB.C>B>AC.B>A>CD.A>C>B3.有下列数:5,-4,,0,1,-a2+1,2,2.其中是不等式8-4x>0的解的有( ) A.4个 B.5个C.6个D.3个4.下列式子:①-m2≤0,②x+y>0,③a2+2ab+b2,④(a-b)2≥0,⑤-(y+1)<0.其中不等式有( )A.1个B.2个C.3个D.4个5.表示a,b两数的点在数轴上的位置如图所示,下列结论不正确的是( )A.a>0B.ab<0C.2a-b>0D.b-a>06.下列说法中错误的是( )A.2x<6的解集是x<3B.-x<-4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个7.某饮料瓶上有这样的字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为_______.8.不等式x-3<0的解集是_______.9.用不等式表示下列各式.(1)a与1的和是正数:_______;(2)b与a的差是负数:_______;(3)a与b的平方和大于7:_______;(4)x的2倍与3的差小于-5:_______.10.一个不等式的解集如图所示,则这个不等式的正整数解是_______.11.有甲、乙两种型号的铁丝,每根甲型铁丝长度比每根乙型铁丝少3厘米,现取这两种型号的铁丝各两根分别做长方形的长和宽,焊接成周长大于2.1米的长方形铁丝框.(1)设每根乙型铁丝长为x厘米,按题意列出不等式.(2)如果每根乙型铁丝的长度有以下四种选择:45厘米、50厘米、55厘米、58厘米,那么哪些合适?四、本课小结教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1.什么是不等式?2.什么是不等式的解?3.什么是不等式的解集,它与不等式的解有什么区别与联系?4.用数轴表示不等式的解集要注意哪些方面?五、布置作业课堂作业:课本第115页练习课后作业:课本第119页习题9.1第1,2,3题.六、板书设计七、教学反思①[授课流程反思]本节通过实例创设情境,从“等”过渡到“不等”,进而探究了不等式的概念,解与解集,在数轴上表示不等式的解集.②[讲授效果反思]通过本节教学,学生对不等式有了进一步的认识,能够根据题意列出简单的不等式,并能验证不等式的解及表示不等式的解集.。

人教版七年级数学下册 第九章 不等式与不等式组 一元一次不等式 第2课时 实际问题与一元一次不等式

人教版七年级数学下册 第九章 不等式与不等式组 一元一次不等式 第2课时 实际问题与一元一次不等式
A.58 B.59 C.60 D.61 4.(舞钢市期末)小张购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢 笔5元,费用不超过100元钱,设小张买了x支钢笔,则x应满足的不等式是 _5_x_+__2_(_3_0_-__x_)≤_1_0_0__.
5.(2021·焦作期末)一种苹果的进价是每千克1.9元,销售中估计有5%的苹果 正常损耗,商家把售价至少定为__2__元,才能避免亏本.
解:因为1.5×10=15<25,所以小明家这个月的用水量超过10立方米.设小明 家这个月的用水量至少为x立方米,根据题意有15+2(x-10)≥25,解得x≥15,答: 他家这个月的用水量至少是15立方米
11.(2021·河北)已知训练场球筐中有A,B两种品牌的乒乓球共101个,设A品 牌乒乓球有x个.
(1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方 程:101-x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;
(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法 说明A品牌球最多有几个.
解:(1)嘉嘉所列方程为 101-x=2x,解得 x=3323 ,又∵x 为整数,∴x=3323 不合题意,∴淇淇的说法不正确 (2)设A品牌乒乓球有x个,则B品牌乒乓球有(101-x)个,依题意,得101-x- x≥28,解得x≤36.5,又∵x为整数,∴x可取的最大值为36.答:A品牌球最多有36 个
8.红旗中学组织本校师生参加红色研学实践活动,现租用11辆甲、乙两种型 号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动.
甲、乙两种型号的大客车的载客量如表所示:
则最多可以租用多少辆甲种型号大客车?有几种租车方案?
解:设租用x辆甲种型号大客车,则租用(11-x)辆乙种型号大客车,依题意得: 40x+55(11-x)≥549+11,解得x≤3,∴x可以取的最大值为3.∵x为正整数,∴x= 1或2或3,∴有3种租车方案.答:最多可以租用3辆甲种型号大客车.有3种租车 方案,方案1:租用1辆甲种型号大客车,10辆乙种型号大客车;方案2:租用2辆 甲种型号大客车,9辆乙种型号大客车;方案3:租用3辆甲种型号大客车,8辆乙 种型号大客车

七年级下册数学第九章《不等式与不等式组》教案

七年级下册数学第九章《不等式与不等式组》教案

9.1.1不等式及其解集学习目标知识:不等式及其解集和一元一次不等式。

方法:渗透数形结合的思想。

情感:培养学生的数感,促进合作交流意识的形成。

学习重点:不等式、不等式解与解集的意义,并把解集正确地表示在数轴上。

学习难点:正确理解不等式的解集意义。

.教具准备:多媒体课件。

教学流程一、【情境引入】1、ppt出示题目:某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式?依题意得4x>6(x−10)2、你能举出生活中不相等关系的一些实例吗?3、怎样来表示这些不等关系呢?这就是我们今天探讨的问题。

(板书课题:不等式及其解集)。

二、【自主探究】学生阅读121——123页。

自读提纲:(1)什么叫做不等式及不等式的解?(2)什么叫做不等式的解集?什么叫做一元一次不等式?(3)怎样在数轴上表示不等式的解集?三、【合作探究】以上问题让学生展示,先让学困生回答,中等生补充,优等生总结;教师适当指导汇总得出:1、不等式的概念:用“<”“>”“≠”表示大小关系的式子叫做不等式。

(让学生回忆等式的概念。

)2、使不等式成立的未知数的值叫做不等式的解。

3、使不等式成立的所有的解的集合叫做不等式的解集。

4、含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

(让学生回忆一元一次方程的概念。

)例1、用不等式表示。

(1)a与1的和是正数。

(2)y的2倍与1的和大于3;(3)x的一半与x的2倍的和是非正数;(4)c与4的和不大于-2;2x>50的解例2、判断下列数中哪些是不等式376,73,79,80,74,75.1,90,60例3、在数轴上表示下列不等式的解集(1)x>1;(2)x≥1;(3)x<1;(4)x≤1教师分析指点:按画数轴,定界点,走方向答。

五、【当堂训练】1、课本P123页1,2,3。

2020七年级数学下册 第9章 不等式与不等式组 9.2 实际问题与一元一次不等式(三)教案

2020七年级数学下册 第9章 不等式与不等式组 9.2 实际问题与一元一次不等式(三)教案

9.2 实际问题与一元一次不等式(3)教学目标1、会根据实际向题中的数量关系列不等式解决问题,熟练掌握一元一次不等式的解法;2、初步感知实际问题对不等式解集的影响,培养学生的数学建模能力和分析问题、解决问题的能力;3、通过开放性问题的设计,增强学生的创新意识和挑战自我意识,激发学习兴趣.教学难点把生活中的实际问题抽象为数学问题。

知识重点根据题意,分析各类问题中的数量关系,会熟练列不等式解应用问题。

教学过程(师生活动)设计理念引入新课前面我们结合实际问题,讨论了如何根据数量关系列不等式以及如何解不等式.在本节课上,我们将进一步探究如何用一元一次不等式解决生活中的一些实际问题.在前面所学内容的基础上,本节课承上启下,进一步探究如何运用一元一次不等式解决生活中的实际问题。

提出问题某次知识竞赛共有20道题.每道题答对加10分,答错或不答均扣5分:小跃要想得分超过90分,他至少要答对多少道题?利用身边的问题创设情境,以激发学生的学习热情,感受数学在生活中无处不在。

探究新知1、与题目数量有什么关系?2、跃答对了x道题,则如何用含有x的式子表示得分?3、不等式应用题的解法.教师在学生充分讨论的基础上板书解题过程,并指出:用不等式解应用问题时,必须注意对未知数的限制条件.设置问题,引导学生观察、思考、讨论、交流,自主构建不等式应用师的解法。

便于学观察并掌握不等式应用题的解题步骤。

解决问题某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩与民主测评活动.聘请A,B,C,D,E五位老师为评委,对演讲答辩进行评分;全班50位同学参与了民主测评.两项结果见下表:表一演讲答辩得分表(单位:分)A B C D E甲90 92 94 95 88乙89 86 87 94 91表二民主测评得分表好票数较好票数一般票数甲40 7 3乙42 4 4规定:演讲答辩得分按“去掉一个最高分和一个最低分,再算平均分”的方法确定;民主测评得分一“好”票数×2分十“较好”票数×l分+“一般”票数×.综合得分一演讲答辩得分× (1-a)+民主测评得分×a(0≤a≤0.8(1)当a=0.6时,甲的综合得分是多少?(2 )a在什么范围时,甲的综合得分高?a在什么范围时,乙的综合得分高?设置挑战性、兴趣的问题,营造生动活波的课堂氛围,更大限度地发挥学生的想像力和创造力,启发学生学会多角地认识问题、解决问题,从中感悟数学的奥妙与价值,增强创造性地学数学、主动性地用数学的意识.总结归纳这节课上,我感受最深的是……这节课上,我感到最困难的是……这节课上,我发现生活中……这节课上,我学会了……学生自己总结,并在班上或同桌之间交流启发学生思考,归纳并总结所学知识,培养学生简明的概括能力和准确的语言表达能力。

人教版七年级下册数学第九单元本章复习教案与教学反思

人教版七年级下册数学第九单元本章复习教案与教学反思

第九章不等式与不等式组李度一中陈海思本章复习【知识与技能】1.了解一元一次不等式及其相关概念,经历“把实际问题抽象为不等式”的过程,能够“列出不等式或不等式组表示问题中的不等关系”,体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型.2.通过观察、对比和归纳,探索不等式的性质,能利用它们探究一元一次不等式的解法.3.了解解一元一次不等式的基本目标(使不等式逐步转化为x>a或x<a的形式),熟悉解一元一次不等式的一般步骤,掌握一元一次不等式的解法,并能在数轴上表示出解集,体会解法中蕴含的化归思想.4.了解不等式组及其相关概念,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.【过程与方法】用提问法引导学生复习本章所有知识点,再通过典型题、热点题的剖析与训练提高学生的解题能力.【情感态度】通过一些经典的、现实的、有意义的、富有挑战性的题型的训练,培养学生主动学习、探究学习、互相交流等学习品质,激发学生的学习兴趣.【教学重点】一元一次不等式(组)的解法及列不等式(组)解应用问题.【教学难点】与一元一次不等式(组)有关的综合型问题,应用型问题.一、知识框图,整体把握1.利用不等式(组)解决实际问题的基本过程2.本章知识安排的前后顺序二、回顾思考,梳理知识1.不等式的三个性质:不等式性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.2.一元一次不等式的解法与一元一次方程的解法基本相同,只是在系数化为1时,若两边同乘(或除以)同一个负数,不等号的方向要改变,解未知数为x 的不等式,就是将不等式逐步变成x>a(或x<a)的形式.3.解一元一次不等式组的关键是求不等式的公共解集.4.设未知数、列不等式(组)是解有关应用题的关键步骤,解相关应用题时,必须根据问题中的相关信息,将问题数学化,进而对其中的数量关系进行梳理,有条理地、逐步深入地考虑如何寻求解决问题的方法.三、典例精析,复习新知例1(山东临沂中考)有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料重20kg电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下,最多还能搭载____捆材料.分析:本题不等关系是:210+会议材料重量≤1050.设还可搭载x捆材料,则:210+20x≤1050,解得x≤42.故最多还能搭载42捆材料.例2 当m为何值时,方程组解:先解关于x,y的方程组,再由列出关于m的不等式组,解不等式组便可求出m的范围.解方程组得例3某商店积压了100件某种商品,为使这批货物飞快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作三次降价处理:第次降低30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”.三次降价处理销售结果如下表:问:(1)跳楼价占原价的百分比是多少?(2)该商品按新销售方案销售,相比原价全部售完,哪一种方案更盈利.解:(1)设原价为x元,则2.5×0.73x÷x=85.75%;(2)原价销售额为100x元,新价销售额为2.5×10×0.7x+2.5×0.72x×0+0.8575x×50=109.375x元,因109.375x>100x,故新方案销售更盈利.例4(1)若不式组 2x-3a<7b,6b-3x<5a 的解集是5<x<22.求a,b的值.(2)已知不等式组的解集为x>2,求a的范围.解:(1)原不等式组可化为依题意,得1/3(6b-5a)<x<1/2(3a+7b).又由题意知,该不等式组的解集为5<<22.所以解得(2)原不等式组可化为.依题意,知x>2,所以a≤2.例5 若关于x的不等式-3x+m>0有5个正整数解,求m的取值范围.解:解不等式得x<m/3,因为它有5个正整数解,所以x的正整数解是x =1,2,3,4,5.而x<5的正整数解为1,2,3,4,不符合题意,所以m/3比5大,而x<6的正整数解为1,2,3,4,5,符合题意,所以m/3不超过6,上5<m/3≤6.所以15<m≤18.想一想,若关于x的不等式-3x+m≥0有5个正整数解,则m的取值范围又如何呢?(答案:15≤m<18)例6 某食堂在开晚餐前有a名学生在食堂排队等候就餐,开始卖晚餐后,仍有学生前来排队买晚餐,设学生前来排队买晚餐的人数按固定的速度增加,食堂每个窗口卖晚餐的速度也是固定的.若开放一个窗口,则需要40分钟才使排队等候的学生全部买到晚餐;若同时开放两个窗口,则需15分钟就可使排队的学生全部买到晚餐.(1)写出开放一个窗口时,开始卖晚餐后窗口卖晚餐的速度y(人/分钟)与每分钟新增加的学生人数x(人)之间的关系.(2)食堂为了提高服务质量,减少学生排队的时间,计划在8分钟内让排队等候的学生全部买到晚餐,以使后到的学生能随到随买,求至少要同时开放几个窗口?(2)设至少要同时开放n个窗口.依题意得由①得x=a/60.代入②得即a+8×a/60≤8n×a/24,即n≥17/5.n取不小于17/5的最小正整数,所以n=4.∴至少要同时开放4个窗口.例7 某校七年级春游,现有36座和42座两种客车可供选择.若只租36座客车若干辆,则正好坐满;若只租42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人.已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校七年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.解:(1)设租36座的车x辆.据题意得:解得:由题意x应取8,参加春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元);方案②:租42座车7辆的费用:7×440=3080(元);方案③:因为42×6+36×1=288,租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元).所以方案③:租42座车6辆和36座车1辆最省钱.例8 大别山中学七年级的(1)(2)(3)(4)(5)五个班分在同一小组进行单循环的篮球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线,小组赛结束后,(1)班的积分为9分,你知道(1)班的成绩是几胜,几平,几负吗?如果(4)班积10分,它能出线吗?解:(1)设(1)班积9分时胜x场,平y场,则解得5/2≤x<4.又x为正整数,所以x=3,y=0.故可知(1)班的成绩是3胜0平1负.(2)设(4)班积10分时胜x场,平y场,则解得3≤x<4.又x为整数,所以x=3,y=1.故(4)班3胜1平0负.经分析易知另外四个班中最多只有一个班,也能达到3胜1平0负,即积分为10分,又因小组中名次在前的两个队出线,故(4)班一定出线.【教学说明】例1~例5可让学生自主探究,交流,达成共识,得出结论;例7~例8是关于一元一次不等式组解决实际问题的综合应用,有一定的典型性与难度,教师要引导学生分析题意中隐含的相等关系与不等关系,并将其转化为数学式.四、师生互动,课堂小结一元一次不等式(组)的解法及应用是中考的必考知识点,不仅在所有的题型中都可出现,而且还渗透到其它知识点之中实行考查,所以同学们一定要重视本节的基础知识及综合演练,只有这样,才能确保后续学习顺利进行.1.布置作业:从教材“复习题9”中选取.2.完成练习册中本课时的练习.本课时的重点是让学生在充分交流的基础上建立本章的知识框架图,并反思如何运用一元一次不等式及一元一次不等式组来解决实际问题,引导学生在练习中体验本章知识的运用.【素材积累】1、只要心中有希望存摘,旧有幸福存摘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.2实际问题与一元一次不等式(一)
教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;
2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;
3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。

教学重点:寻找实际问题中的不等关系,建立数学模型。

教学难点:弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。

教学过程(师生活动)
提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?
探究新知1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.
2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:
(1)什么情况下,到甲商场购买更优惠?
(2)什么情况下,到乙商场购买更优惠?
(3)什么情况下,两个商场收费相同?
3、我们先来考虑方案:
设购买x台电脑,如果到甲商场购买更优惠.
问题1:如何列不等式?
问题2:如何解这个不等式?
在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x
去括号,得:6000+4500x-45004<4800x
移项且合并,得:-300x<1500
不等式两边同除以-300,得:x<5
答:购买5台以上电脑时,甲商场更优惠.
4、让学生自己完成方案(2)与方案(3),并汇报完成情况.
教师最后作适当点评.
解决问题甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施.甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95%收费.顾客选择哪个商店购物能获得更多的优惠?
问题1:这个问题比较复杂.你该从何入手考虑它呢?
问题2:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑.你认为应分哪几种情况考虑?
分组活动.先独立思考,再组内交流,然后各组汇报讨论结果.
最后教师总结分析:
1、如果累计购物不超过50元,则在两家商场购物花费是一样的;
2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。

3、如果累计购物超过100元,又有三种情况:
(1)什么情况下,在甲商场购物花费小?
(2)什么情况下,在乙商场购物花费小?
(3)什么情况下,在两家商场购物花费相同?
上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。

总结归纳:通过体验买电脑、选商场购物,感受实际生活中存在的不等关系,用不等式来表示这样的关系可为解决问题带来方便.由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案.
布置作业:教科书第134页习题9.2第1题(1)(2)第3题1、2。

相关文档
最新文档