2018版高考数学大一轮复习高考专题突破三高考中的数列问题教师用书

合集下载

2018高考数学复习第六章数列教师用书理

2018高考数学复习第六章数列教师用书理

第六章⎪⎪⎪ 数 列第一节数列的概念与简单表示突破点(一) 数列的通项公式1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常也叫做首项).2.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做数列{a n }的递推公式.4.S n 与a n 的关系已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意数列均成立.[例1] 写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; 本节主要包括2个知识点: 1.数列的通项公式;2.数列的单调性.(3)-1,32,-13,34,-15,36,…;(4)3,33,333,3 333,….[解] (1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n-12n .(3)奇数项为负,偶数项为正,故通项公式中含因式(-1)n;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n·2+ -1nn.也可写为a n=⎩⎪⎨⎪⎧-1n,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).[方法技巧]由数列的前几项求通项公式的思路方法给出数列的前几项求通项时,需要注意观察数列中各项与其序号之间的关系,在所给数列的前几项中,先看看哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号间的关系,主要从以下几个方面来考虑:(1)分式形式的数列,分子、分母分别求通项,较复杂的还要考虑分子、分母的关系. (2)若第n 项和第n +1项正负交错,那么符号用(-1)n 或(-1)n +1或(-1)n -1来调控.(3)熟悉一些常见数列的通项公式.(4)对于较复杂数列的通项公式,其项与序号之间的关系不容易发现,这就需要将数列各项的结构形式加以变形,可使用添项、通分、分割等方法,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.利用a n 与S n 的关系求通项[例2] n n n (1)S n =2n 2-3n ; (2)S n =3n +b .[解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,所以{a n }的通项公式为a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n+b )-(3n -1+b )=2×3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. 所以当b =-1时,a n =2×3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2×3n -1,n ≥2.[方法技巧]已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.利用递推关系求通项[例3] (1)已知数列{a n }满足a 1=2,a n +1=a n +n 2+n ,则a n =________;(2)若数列{a n }满足a 1=23,a n +1=nn +1a n ,则通项a n =________;(3)若数列{a n }满足a 1=1,a n +1=2a n +3,则a n =________; (4)若数列{a n }满足a 1=1,a n +1=2a na n +2,则a n =________. [解析] (1)由条件知a n +1-a n =1n 2+n =1n n +1 =1n -1n +1, 则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1) =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+1n -1-1n , 即a n -a 1=1-1n ,又∵a 1=12,∴a n =1-1n +12=32-1n .(2)由a n +1=nn +1a n (a n ≠0),得a n +1a n =nn +1, 故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =n -1n ·n -2n -1·…·12·23=23n. (3)设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,b n ≠0,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,2为公比的等比数列. 所以b n =4×2n -1=2n +1,即a n =2n +1-3.(4)∵a n +1=2a na n +2,a 1=1, ∴a n ≠0, ∴1a n +1=1a n +12, 即1a n +1-1a n =12, 又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1. [答案] (1)32-1n (2)23n (3)2n +1-3 (4)2n +1[方法技巧]由递推关系式求通项公式的常用方法(1)已知a 1且a n -a n -1=f (n ),可用“累加法”求a n .(2)已知a 1且a na n -1=f (n ),可用“累乘法”求a n . (3)已知a 1且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可由待定系数法确定),可转化为等比数列{a n +k }.(4)形如a n +1=Aa nBa n +C(A ,B ,C 为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.(5)形如a n +1+a n =f (n )的数列,可将原递推关系改写成a n +2+a n +1=f (n +1),两式相减即得a n +2-a n =f (n +1)-f (n ),然后按奇偶分类讨论即可.能力练通抓应用体验的“得”与“失”1.[考点一]已知n ∈N *,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数,②a n =1+ -1 n2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪⎪⎪sin n π2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( )A .①②③B .①②④C .②③④D .①③④解析:选A 检验知①②③都是所给数列的通项公式.2.[考点一]数列1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n (n ∈N *) B .a n =(-1)n -12n +1n 3+3n (n ∈N *) C .a n =(-1)n +12n -1n 2+2n (n ∈N *) D .a n =(-1)n -12n +1n 2+2n(n ∈N *) 解析:选D 所给数列各项可写成:31×3,-52×4,73×5,-94×6,…,通过对比各选项,可知选D.3.[考点二]已知数列{a n }的前n 项和为S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3 B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2 D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.4.[考点三]设数列{a n }满足a 1=1,且a n +1-a n =n +1,求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n = n -1 2+n 2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n2(n ∈N *).5.[考点三]若数列{a n }满足:a 1=1,a n +1=a n +2n,求数列{a n }的通项公式. 解:由题意知a n +1-a n =2n,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=1-2n1-2=2n -1.又因为当n =1时满足此式,所以a n =2n-1.突破点(二) 数列的单调性数列的分类[例1] 已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大?[解] (1)取n =1,得λa 21=2S 1=2a 1, 即a 1(λa 1-2)=0.若a 1=0,则S n =0,当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0.若a 1≠0,则a 1=2λ,当n ≥2时,2a n =2λ+S n,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=2nλ. 综上,当a 1=0时,a n =0; 当a 1≠0时,a n =2nλ.(2)当a 1>0且λ=100时,令b n =lg 1a n,由(1)知b n =lg 1002n =2-n lg 2.所以数列{b n }是单调递减的等差数列(公差为-lg 2). 则b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027=lg 100128<lg 1=0,故当n =6时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项的和最大.[方法技巧]1.判断数列单调性的两种方法 (1)作差比较法a n +1-a n >0⇔数列{a n }是单调递增数列;a n +1-a n <0⇔数列{a n }是单调递减数列;a n +1-a n=0⇔数列{a n }是常数列.(2)作商比较法 ①当a n >0时,a n +1a n >1⇔数列{a n }是单调递增数列;a n +1a n <1⇔数列{a n }是单调递减数列;a n +1a n=1⇔数列{a n }是常数列.②当a n <0时,a n +1a n >1⇔数列{a n }是单调递减数列;a n +1a n <1⇔数列{a n }是单调递增数列;a n +1a n=1⇔数列{a n }是常数列.2.求数列最大项或最小项的方法(1)可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.利用数列的单调性求参数的取值范围[例2] 已知函数f (x )=⎩⎪⎨⎪⎧ 3-a x +2,x ≤2,a 2x 2-9x +11,x >2(a >0,且a ≠1),若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1) B.⎣⎢⎡⎭⎪⎫83,3C .(2,3)D .(1,3)[解析] 因为{a n }是递增数列,所以⎩⎪⎨⎪⎧3-a >0,a >1,3-a ×2+2≤a ,解得83≤a <3,所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫83,3. [答案] B [方法技巧]已知数列的单调性求参数取值范围的两种方法(1)利用数列的单调性构建不等式,然后将其转化为不等式的恒成立问题进行解决,也可通过分离参数将其转化为最值问题处理.(2)利用数列与函数之间的特殊关系,将数列的单调性转化为相应函数的单调性,利用函数的性质求解参数的取值范围,但要注意数列通项中n 的取值范围.能力练通抓应用体验的“得”与“失”1.[考点一]设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4D .0解析:选D a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质,得当n =2或n =3时,a n 取最大值,最大值为a 2=a 3=0.故选D.2.[考点一]若数列{a n }满足:a 1=19,a n +1=a n -3,则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n ,则a n 是递减数列.设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-3 k +1 ≤0,∴193≤k ≤223,∵k ∈N *,∴k =7.∴满足条件的n 的值为7.3.[考点二]已知{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.解析:∵对于任意的n ∈N *,a n =n 2+λn 恒成立, ∴a n +1-a n =(n +1)2+λ(n +1)-n 2-λn =2n +1+λ. 又∵{a n }是递增数列,∴a n +1-a n >0,且当n =1时,a n +1-a n 最小, ∴a n +1-a n ≥a 2-a 1=3+λ>0,∴λ>-3. 答案:(-3,+∞)4.[考点一、二]已知数列{a n }中,a n =1+1a +2 n -1(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +2 n -1(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2 n -1 =1+12n -2-a2.∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性,知5<2-a 2<6,∴-10<a <-8.故a 的取值范围为(-10,-8).[全国卷5年真题集中演练——明规律]1.(2015·新课标全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴1S n =-1+(n -1)×(-1)=-n ,∴S n =-1n.答案:-1n2.(2014·新课标全国卷Ⅱ)数列 {a n }满足 a n +1=11-a n , a 8=2,则a 1 =________.解析:将a 8=2代入a n +1=11-a n ,可求得a 7=12;再将a 7=12代入a n +1=11-a n,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n ,可求得a 5=2;由此可以推出数列{a n }是一个周期数列,且周期为3,所以a 1=a 7=12.答案:123.(2013·新课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n=________.解析:当n =1时,由已知S n =23a n +13,得a 1=23a 1+13,即a 1=1;当n ≥2时,由已知得到S n -1=23a n -1+13,所以a n =S n -S n -1=⎝ ⎛⎭⎪⎫23a n +13-⎝ ⎛⎭⎪⎫23a n -1+13=23a n -23a n -1,所以a n =-2a n -1,所以数列{a n }为以1为首项,以-2为公比的等比数列,所以a n =(-2)n -1.答案:(-2)n -14.(2016·全国丙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.解:(1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1). 因此{a n }的各项都为正数,所以a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列,因此a n =12.[课时达标检测]重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.数列1,23,35,47,59,…的一个通项公式a n =( )A.n 2n +1B.n 2n -1C.n 2n -3D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故该数列的一个通项公式为n2n -1.2.设数列{a n }的前n 项和S n =n 2+n ,则a 4的值为( ) A .4 B .6 C .8 D .10解析:选C a 4=S 4-S 3=20-12=8.3.已知数列{a n }满足a 1=1,a n +1a n =2n(n ∈N *),则a 10=( ) A .64 B .32 C .16 D .8解析:选B ∵a n +1a n =2n,∴a n +2a n +1=2n +1,两式相除得a n +2a n=2.又a 1a 2=2,a 1=1,∴a 2=2.则a 10a 8·a 8a 6·a 6a 4·a 4a 2=24,即a 10=25=32.4.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( ) A.1516 B.158 C.34 D.38解析:选C 由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.5.现定义a n =5n+⎝ ⎛⎭⎪⎫15n ,其中n ∈⎩⎨⎧⎭⎬⎫110,15,12,1,则a n 取最小值时,n 的值为________.解析:令5n=t >0,考虑函数y =t +1t,易知其在(0,1]上单调递减,在(1,+∞)上单调递增,且当t =1时,y 的值最小,再考虑函数t =5x,当0<x ≤1时,t ∈(1,5],则可知a n =5n+⎝ ⎛⎭⎪⎫15n 在(0,1]上单调递增,所以当n =110时,a n 取得最小值.答案:110[练常考题点——检验高考能力]一、选择题1.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18=( ) A .36 B .35 C .34 D .33解析:选C 当n ≥2时,a n =S n -S n -1=2n -3;当n =1时,a 1=S 1=-1,所以a n =2n -3(n ∈N *),所以a 2+a 18=34.2.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=( )A.6116B.259C.2516D.3115解析:选A 令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116.3.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .∴a 6=a 3·a 3=64,a 3=8.∴a 9=a 6·a 3=64×8=512.4.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C 由3a n +1=3a n -2得a n +1=a n -23,则{a n }是等差数列,又a 1=15,∴a n =473-23n .∵a k ·a k +1<0,∴⎝ ⎛⎭⎪⎫473-23k ·⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472,∴k =23,故选C.5.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 015=( ) A .8 B .6 C .4D .2解析:选D 由题意得:a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8;所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 015=a 335×6+5=a 5=2.6.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( )A.12B.12C.15D.110解析:选C ∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,即a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又∵d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15. 二、填空题7.已知数列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是________. 解析:∵a n =2a n -1+1,∴a n +1=2(a n -1+1),∴a n +1a n -1+1=2,又a 1=1,∴{a n +1}是以2为首项,2为公比的等比数列,即a n +1=2×2n -1=2n,∴a 5+1=25,即a 5=31.答案:318.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项.解析:令n -2n2=0.08,得2n 2-25n +50=0, 即(2n -5)(n -10)=0.解得n =10或n =52(舍去).即0.08是该数列的第10项.答案:109.已知数列{a n }满足:a 1=1,a n +1(a n +2)=a n (n ∈N *),若b n +1=(n -p )⎝ ⎛⎭⎪⎫1a n+1,b 1=-p ,且数列{b n }是单调递增数列,则实数p 的取值范围为________.解析:由题中条件,可得1a n +1=2a n+1,则1a n +1+1=21a n +1,易知1a 1+1=2≠0,则⎩⎨⎧⎭⎬⎫1a n+1是等比数列,所以1a n+1=2n ,可得b n +1=2n (n -p ),则b n =2n -1(n -1-p )(n ∈N *),由数列{b n }是单调递增数列,得2n (n -p )>2n -1(n -1-p ),则p <n +1恒成立,又n +1的最小值为2,则p 的取值范围是(-∞,2).答案:(-∞,2)10.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________.解析:∵(n +1)a 2n +1+a n +1·a n -na 2n =0, ∴(a n +1+a n )[(n +1)a n +1-na n ]=0, 又a n +1+a n >0,∴(n +1)a n +1-na n =0,即a n +1a n =n n +1, ∴a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12×23×34×45×…×n -1n ,∵a 1=1,∴a n =1n. 答案:1n三、解答题11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理,a 3=3,a 4=4. (2)S n =12a 2n +12a n ,①当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②,整理得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n . 12.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由对于n ∈N *,都有a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 第二节等差数列及其前n 项和突破点(一) 等差数列的性质及基本量的计算1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -1 2d =n a 1+a n2.本节主要包括3个知识点:1.等差数列的性质及基本量的计算;2.等差数列前n 项和及性质的应用;3.等差数列的判定与证明.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(5)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.考点贯通抓高考命题的“形”与“神”等差数列的基本运算[例1] (1)(2016·东北师大附中摸底考试)在等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4(2)(2016·惠州调研)已知等差数列{a n }的前n 项和为S n ,若S 3=6,a 1=4,则公差d 等于( )A .1 B.53 C .-2D .3[解析] (1)∵a 1+a 5=2a 3=10, ∴a 3=5,则公差d =a 4-a 3=2,故选B. (2)由S 3=3 a 1+a 3 2=6,且a 1=4,得a 3=0, 则d =a 3-a 13-1=-2,故选C.[答案] (1)B (2)C [方法技巧]1.等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.2.等差数列设项技巧若奇数个数成等差数列且和为定值时,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列且和为定值时,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.等差数列的性质[例2] (1)n 396n n 的前n 项和,则S 11=( )A .18B .99C .198D .297(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. [解析] (1)因为a 3+a 9=27-a 6,2a 6=a 3+a 9, 所以3a 6=27,所以a 6=9, 所以S 11=112(a 1+a 11)=11a 6=99.(2)因为{a n },{b n }都是等差数列, 所以2a 3=a 1+a 5,2b 8=b 10+b 6, 所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6), 即2×15=9+(a 5+b 6), 解得a 5+b 6=21. [答案] (1)B (2)21能力练通抓应用体验的“得”与“失”1.[考点一]《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱 D.43钱 解析:选D 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,解得⎩⎪⎨⎪⎧a 1=43,d =-16,即甲得43钱,故选D.2.[考点一]设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( )A .5B .6C .7D .8解析:选D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.3.[考点二]已知数列{a n }为等差数列,且a 1+a 7+a 13=π,则cos(a 2+a 12)的值为( ) A.32 B .-32 C.12 D .-12解析:选D 在等差数列{a n }中,因为a 1+a 7+a 13=π,所以a 7=π3,所以a 2+a 12=2π3,所以cos(a 2+a 12)=-12.故选D.4.[考点一]设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.所以S 16=16×3+16×152×(-1)=-72.答案:-725.[考点二]设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),求数列{a n }的项数及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,①a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n a 1+a n2=324,∴18n =324,∴n =18. ∵a 1+a n =36,n =18, ∴a 1+a 18=36,从而a 9+a 10=a 1+a 18=36.突破点(二) 等差数列前n 项和及性质的应用等差数列前n 项和的性质(1)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d . (2)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1).(3)当项数为偶数2n 时,S 偶-S 奇=nd ;项数为奇数2n -1时,S 奇-S 偶=a 中,S 奇∶S 偶=n ∶(n -1).(4){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(5)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.[例1] 已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.[解析] 法一:设数列{}a n 的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D .所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. [答案] 20[例2] n 1n 512n 为何值时,S n 有最大值?[解] 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一:S n =na 1+n n -12d=na 1+n n -1 2·⎝ ⎛⎭⎪⎫-18a 1=-116a 1(n 2-17n )=-116a 1⎝ ⎛⎭⎪⎫n -1722+28964a 1,因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值.法二:设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+ n -1 ·⎝ ⎛⎭⎪⎫-18a 1≥0,a 1+n ·⎝ ⎛⎭⎪⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值. 法三:由于S n =na 1+n n -1 2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,设f (x )=d2x 2+⎝ ⎛⎭⎪⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线,由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示),由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[方法技巧]求等差数列前n 项和S n 最值的三种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方结合图象借助求二次函数最值的方法求解.(2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .(3)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q2时,S n 最大; ②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.能力练通抓应用体验的“得”与“失”1.[考点二]在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n n -12×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.[考点二]设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7 解析:选 D 由(n +1)S n <nS n +1得(n +1)n a 1+a n2<nn +1 a 1+a n +12,整理得a n <a n +1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.3.[考点一]已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=20×2-10=30,∴S 30=60.答案:604.[考点一]已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数是________.解析:由等差数列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n =1,2,3,5,11时,a nb n为整数, 故使得a n b n为整数的正整数n 的个数是5. 答案:55.[考点一]一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:5突破点(三) 等差数列的判定与证明等差数列的判定与证明方法[典例] 已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.[解] 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12 n -1 =-12n n -1 ,所以a n +1=-12n n +1 ,而a n +1-a n =-12n n +1 --12n n -1 =-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n n -1 n +1.所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列.1.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列 D .公差为9的等差数列解析:选C 令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,故b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.即{a 2n -1+2a 2n }是公差为6的等差数列.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1,∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列. 3.已知公差大于零的等差数列{}a n 的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求数列{a n }的通项公式; (2)若数列{}b n 满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)∵数列{}a n 为等差数列,∴a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴数列{a n }的通项公式为a n =4n -3. (2)由(1)知a 1=1,d =4, ∴S n =na 1+n n -12×d =2n 2-n ,∴b n =S nn +c =2n 2-nn +c ,∴b 1=11+c ,b 2=62+c ,b 3=153+c,其中c ≠0. ∵数列{}b n 是等差数列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0, ∴c =-12或c =0(舍去),故c =-12.即存在一个非零实数c =-12,使数列{b n }为等差数列.[全国卷5年真题集中演练——明规律]1.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97解析:选C ∵{a n }是等差数列,设其公差为d ,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C.2.(2015·新课标全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 解析:选B ∵数列{a n }的公差为1,∴S 8=8a 1+8× 8-12×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.3.(2013·新课标全国卷Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:选C 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以等差数列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+ m -1 d =2,S m =a 1m +12m m -1 d =0,得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m m -1 =0,解得⎩⎪⎨⎪⎧a 1=-2,m =5,选C.4.(2013·新课标全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎪⎨⎪⎧S 10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,则nS n =n 2a 1+n 2 n -1 2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49<6S 6,所以当n =7时,nS n 取最小值,最小值为-49.答案:-495.(2016·全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设数列{a n }的公差为d ,由已知得7+21d =28,解得d =1.所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.6.(2014·新课标全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n-1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,则a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.[课时达标检测]重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 由S 5= a 2+a 4 ·52,得25= 3+a 4 ·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37 B .36 C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,即m =37.3.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D.12解析:选B 由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0.4.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .9B .8C .7D .6解析:选D 设等差数列{a n }的公差为d .因为a 3+a 7=-6,所以a 5=-3,d =2,则S n=n 2-12n ,故当n 等于6时S n 取得最小值.5.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________. 解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38,解得n =10.答案:10[练常考题点——检验高考能力]一、选择题1.(2017·黄冈质检)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( )A .95B .100C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2017·东北三校联考)已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7 b 1+b 7 2=72[(b 2-d )+(b 2+5d )]=-112,又a 1=3,则a 8=-109.3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84解析:选B 由a 3+a 5+a 11+a 17=4,得2(a 4+a 14)=4,即a 4+a 14=2,则a 1+a 17=2,故S 17=17 a 1+a 172=17.4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选 C ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零.又∵a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n 2n -1 d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( ) A .310 B .212 C .180D .121解析:选D 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,因为a 1=1,所以22a 1+d =a 1+3a 1+3d ,化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n n -12。

2018届高考数学(理)大一轮复习教师用书第十一章第一节排列、组合Word版含解析

2018届高考数学(理)大一轮复习教师用书第十一章第一节排列、组合Word版含解析

第一节排列、组合本节主要包括2个知识点:1.两个计数原理;排列、组合问题.突破点(一)两个计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.两个计数原理的比较能用分类加法计数原理解决的问题具有以下特点:(1)完成一件事有若干种方法,这些方法可以分成n类.(2)用每一类中的每一种方法都可以完成这件事.(3)把各类的方法数相加,就可以得到完成这件事的所有方法数.[例1](1)在所有的两位数中,个位数字大于十位数字的两位数共有________个.(2)如图,从A 到O 有________种不同的走法(不重复过一点).(3)若椭圆x 2m +y 2n =1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.[解析] (1)法一:按个位数字分类,个位可为2,3,4,5,6,7,8,9,共分成8类,在每一类中满足条件的两位数分别有1个,2个,3个,4个,5个,6个,7个,8个,则共有1+2+3+4+5+6+7+8=36个两位数.法二:按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个两位数.(2)分3类:第一类,直接由A 到O ,有1种走法;第二类,中间过一个点,有A →B →O 和A →C →O 2种不同的走法;第三类,中间过两个点,有A →B →C →O 和A →C →B →O 2种不同的走法.由分类加法计数原理可得共有1+2+2=5种不同的走法.(3)当m =1时,n =2,3,4,5,6,7,共6个;当m =2时,n =3,4,5,6,7,共5个;当m =3时,n =4,5,6,7,共4个;当m =4时,n =5,6,7,共3个;当m =5时,n =6,7,共2个.故共有6+5+4+3+2=20个满足条件的椭圆.[答案] (1)36 (2)5 (3)20[易错提醒](1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏.(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.分步乘法计数原理(1)完成一件事需要经过n 个步骤,缺一不可.(2)完成每一步有若干种方法.(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.[例2](1)从-1,0,1,2这四个数中选三个数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).(2)如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.[解析](1)一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18个二次函数.若二次函数为偶函数,则b=0,同理可知共有3×2=6个偶函数.(2)因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.[答案(1)186(2)63[易错提醒](1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)谨记分步必须满足的两个条件:一是各步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.两个计数原理的综合问题数原理,即分类时,每类的方法可能要运用分步完成,而分步时,每步的方法数可能会采取分类的思想求解.分类的关键在于做到“不重不漏”,分步的关键在于正确设计分步的程序,即合理分类,准确分步.[例3](1)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个(2)某班一天上午有4节课,每节都需要安排1名教师去上课,现从A,B,C,D,E,F 6名教师中安排4人分别上一节课,第一节课只能从A、B两人中安排一个,第四节课只能从A、C两人中安排一人,则不同的安排方案共有________种.(3)如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.[解析](1)由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有2×4×3×2=48个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有3×4×3×2=72个偶数.故符合条件的偶数共有48+72=120(个).(2)①第一节课若安排A,则第四节课只能安排C,第二节课从剩余4人中任选1人,第三节课从剩余3人中任选1人,共有4×3=12种安排方案.②第一节课若安排B,则第四节课可由A或C上,第二节课从剩余4人中任选1人,第三节课从剩余3人中任选1人,共有2×4×3=24种安排方案.因此不同的安排方案共有12+24=36(种).(3)区域A有5种涂色方法,区域B有4种涂色方法,区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×4×1×4+5×4×3×3=260种涂色方法.[答案(1)B(2)36(3)260[方法技巧]使用两个计数原理进行计数的基本思想对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.能力练通抓应用体验的“得”与“失”1.[考点二]某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504B.210C.336D.120解析:选A分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.2.[考点二]教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有() A.10种B.25种C.52种D.24种解析:选D由一层到二层、由二层到三层、由三层到四层、由四层到五层各有2种走法,故共有2×2×2×2=24种不同的走法.3.[考点一]已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40 B.16 C.13 D.10解析:选C分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.4.[考点一]我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B依题意知,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112.共计3+6+3+3=15个“六合数”.5.[考点三]如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有________种.解析:按区域1与3是否同色分类.①区域1与3同色:先涂区域1与3,有4种方法,再涂区域2,4,5(还有3种颜色),有3×2×1=6种方法.所以区域1与3涂同色时,共有4×6=24种方法.②区域1与3不同色:先涂区域1与3,有4×3=12种方法,第二步,涂区域2有2种涂色方法,第三步,涂区域4只有一种方法,第四步,涂区域5有3种方法.所以这时共有12×2×1×3=72种方法.故由分类加法计数原理,不同的涂色方法的种数为24+72=96.答案:966.[考点三]有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有________种(用数字作答).解析:由于丙、丁两位操作人员的技术问题,要完成“从4个操作人员中选3人去操作这三种型号的电脑”这件事,则甲、乙两人至少要选派一人,可分四类:第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作的电脑的型号,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人分别去操作这三种型号的电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人分别去操作这三种型号的电脑,只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.答案:8突破点(二)排列、组合问题1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m个元素的组合数,记作C m n.3.排列数、组合数的公式及性质4.排列与组合的比较解决排列问题的主要方法(1)解决“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.(2)解决相邻问题的方法是“捆绑法”,即把相邻元素看做一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列.(3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.(4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列.(5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.[例1](1)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为() A.324 B.648 C.328 D.360(2)市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数为()A.48 B.54 C.72 D.84(3)用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________.[解析](1)首先应考虑是否含“0”.当含有0,且0排在个位时,有A29=9×8=72个三位偶数,当0排在十位时,有A14A18=4×8=32个三位偶数.当不含0时,有A14·A28=4×8×7=224个三位偶数.由分类加法计数原理,得符合题意的偶数共有72+32+224=328(个).(2)先把3名乘客进行全排列,有A33=6种排法,排好后,有4个空,再将1个空位和余下的2个连续的空位插入4个空中,有A24=12种排法,则共有6×12=72种候车方式.(3)首先排两个奇数1,3,有A22种排法,再在2,4中取一个数放在1,3排列之间,有C12种排法,然后把这3个数作为一个整体与剩下的另一个偶数全排列,有A22种排法,即满足条件的四位数的个数为A22C12A22=8.[答案](1)C(2)C(3)8组合问题的常见题型及解题思路(1)常见题型:一般有选派问题、抽样问题、图形问题、集合问题、分组问题等.(2)解题思路:①分清问题是否为组合问题;②对较复杂的组合问题,要搞清是“分类”还是“分步”,一般是先整体分类,然后局部分步,将复杂问题通过两个计数原理化归为简单问题.[例2](1)某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为()A.85 B.86 C.91 D.90(2)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法的种数是()A.60 B.63 C.65 D.66(3)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.[解析](1)法一(直接法):由题意,可分三类考虑:第1类,男生甲入选,女生乙不入选的方法种数为:C13C24+C23C14+C33=31;第2类,男生甲不入选,女生乙入选的方法种数为:C14C23+C24C13+C34=34;第3类,男生甲入选,女生乙入选的方法种数为:C23+C14C13+C24=21.所以男生甲与女生乙至少有1人入选的方法种数为31+34+21=86.法二(间接法):从5名男生和4名女生中任意选出4人,男、女生都有的选法有C49-C45-C44=120种;男、女生都有,且男生甲与女生乙都没有入选的方法有C47-C44=34种.所以男生甲与女生乙至少有1人入选的方法种数为120-34=86.(2)因为1,2,3,…,9中共有4个不同的偶数和5个不同的奇数,要使取出的4个不同的数的和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故有C45+C44+C25C24=66种不同的取法.(3)第一类,含有1张红色卡片,不同的取法有C14C212=264(种).第二类,不含有红色卡片,不同的取法有C312-3C34=220-12=208(种).由分类加法计数原理知,不同的取法共有264+208=472(种).[答案(1)B(2)D(3)472[方法技巧]有限制条件的组合问题的解法组合问题的限制条件主要体现在取出元素中“含”或“不含”某些元素,或者“至少”或“最多”含有几个元素:(1)“含有”或“不含有”某些元素的组合题型.“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型.考虑逆向思维,用间接法处理.分组分配问题是排列、组合问题的综合运用,解决这类问题的一个基本指导思想就是先分组后分配.关于分组问题,有整体均分、部分均分和不等分三种,无论分成几组,都应注意只要有一些组中元素的个数相等,就存在均分现象.[例3] (1)教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.(2)某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为________.(3)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.[解析] (1)先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故将6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种不同的分派方法.(2)分两步完成:第一步,将4名调研员按2,1,1分成三组,其分法有C 24C 12C 11A 22种;第二步,将分好的三组分配到3个学校,其分法有A 33种,所以满足条件的分配方案有C 24C 12C 11A 22·A 33=36种.(3)将6名教师分组,分三步完成: 第1步,在6名教师中任取1名作为一组,有C 16种分法;第2步,在余下的5名教师中任取2名作为一组,有C 25种分法;第3步,余下的3名教师作为一组,有C 33种分法.根据分步乘法计数原理,共有C 16C 25C 33=60种分法.再将这3组教师分配到3所中学,有A 33=6种分法,故共有60×6=360种不同的分法.[答案 (1)90 (2)36 (3)360[方法技巧] 分组分配问题的三种类型及求解策略能力练通抓应用体验的“得”与“失”1.[考点一]A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐在最北面的椅子上,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有()A.60种B.48种C.30种D.24种解析:选B由题知,可先将B,C二人看作一个整体,再与剩余人进行排列,则不同的座次有A22A44=48种.2.[考点一]有5列火车分别准备停在某车站并行的5条轨道上,若快车A不能停在第3道上,货车B不能停在第1道上,则5列火车不同的停靠方法数为() A.56 B.63C.72 D.78解析:选D若没有限制,5列火车可以随便停,则有A55种不同的停靠方法;快车A 停在第3道上,则5列火车不同的停靠方法为A44种;货车B停在第1道上,则5列火车不同的停靠方法为A44种;快车A停在第3道上,且货车B停在第1道上,则5列火车不同的停靠方法为A33种.故符合要求的5列火车不同的停靠方法数为A55-2A44+A33=120-48+6=78.3.[考点三]某局安排3名副局长带5名职工去3地调研,每地至少去1名副局长和1名职工,则不同的安排方法总数为()A.1 800 B.900C.300 D.1 440解析:选B 分三步:第一步,将5名职工分成3组,每组至少1人,则有⎝⎛⎭⎫C 35C 12C 11A 22+C 15C 24C 22A 22种不同的分组方法;第二步,将这3组职工分到3地有A 33种不同的方法;第三步,将3名副局长分到3地有A 33种不同的方法.根据分步乘法计数原理,不同的安排方案共有⎝⎛⎭⎫C 35C 12C 11A 22+C 15C 24C 22A 22·A 33A 33=900(种),故选B. 4.[考点二]如图所示,要使电路接通,则5个开关不同的开闭方式有________种.解析:当第一组开关有一个接通时,电路接通有C 12·(C 13+C 23+C 33)=14种方式;当第一组两个都接通时,电路接通有C 22(C 13+C 23+C 33)=7种方式,所以共有14+7=21种方式.答案:215.[考点二]有9名学生,其中2名会下象棋但不会下围棋,3名会下围棋但不会下象棋,4名既会下围棋又会下象棋;现在要从这9名学生中选出2名学生,一名参加象棋比赛,另一名参加围棋比赛,共有________种不同的选派方法.解析:设2名会下象棋但不会下围棋的同学组成集合A,3名会下围棋但不会下象棋的同学组成集合B,4名既会下围棋又会下象棋的同学组成集合C ,则选派2名参赛同学的方法可以分为以下4类:第一类:A 中选1人参加象棋比赛,B 中选1人参加围棋比赛,选派方法为C 12·C 13=6种;第二类:C 中选1人参加象棋比赛,B 中选1人参加围棋比赛,选派方法为C 14·C 13=12种;第三类:C 中选1人参加围棋比赛,A 中选1人参加象棋比赛,选派方法为C 14·C 12=8种;第四类:C 中选2人分别参加两项比赛,选派方法为A 24=12种; 由分类加法计数原理,不同的选派方法共有6+12+8+12=38(种). 答案:38[全国卷5年真题集中演练——明规律]1.(2016·全国甲卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9解析:选B分两步:第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.2.(2016·全国丙卷)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个解析:选C当m=4时,数列{a n}共有8项,其中4项为0,4项为1,要满足对任意k≤8,a1,a2,…a k中0的个数不少于1的个数,则必有a1=0,a8=1,a2可为0,也可为1.(1)当a2=0时,分以下3种情况:①若a3=0,则a4,a5,a6,a7中任意一个为0均可,则有C14=4种情况;②若a3=1,a4=0,则a5,a6,a7中任意一个为0均可,有C13=3种情况;③若a3=1,a4=1,则a5必为0,a6,a7中任意一个为0均可,有C12=2种情况;(2)当a2=1时,必有a3=0,分以下2种情况:①若a4=0,则a5,a6,a7中任一个为0均可,有C13=3种情况;②若a4=1,则a5必为0,a6,a7中任一个为0均可,有C12=2种情况.综上所述,不同的“规范01数列”共有4+3+2+3+2=14个,故选C.3.(2012·新课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有() A.12种B.10种C.9种D.8种解析:选A2名教师各在1个小组,给其中1名教师选2名学生,有C24种选法,另2名学生分配给另1名教师,然后将2个小组安排到甲、乙两地,有A22种方案,故不同的安排方案共有C24A22=12种,选A.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.(2016·四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48C.60 D.72解析:选D奇数的个数为C13A44=72.2.世界华商大会的某分会场有A,B,C三个展台,将甲、乙、丙、丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的不同分法的种数有()A.12种B.10种C.8种D.6种解析:选D因为甲、乙两人被分配到同一展台,所以可以把甲与乙捆在一起,看成一个人,然后将3个人分到3个展台上进行全排列,即有A33种分配方法,所以甲、乙两人被分配到同一展台的不同分法的种数有A33=6种.3.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有()A.36个B.24个C.18个D.6个解析:选B各位数字之和是奇数,则这三个数字中三个都是奇数或两个偶数一个奇数,所以符合条作的三位数有A33+C13A33=6+18=24(个).4.如图所示的几何体由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.解析:先涂三棱锥P-ABC的三个侧面,然后涂三棱柱ABC-A1B1C1的三个侧面,共有3×2×1×2=12种不同的涂色方案.答案:12[练常考题点——检验高考能力]一、选择题1.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A.56 B.54C.53 D.52解析:选D在8个数中任取2个不同的数可以组成A28=56个对数值;但在这56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56-4=52(个).2.如图所示,在A、B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况有()A.9种B.11种C.13种D.15种解析:选C按照焊接点脱落的个数进行分类.若脱落1个,则有(1),(4),共2种情况;若脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种情况;若脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种情况;若脱落4个,有(1,2,3,4),共1种情况.综上共有2+6+4+1=13种焊接点脱落的情况.3.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数是()A.12 B.6C.8 D.16解析:选A若第一门安排在开头或结尾,则第二门有3种安排方法,这时共有C12×3=6种安排方案;若第一门安排在中间的3天中,则第二门有2种安排方法,这时共有C13×2=6种安排方案.综上可得,不同的考试安排方案共有6+6=12(种).4.有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是()A.24 B.48C.72 D.96解析:选B据题意可先摆放2本语文书,当1本物理书在2本语文书之间时,只需将2本数学书插在前3本书形成的4个空中即可,此时共有A 22A 24种摆放方法;当1本物理书放在2本语文书一侧时,共有A 22A 12C 12C 13种不同的摆放方法,由分类加法计数原理可得共有A 22A 24+A 22A 12C 12C 13=48种摆放方法.5.“住房”“医疗”“教育”“养老”“就业”成为现今社会关注的五个焦点.小赵想利用国庆节假期调查一下社会对这些热点的关注度.若小赵准备按照顺序分别调查其中的4个热点,则“住房”作为其中的一个调查热点,但不作为第一个调查热点的种数为( )A .13B .24C .18D .72解析:选D 可分三步:第一步,先从“医疗”“教育”“养老”“就业”这4个热点中选出3个,有C 34种不同的选法;第二步, 在调查时,“住房”安排的顺序有A 13种可能情况;第三步,其余3个热点调查的顺序有A 33种排法.根据分步乘法计数原理可得,不同调查顺序的种数为C 34A 13A 33=72.6.将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻),这样的排列数有( )A .12种B .20种C .40种D .60种解析:选C 五个元素没有限制全排列数为A 55,由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A ),故除以这三个元素的全排列A 33,可得这样的排列数有A 55A 33×2=40种.二、填空题7.某班组织文艺晚会,准备从A ,B 等 8 个节目中选出 4 个节目演出,要求A ,B 两个节目至少有一个选中,且A ,B 同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为________.解析:当A ,B 节目中只选其中一个时,共有C 12C 36A 44=960 种演出顺序;当A ,B 节目都被选中时,由插空法得共有C 26A 22A 23=180 种演出顺序,所以一共有1 140种演出顺序.答案:1 1408.4位同学参加某种形式的竞赛,竞赛规则规定:选甲题答对得100分,答错得-100分,选乙题答对得90分,答错得-90分,若4位同学的总分为0分,则这4位同学不同得分情况的种数是________.解析:由于4位同学的总分为0分,故4位同学选甲、乙题的人数有且只有三种情况:。

2018届高考数学(理)大一轮复习教师用书第六章第四节数列的综合问题Word版含解析

2018届高考数学(理)大一轮复习教师用书第六章第四节数列的综合问题Word版含解析

第四节数列的综合问题突破点(一) 数列求和1.公式法与分组转化法 (1)公式法直接利用等差数列、等比数列的前n 项和公式求和. ①等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . ②等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.(2)分组转化法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后相加减.2.倒序相加法与并项求和法 (1)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式就是用此法推导的.(2)并项求和法在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.3.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧 ①1n (n +1)=1n -1n +1.本节主要包括2个知识点: 1.数列求和;数列的综合应用问题.②1n(n+2)=12⎝⎛⎭⎫1n-1n+2.③1(2n-1)(2n+1)=12⎝⎛⎭⎫12n-1-12n+1.④1n+n+1=n+1-n.4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用错位相减法来求,如等比数列的前n项和公式就是用此法推导的.考点贯通抓高考命题的“形”与“神”分组转化法求和[例1]已知数列n n1n n-1n-1n∈N*),b n=a n-3n(n ∈N*).(1)求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.[解](1)∵a n=2a n-1+3n-1(n∈N*,n≥2),∴a n-3n=2(a n-1-3n-1),∴b n=2b n-1(n∈N*,n≥2).∵b1=a1-3=2≠0,∴b n≠0(n≥2),∴b nb n-1=2,∴{b n}是以2为首项,2为公比的等比数列.∴b n=2·2n-1=2n.(2)由(1)知a n=b n+3n=2n+3n,∴S n=(2+22+…+2n)+(3+32+…+3n)=2(1-2n)1-2+3(1-3n)1-3=2n+1+3n+12-72.[方法技巧]分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组转化法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组转化法求和.错位相减法求和[例2] (2016·n n {b n }是等差数列,且a n=b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .[解] (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,满足上式, 所以a n =6n +5. 设数列{b n }的公差为d .由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d , 可解得⎩⎪⎨⎪⎧b 1=4,d =3.所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n=3(n +1)·2n +1, 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2,所以T n =3n ·2n +2.[方法技巧]错位相减法求和的策略(1)如果数列{a n}是等差数列,{b n}是等比数列,求数列{a n·b n}的前n项和时,可采用错位相减法,一般是和式两边同乘以等比数列{b n}的公比,然后作差求解.(2)在写“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.裂项相消法求和[例3]数列{a n}n n1n1,公差为d(d≠0)的等差数列,且b1,b3,b9成等比数列.(1)求数列{a n}与{b n}的通项公式;(2)若c n=2(n+1)b n(n∈N*),求数列{c n}的前n项和T n.[解](1)当n≥2时,a n=S n-S n-1=2n+1-2n=2n,又a1=S1=21+1-2=2=21,也满足上式,所以数列{a n}的通项公式为a n=2n.则b1=a1=2.由b1,b3,b9成等比数列,得(2+2d)2=2×(2+8d),解得d=0(舍去)或d=2,所以数列{b n}的通项公式为b n=2n.(2)由(1)得c n=2(n+1)b n=1n(n+1)=1n-1n+1,所以数列{c n}的前n项和T n=11×2+12×3+13×4+…+1n×(n+1)=1-12+12-13+…+1n-1n+1=1-1n+1=nn+1.[易错提醒]利用裂项相消法求和时,应注意抵消后不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝⎛⎭⎫1a n -1a n +1,1a n a n +2=12d ⎝⎛⎭⎫1a n -1a n +2.能力练通 抓应用体验的“得”与“失”1.[考点一]若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( ) A .2n +n 2-1 B .2n +1+n 2-1C .2n +1+n 2-2D .2n +n -2解析:选C S n =a 1+a 2+a 3+…+a n=(21+2×1-1)+(22+2×2-1)+(23+2×3-1)+…+(2n +2n -1) =(2+22+…+2n )+2(1+2+3+…+n )-n =2(1-2n )1-2+2×n (n +1)2-n=2(2n -1)+n 2+n -n =2n +1+n 2-2.2.[考点三](2016·江南十校联考)已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=( )A. 2 016-1B. 2 017-1C. 2 018-1D. 2 018+1解析:选C 由f (4)=2可得4a =2,解得a =12,则f (x )=x 12.所以a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018- 2 017)= 2 018-1.3.[考点二]已知数列{a n }的前n 项和为S n 且a n =n ·2n ,则S n =________. 解析:∵a n =n ·2n ,∴S n =1×21+2×22+3×23+…+n ×2n .① ∴2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1.②①-②,得-S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1=(1-n )2n +1-2. ∴S n =(n -1)2n +1+2. 答案:(n -1)2n +1+24.[考点一]已知数列{a n }的通项公式是a n =2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3,求其前n 项和S n .解:S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3,所以当n 为偶数时,S n =2×1-3n 1-3+n 2ln 3=3n +n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n -n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.5.[考点三]正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ; (2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n ,故b n =n +1(n +2)2a 2n =n +14n 2(n +2)2=116⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2. 则T n =1161-132+122-142+132-152+…+1(n -1)2-1(n +1)2+1n 2-1(n +2)2=1161+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122=564.即对任意的n ∈N *,都有T n <564.突破点(二) 数列的综合应用问题1.等差、等比数列相结合的问题是高考考查的重点,主要有:(1)综合考查等差数列与等比数列的定义、通项公式、前n 项和公式、等差(比)中项、等差(比)数列的性质;(2)重点考查基本量(即“知三求二”,解方程(组))的计算以及灵活运用等差、等比数列的性质解决问题.2.数列与函数的特殊关系,决定了数列与函数交汇命题的自然性,是高考命题的易考点,主要考查方式有:(1)以数列为载体,考查函数解析式的求法,或者利用函数解析式给出数列的递推关系来求数列的通项公式或前n 项和;(2)根据数列是一种特殊的函数这一特点命题,考查利用函数的性质来研究数列的单调性、最值等问题.3.数列与不等式的综合问题是高考考查的热点.考查方式主要有三种:(1)判断数列问题中的一些不等关系,如比较数列中的项的大小关系等.(2)以数列为载体,考查不等式的恒成立问题,求不等式中的参数的取值范围等.(3)考查与数列问题有关的不等式的证明问题.考点贯通 抓高考命题的“形”与“神”等差数列与等比数列的综合问题[例1] n 1020(1)求数列{a n }的通项公式;(2)令b n =2a n -10,证明:数列{b n }为等比数列; (3)求数列{nb n }的前n 项和T n .[解] (1)设数列{a n }的公差为d ,则a n =a 1+(n -1)d ,由a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2.所以a n =12+(n -1)×2=2n +10.(2)证明:由(1),得b n =2a n -10=22n +10-10=22n =4n , 所以b n +1b n=4n +14n =4.所以{b n }是首项为4,公比为4的等比数列.(3)由nb n =n ×4n ,得T n =1×4+2×42+…+n ×4n ,① 4T n =1×42+…+(n -1)×4n +n ×4n +1,② ①-②,得-3T n =4+42+ (4)-n ×4n +1=4(1-4n )-3-n ×4n +1. 所以T n =(3n -1)×4n +1+49.[方法技巧]等差数列、等比数列综合问题的两大解题策略(1)设置中间问题:分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意解题细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.[提醒] 在不能使用同一公式进行计算的情况下要注意分类讨论,分类解决问题后还要注意结论的整合.数列与函数的综合问题[例2] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *). (1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .[解] (1)证明:由已知,b n =2a n >0. 当n ≥1时,b n +1b n=2a n +1-a n =2d .所以数列{b n }是首项为2a 1,公比为2d 的等比数列. (2)函数f (x )=2x 在(a 2,b 2)处的切线方程为 y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意,a 2-1ln 2=2-1ln 2, 解得a 2=2.所以d =a 2-a 1=1,所以a n =n ,b n =2n ,则a n b 2n =n ·4n . 于是S n =1×4+2×42+3×43+…+(n -1)×4n -1+n ×4n , 4S n =1×42+2×43+…+(n -1)×4n +n ×4n +1.因此,S n -4S n =4+42+…+4n -n ·4n +1=4n +1-43-n ·4n +1=(1-3n )4n +1-43.所以S n =(3n -1)4n +1+49.[方法技巧]数列与函数问题的解题技巧(1)数列与函数的综合问题主要有以下两类:①已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题; ②已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(2)解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常用解法有助于该类问题的解决.数列与不等式的综合问题[例3] n n n a n -2. (1)求数列{a n }的通项公式;(2)设b n =log 2a 1+log 2a 2+…+log 2a n ,求使(n -8)b n ≥nk 对任意n ∈N *恒成立的实数k 的取值范围.[解] (1)由S n =2a n -2可得a 1=2. 因为S n =2a n -2,所以,当n ≥2时,a n =S n -S n -1=2a n -2a n -1,即a n a n -1=2.所以数列{a n }是以a 1=2为首项,2为公比的等比数列, 所以a n =2n (n ∈N *).(2)由(1)知a n =2n,则b n =log 2a 1+log 2a 2+…+log 2a n =1+2+…+n =n (n +1)2.要使(n -8)b n ≥nk 对任意n ∈N *恒成立, 即(n -8)(n +1)2≥k 对任意n ∈N *恒成立.设c n =12(n -8)(n +1),则当n =3或4时,c n 取得最小值,为-10,所以k ≤-10.即实数k 的取值范围为(-∞,-10]. [方法技巧]数列与不等式相结合问题的处理方法(1)如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等.(2)如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法、穿根法等.总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.能力练通 抓应用体验的“得”与“失”1.[考点一]设{a n } 是首项为a 1 ,公差为-1 的等差数列,S n 为其前n 项和.若 S 1,S 2,S 4成等比数列,则a 1=( )A .2B .-2 C.12D .-12解析:选D 由S 1=a 1,S 2=2a 1-1,S 4=4a 1-6成等比数列可得(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.2.[考点一]已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________.解析:∵a 2,a 3,a 7成等比数列,∴a 23=a 2a 7, ∴(a 1+2d )2=(a 1+d )(a 1+6d ),即2d +3a 1=0.① 又∵2a 1+a 2=1,∴3a 1+d =1.② 由①②解得a 1=23,d =-1.答案:23-13.[考点二](2016·南昌调研)等差数列{a n }的前n 项和为S n ,已知f (x )=2x -12x +1,且f (a 2-2)=sin 2 014π3,f (a 2 014-2)=cos 2 015π6,则S 2 015=________.解析:因为f (x )=2x -12x +1,f (-x )=2-x -12-x +1=1-2x2x +1,所以f (x )+f (-x )=0,即f (-x )=-f (x ).而f (x )=2x -12x +1=1-22x +1,所以f (x )是R 上的增函数.又f (a 2-2)=sin2 014π3=sin ⎝⎛⎭⎫671π+π3=-sin π3=-32,f (a 2 014-2)=cos 2 015π6=cos ⎝⎛⎭⎫336π-π6=cos π6=32,所以f (a 2-2)=-f (a 2 014-2)=f (2-a 2 014),所以a 2-2=2-a 2 014,所以a 2+a 2 014=4.所以S 2 015=2 015(a 1+a 2 015)2=2 015(a 2+a 2 014)2=2 015×42=4 030.答案:4 0304.[考点一]已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等? 解:(1)设等差数列{a n }的公差为d . 因为a 4-a 3=2,所以d =2.又因为a 1+a 2=10,所以2a 1+d =10,故a 1=4. 所以a n =4+2(n -1)=2n +2(n ∈N *). (2)设等比数列{b n }的公比为q . 因为b 2=a 3=8,b 3=a 7=16, 所以q =2,b 1=4. 所以b 6=4×26-1=128. 由128=2n +2得n =63,所以b 6与数列{a n }的第63项相等.5.[考点三]设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.解:(1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2). 从而a 2=2a 1,a 3=2a 2=4a 1. 又因为a 1,a 2+1,a 3成等差数列, 所以a 1+a 3=2(a 2+1),即a 1+4a 1=2(2a 1+1),解得a 1=2.所以数列{a n }是首项为2,公比为2的等比数列.故a n =2n . (2)由(1)得1a n=12n ,所以T n =12+122+…+12n =12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=1-12n .由|T n -1|<11 000,得⎪⎪⎪⎪1-12n -1<11 000, 即2n >1 000.因为29=512<1 000<1 024=210,所以n ≥10. 于是使|T n -1|<11 000成立的n 的最小值为10.6.[考点二、三](2016·安徽质检)已知函数f (x )=ln x +cos x -⎝⎛⎭⎫6π-92x 的导数为f ′(x ),且数列{a n }满足a n +1+a n =nf ′⎝⎛⎭⎫π6+3(n ∈N *). (1)若数列{a n }是等差数列,求a 1的值;(2)若对任意n ∈N *,都有a n +2n 2≥0成立,求a 1的取值范围. 解:f ′(x )=1x -sin x -6π+92,则f ′⎝⎛⎭⎫π6=4, 故a n +1+a n =4n +3.(1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d ,a n +1=a 1+nd ,由a n +1+a n =4n +3得(a 1+nd )+[a 1+(n -1)d ]=4n +3,解得d =2,a 1=52.(2)由a n +1+a n =4n +3得a n +2+a n +1=4n +7,两式相减得a n +2-a n =4,故数列{a 2n -1}是首项为a 1,公差为4的等差数列;数列{a 2n }是首项为a 2,公差为4的等差数列,又a 1+a 2=7,a 2=7-a 1,所以a n =⎩⎪⎨⎪⎧2n -2+a 1(n 为奇数),2n +3-a 1(n 为偶数).①当n 为奇数时,a n =2n -2+a 1,则有a 1≥-2n 2-2n +2对任意的奇数n 恒成立, 令f (n )=-2n 2-2n +2=-2⎝⎛⎭⎫n +122+52,n 为奇数, 则f (n )max =f (1)=-2,所以a 1≥-2.②当n 为偶数时,a n =2n +3-a 1,则有-a 1≥-2n 2-2n -3对任意的偶数n 恒成立, 令g (n )=-2n 2-2n -3=-2⎝⎛⎭⎫n +122-52,n 为偶数, 则g (n )max =g (2)=-15,故-a 1≥-15,解得a 1≤15. 综上,a 1的取值范围是[-2,15].[全国卷5年真题集中演练——明规律] 1.(2012·新课标全国卷)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845 D .1 830解析:选D 不妨令a 1=1,根据题意,得a 2=2,a 3=a 5=a 7=…=1,a 4=6,a 6=10,…,所以当n 为奇数时,a n =1,当n 为偶数时构成以a 2=2为首项,以4为公差的等差数列.所以前60项和为S 60=30+2×30+30×(30-1)2×4=1 830. 2.(2015·新课标全国卷Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解:(1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n3(2n +3).3.(2014·新课标全国卷Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1. (1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎫a n +12. 又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1, 所以13n -1≤12×3n -1,即23n -1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.4.(2013·新课标全国卷Ⅰ)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1a2n -1a 2n +1的前n 项和.解:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5,解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n .(2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=1212n -3-12n -1,从而数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a 2n -1a 2n +1的前n项和为121-1-11+11-13+…+12n -3-12n -1=n 1-2n.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.数列{1+2n -1}的前n 项和为( )A .1+2nB .2+2nC .n +2n -1D .n +2+2n解析:选C 由题意得a n =1+2n -1, 所以S n =n +1-2n 1-2=n +2n -1.2.(2017·长沙模拟)已知数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10等于( )A .15B .12C .-12D .-15解析:选A ∵a n =(-1)n (3n -2),∴a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.3.(2016·南昌三模)若数列{a n }的通项公式为a n =2n +1,令b n =1a 1+a 2+…+a n,则数列{b n }的前n 项和为( )A.n +12(n +2)B.34-2n +32(n +1)(n +2) C.n -1n +2D.34-2n +3(n +1)(n +2)解析:选B 易得a 1+a 2+…+a n =n (3+2n +1)2=n (n +2),所以b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2,故T n =121+12-1n +1-1n +2=34-2n +32(n +1)(n +2). 4.12+12+38+…+n 2n 的值为________. 解析:设S n =12+222+323+…+n 2n ,①得12S n =122+223+…+n -12n +n 2n +1,②①-②得,12S n =12+122+123+…+12n -n 2n +1=12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-n 2n +1,∴S n =2n +1-n -22n =2-n +22n .答案:2-n +22n5.(2017·江西八校联考)在数列{a n }中,已知a 1=1,a n +1+(-1)n a n =cos(n +1)π,记S n为数列{a n }的前n 项和,则S 2 017=________.解析:∵a n +1+(-1)n a n =cos(n +1)π=(-1)n +1,∴当n =2k 时,a 2k +1+a 2k =-1,k ∈N *,∴S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1+(-1)×1 008=-1 007.答案:-1 007[练常考题点——检验高考能力]一、选择题1.(2017·皖西七校联考)在数列{a n }中,a n =2n -12n ,若{a n }的前n 项和S n =32164,则n =( )A .3B .4C .5D .6解析:选D 由a n =2n -12n =1-12n 得S n =n -12+122+…+12n =n -⎝⎛⎭⎫1-12n ,则S n =32164=n -⎝⎛⎭⎫1-12n ,将各选项中的值代入验证得n =6. 2.已知等差数列{a n }的各项均为正数,a 1=1,且a 3,a 4+52,a 11成等比数列.若p -q=10,则a p -a q =( )A .14B .15C .16D .17解析:选B 设等差数列{a n }的公差为d ,由题意分析知d >0,因为a 3,a 4+52,a 11成等比数列,所以⎝⎛⎭⎫a 4+522=a 3a 11,即⎝⎛⎭⎫72+3d 2=(1+2d )·(1+10d ),即44d 2-36d -45=0,所以d =32⎝⎛⎭⎫d =-1522舍去,所以a n =3n -12.所以a p -a q =32(p -q )=15.3.在数列{a n }中,a 1=1,a 2=2,a n +2-a n =1+(-1)n ,那么S 100的值为( ) A .2 500B .2 600C .2 700D .2 800解析:选B 当n 为奇数时,a n +2-a n =0,所以a n =1,当n 为偶数时,a n +2-a n =2,所以a n =n ,故a n =⎩⎪⎨⎪⎧1(n 为奇数),n (n 为偶数),于是S 100=50+(2+100)×502=2 600.4.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为( )A .2 017B .2 016C .1 009D .1 007解析:选C 因为a n +2S n -1=n ,n ≥2,所以a n +1+2S n =n +1,n ≥1,两式相减得a n +1+a n =1,n ≥2.又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009,故选C.5.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2,若函数f (x )=sin 2x +2cos 2x2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1解析:选C 由已知可得,数列{a n }为等差数列,f (x )=sin 2x +cos x +1,∴f ⎝⎛⎭⎫π2=1.∵f (π-x )=sin(2π-2x )+cos(π-x )+1=-sin 2x -cos x +1,∴f (π-x )+f (x )=2.∵a 1+a 9=a 2+a 8=…=2a 5=π,∴f (a 1)+…+f (a 9)=2×4+1=9,即数列{y n }的前9项和为9.6.设S n 是公差不为0的等差数列{a n }的前n 项和,S 1,S 2,S 4成等比数列,且a 3=-52,则数列⎩⎨⎧⎭⎬⎫1(2n +1)a n 的前n 项和T n =( ) A .-n2n +1 B.n 2n +1 C .-2n2n +1D.2n 2n +1解析:选C 设{a n }的公差为d ,因为S 1=a 1,S 2=2a 1+d =2a 1+a 3-a 12=32a 1-54,S 4=3a 3+a 1=a 1-152,S 1,S 2,S 4成等比数列,所以⎝⎛⎭⎫32a 1-542=⎝⎛⎭⎫a 1-152a 1,整理得4a 21+12a 1+5=0,所以a 1=-52或a 1=-12.当a 1=-52时,公差d =0不符合题意,舍去;当a 1=-12时,公差d =a 3-a 12=-1,所以a n =-12+(n -1)×(-1)=-n +12=-12(2n -1),所以1(2n +1)a n =-2(2n -1)(2n +1)=-12n -1-12n +1,所以其前n 项和T n =-1-13+13-15+…+12n -1-12n +1=-⎝ ⎛⎭⎪⎫1-12n +1=-2n 2n +1,故选C. 二、填空题7.(2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:∵a n +1=2S n +1,∴S n +1-S n =2S n +1,∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎫S n +12, ∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1,∴S 5+12=⎝⎛⎭⎫S 1+12×34=32×34=2432,∴S 5=121. 答案:1 1218.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前2 016项的和等于________.解析:因为a 1=12,又a n +1=12+a n -a 2n ,所以a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1(k ∈N *),1,n =2k (k ∈N *),故数列的前2 016项的和等于S 2 016=1 008×⎝⎛⎭⎫1+12=1 512. 答案:1 5129.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n ,则数列{a n }的前n 项和S n =________.解析:∵a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n .∴S n =2-2n +11-2=2n +1-2.答案:2n +1-210.(2017·福建泉州五中模拟)已知lg x +lg y =1,且S n =lg x n +lg(x n -1y )+lg(x n -2y 2)+…+lg(xy n -1)+lg y n ,则S n =________.解析:因为lg x +lg y =1, 所以lg(xy )=1.因为S n =lg x n +lg(x n -1y )+lg(x n -2y 2)+…+lg(xy n -1)+lg y n , 所以S n =lg y n +lg(xy n -1)+…+lg(x n -2y 2)+lg(x n -1y )+lg x n ,两式相加得2S n =(lg x n +lg y n )+[lg(x n -1y )+lg(xy n -1)]+…+(lg y n +lg x n )=lg(x n ·y n )+lg(x n -1y ·xy n -1)+…+lg(y n ·x n )=n [lg(xy )+lg(xy )+…+lg(xy )]=n 2lg(xy )=n 2,所以S n =n 22.答案:n 22三、解答题11.数列{a n }满足a 1=1,a n +1=2a n (n ∈N *),S n 为其前n 项和.数列{b n }为等差数列,且满足b 1=a 1,b 4=S 3.(1)求数列{a n },{b n }的通项公式; (2)设c n =1b n ·log 2a 2n +2,数列{c n }的前n 项和为T n ,证明:13≤T n <12.解:(1)由题意知,{a n }是首项为1,公比为2的等比数列, ∴a n =a 1·2n -1=2n -1.∴S n =2n -1.设等差数列{b n }的公差为d ,则b 1=a 1=1,b 4=1+3d =7, ∴d =2,则b n =1+(n -1)×2=2n -1. (2)证明:∵log 2a 2n +2=log 222n +1=2n +1, ∴c n =1b n ·log 2a 2n +2=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1= 12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. ∵n ∈N *,∴T n =12⎝ ⎛⎭⎪⎫1-12n +1<12,当n ≥2时,T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0, ∴数列{T n }是一个递增数列,∴T n ≥T 1=13. 综上所述,13≤T n <12. 12.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,试求数列{b n }的前n 项和T n . 解:(1)设二次函数f (x )=ax 2+bx (a ≠0),则f ′(x )=2ax +b .由于f ′(x )=6x -2,得a =3,b =-2,所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上,所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5.当n =1时,a 1=S 1=3×12-2×1=1=6×1-5,所以a n =6n -5(n ∈N *).(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12⎝ ⎛⎭⎪⎫16n -5-16n +1, 故T n =121-17+⎝⎛⎭⎫17-113+…+16n -5-16n +1=12⎝⎛⎭⎪⎫1-16n +1=3n 6n +1.。

2018届高考数学理大一轮复习教师用书:第十一章第一节

2018届高考数学理大一轮复习教师用书:第十一章第一节

第一节排列、组合本节主要包括2个知识点:1.两个计数原理;排列、组合问题.突破点(一)两个计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.两个计数原理的比较能用分类加法计数原理解决的问题具有以下特点:(1)完成一件事有若干种方法,这些方法可以分成n类.(2)用每一类中的每一种方法都可以完成这件事.(3)把各类的方法数相加,就可以得到完成这件事的所有方法数.[例1](1)在所有的两位数中,个位数字大于十位数字的两位数共有________个.(2)如图,从A 到O 有________种不同的走法(不重复过一点).(3)若椭圆x 2m +y 2n =1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.[解析] (1)法一:按个位数字分类,个位可为2,3,4,5,6,7,8,9,共分成8类,在每一类中满足条件的两位数分别有1个,2个,3个,4个,5个,6个,7个,8个,则共有1+2+3+4+5+6+7+8=36个两位数.法二:按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个两位数.(2)分3类:第一类,直接由A 到O ,有1种走法;第二类,中间过一个点,有A →B →O 和A →C →O 2种不同的走法;第三类,中间过两个点,有A →B →C →O 和A →C →B →O 2种不同的走法.由分类加法计数原理可得共有1+2+2=5种不同的走法.(3)当m =1时,n =2,3,4,5,6,7,共6个;当m =2时,n =3,4,5,6,7,共5个;当m =3时,n =4,5,6,7,共4个;当m =4时,n =5,6,7,共3个;当m =5时,n =6,7,共2个.故共有6+5+4+3+2=20个满足条件的椭圆.[答案] (1)36 (2)5 (3)20[易错提醒](1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏.(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.分步乘法计数原理(1)完成一件事需要经过n 个步骤,缺一不可.(2)完成每一步有若干种方法.(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.[例2] (1)从-1,0,1,2这四个数中选三个数作为函数f (x )=ax 2+bx +c 的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).(2)如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A ,B ,C ,D ,E ,F ,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.[解析](1)一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18个二次函数.若二次函数为偶函数,则b=0,同理可知共有3×2=6个偶函数.(2)因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.[答案(1)186(2)63[易错提醒](1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)谨记分步必须满足的两个条件:一是各步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.两个计数原理的综合问题数原理,即分类时,每类的方法可能要运用分步完成,而分步时,每步的方法数可能会采取分类的思想求解.分类的关键在于做到“不重不漏”,分步的关键在于正确设计分步的程序,即合理分类,准确分步.[例3](1)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个(2)某班一天上午有4节课,每节都需要安排1名教师去上课,现从A,B,C,D,E,F 6名教师中安排4人分别上一节课,第一节课只能从A、B两人中安排一个,第四节课只能从A、C两人中安排一人,则不同的安排方案共有________种.(3)如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.[解析](1)由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有2×4×3×2=48个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有3×4×3×2=72个偶数.故符合条件的偶数共有48+72=120(个).(2)①第一节课若安排A,则第四节课只能安排C,第二节课从剩余4人中任选1人,第三节课从剩余3人中任选1人,共有4×3=12种安排方案.②第一节课若安排B,则第四节课可由A或C上,第二节课从剩余4人中任选1人,第三节课从剩余3人中任选1人,共有2×4×3=24种安排方案.因此不同的安排方案共有12+24=36(种).(3)区域A有5种涂色方法,区域B有4种涂色方法,区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×4×1×4+5×4×3×3=260种涂色方法.[答案(1)B(2)36(3)260[方法技巧]使用两个计数原理进行计数的基本思想对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.能力练通抓应用体验的“得”与“失”1.[考点二]某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504B.210C.336D.120解析:选A分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.2.[考点二]教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有() A.10种B.25种C.52种D.24种解析:选D由一层到二层、由二层到三层、由三层到四层、由四层到五层各有2种走法,故共有2×2×2×2=24种不同的走法.3.[考点一]已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40 B.16 C.13 D.10解析:选C分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.4.[考点一]我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B依题意知,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112.共计3+6+3+3=15个“六合数”.5.[考点三]如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有________种.解析:按区域1与3①区域1与3同色:先涂区域1与3,有4种方法,再涂区域2,4,5(还有3种颜色),有3×2×1=6种方法.所以区域1与3涂同色时,共有4×6=24种方法.②区域1与3不同色:先涂区域1与3,有4×3=12种方法,第二步,涂区域2有2种涂色方法,第三步,涂区域4只有一种方法,第四步,涂区域5有3种方法.所以这时共有12×2×1×3=72种方法.故由分类加法计数原理,不同的涂色方法的种数为24+72=96.答案:966.[考点三]有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有________种(用数字作答).解析:由于丙、丁两位操作人员的技术问题,要完成“从4个操作人员中选3人去操作这三种型号的电脑”这件事,则甲、乙两人至少要选派一人,可分四类:第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作的电脑的型号,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人分别去操作这三种型号的电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人分别去操作这三种型号的电脑,只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.答案:8突破点(二)排列、组合问题1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A m n.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m个元素的组合数,记作C m n.3.排列数、组合数的公式及性质4.排列与组合的比较解决排列问题的主要方法(1)解决“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.(2)解决相邻问题的方法是“捆绑法”,即把相邻元素看做一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列.(3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.(4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列.(5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.[例1](1)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为() A.324 B.648 C.328 D.360(2)市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数为()A.48 B.54 C.72 D.84(3)用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数夹在两个奇数之间的四位数的个数为________.[解析](1)首先应考虑是否含“0”.当含有0,且0排在个位时,有A29=9×8=72个三位偶数,当0排在十位时,有A14A18=4×8=32个三位偶数.当不含0时,有A14·A28=4×8×7=224个三位偶数.由分类加法计数原理,得符合题意的偶数共有72+32+224=328(个).(2)先把3名乘客进行全排列,有A33=6种排法,排好后,有4个空,再将1个空位和余下的2个连续的空位插入4个空中,有A24=12种排法,则共有6×12=72种候车方式.(3)首先排两个奇数1,3,有A22种排法,再在2,4中取一个数放在1,3排列之间,有C12种排法,然后把这3个数作为一个整体与剩下的另一个偶数全排列,有A22种排法,即满足条件的四位数的个数为A22C12A22=8.[答案](1)C(2)C(3)8组合问题的常见题型及解题思路(1)常见题型:一般有选派问题、抽样问题、图形问题、集合问题、分组问题等.(2)解题思路:①分清问题是否为组合问题;②对较复杂的组合问题,要搞清是“分类”还是“分步”,一般是先整体分类,然后局部分步,将复杂问题通过两个计数原理化归为简单问题.[例2](1)某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为()A.85 B.86 C.91 D.90(2)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法的种数是()A.60 B.63 C.65 D.66(3)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.[解析](1)法一(直接法):由题意,可分三类考虑:第1类,男生甲入选,女生乙不入选的方法种数为:C13C24+C23C14+C33=31;第2类,男生甲不入选,女生乙入选的方法种数为:C14C23+C24C13+C34=34;第3类,男生甲入选,女生乙入选的方法种数为:C23+C14C13+C24=21.所以男生甲与女生乙至少有1人入选的方法种数为31+34+21=86.法二(间接法):从5名男生和4名女生中任意选出4人,男、女生都有的选法有C49-C45-C44=120种;男、女生都有,且男生甲与女生乙都没有入选的方法有C47-C44=34种.所以男生甲与女生乙至少有1人入选的方法种数为120-34=86.(2)因为1,2,3,…,9中共有4个不同的偶数和5个不同的奇数,要使取出的4个不同的数的和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故有C45+C44+C25C24=66种不同的取法.(3)第一类,含有1张红色卡片,不同的取法有C14C212=264(种).第二类,不含有红色卡片,不同的取法有C312-3C34=220-12=208(种).由分类加法计数原理知,不同的取法共有264+208=472(种).[答案(1)B(2)D(3)472[方法技巧]有限制条件的组合问题的解法组合问题的限制条件主要体现在取出元素中“含”或“不含”某些元素,或者“至少”或“最多”含有几个元素:(1)“含有”或“不含有”某些元素的组合题型.“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型.考虑逆向思维,用间接法处理.分组分配问题是排列、组合问题的综合运用,解决这类问题的一个基本指导思想就是先分组后分配.关于分组问题,有整体均分、部分均分和不等分三种,无论分成几组,都应注意只要有一些组中元素的个数相等,就存在均分现象.[例3] (1)教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.(2)某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为________.(3)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.[解析] (1)先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故将6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种不同的分派方法.(2)分两步完成:第一步,将4名调研员按2,1,1分成三组,其分法有C 24C 12C 11A 22种;第二步,将分好的三组分配到3个学校,其分法有A 33种,所以满足条件的分配方案有C 24C 12C 11A 22·A 33=36种.(3)将6名教师分组,分三步完成: 第1步,在6名教师中任取1名作为一组,有C 16种分法;第2步,在余下的5名教师中任取2名作为一组,有C 25种分法;第3步,余下的3名教师作为一组,有C 33种分法.根据分步乘法计数原理,共有C 16C 25C 33=60种分法.再将这3组教师分配到3所中学,有A 33=6种分法,故共有60×6=360种不同的分法.[答案 (1)90 (2)36 (3)360[方法技巧] 分组分配问题的三种类型及求解策略能力练通 抓应用体验的“得”与“失”1.[考点一]A ,B ,C ,D ,E ,F 六人围坐在一张圆桌周围开会,A 是会议的中心发言人,必须坐在最北面的椅子上,B ,C 二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有( )A .60种B .48种C .30种D .24种解析:选B 由题知,可先将B ,C 二人看作一个整体,再与剩余人进行排列,则不同的座次有A 22A 44=48种.2.[考点一]有5列火车分别准备停在某车站并行的5条轨道上,若快车A 不能停在第3道上,货车B 不能停在第1道上,则5列火车不同的停靠方法数为( )A .56B .63C .72D .78解析:选D 若没有限制,5列火车可以随便停,则有A 55种不同的停靠方法;快车A停在第3道上,则5列火车不同的停靠方法为A 44种;货车B 停在第1道上,则5列火车不同的停靠方法为A 44种;快车A 停在第3道上,且货车B 停在第1道上,则5列火车不同的停靠方法为A 33种.故符合要求的5列火车不同的停靠方法数为A 55-2A 44+A 33=120-48+6=78.3.[考点三]某局安排3名副局长带5名职工去3地调研,每地至少去1名副局长和1名职工,则不同的安排方法总数为( )A .1 800B .900C .300D .1 440解析:选B 分三步:第一步,将5名职工分成3组,每组至少1人,则有⎝⎛⎭⎫C 35C 12C 11A 22+C 15C 24C 22A 22种不同的分组方法;第二步,将这3组职工分到3地有A 33种不同的方法;第三步,将3名副局长分到3地有A 33种不同的方法.根据分步乘法计数原理,不同的安排方案共有⎝⎛⎭⎫C 35C 12C 11A 22+C15C 24C 22A 22·A 33A 33=900(种),故选B. 4.[考点二]如图所示,要使电路接通,则5个开关不同的开闭方式有________种.解析:当第一组开关有一个接通时,电路接通有C12·(C13+C23+C33)=14种方式;当第一组两个都接通时,电路接通有C22(C13+C23+C33)=7种方式,所以共有14+7=21种方式.答案:215.[考点二]有9名学生,其中2名会下象棋但不会下围棋,3名会下围棋但不会下象棋,4名既会下围棋又会下象棋;现在要从这9名学生中选出2名学生,一名参加象棋比赛,另一名参加围棋比赛,共有________种不同的选派方法.解析:设2名会下象棋但不会下围棋的同学组成集合A,3名会下围棋但不会下象棋的同学组成集合B,4名既会下围棋又会下象棋的同学组成集合C,则选派2名参赛同学的方法可以分为以下4类:第一类:A中选1人参加象棋比赛,B中选1人参加围棋比赛,选派方法为C12·C13=6种;第二类:C中选1人参加象棋比赛,B中选1人参加围棋比赛,选派方法为C14·C13=12种;第三类:C中选1人参加围棋比赛,A中选1人参加象棋比赛,选派方法为C14·C12=8种;第四类:C中选2人分别参加两项比赛,选派方法为A24=12种;由分类加法计数原理,不同的选派方法共有6+12+8+12=38(种).答案:38[全国卷5年真题集中演练——明规律]1.(2016·全国甲卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9解析:选B分两步:第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.2.(2016·全国丙卷)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个解析:选C当m=4时,数列{a n}共有8项,其中4项为0,4项为1,要满足对任意k≤8,a1,a2,…a k中0的个数不少于1的个数,则必有a1=0,a8=1,a2可为0,也可为1.(1)当a2=0时,分以下3种情况:①若a3=0,则a4,a5,a6,a7中任意一个为0均可,则有C14=4种情况;②若a3=1,a4=0,则a5,a6,a7中任意一个为0均可,有C13=3种情况;③若a3=1,a4=1,则a5必为0,a6,a7中任意一个为0均可,有C12=2种情况;(2)当a2=1时,必有a3=0,分以下2种情况:①若a4=0,则a5,a6,a7中任一个为0均可,有C13=3种情况;②若a4=1,则a5必为0,a6,a7中任一个为0均可,有C12=2种情况.综上所述,不同的“规范01数列”共有4+3+2+3+2=14个,故选C.3.(2012·新课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有() A.12种B.10种C.9种D.8种解析:选A2名教师各在1个小组,给其中1名教师选2名学生,有C24种选法,另2名学生分配给另1名教师,然后将2个小组安排到甲、乙两地,有A22种方案,故不同的安排方案共有C24A22=12种,选A.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.(2016·四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48C.60 D.72解析:选D奇数的个数为C13A44=72.2.世界华商大会的某分会场有A,B,C三个展台,将甲、乙、丙、丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的不同分法的种数有()A.12种B.10种C.8种D.6种解析:选D因为甲、乙两人被分配到同一展台,所以可以把甲与乙捆在一起,看成一个人,然后将3个人分到3个展台上进行全排列,即有A33种分配方法,所以甲、乙两人被分配到同一展台的不同分法的种数有A33=6种.3.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有()A.36个B.24个C.18个D.6个解析:选B各位数字之和是奇数,则这三个数字中三个都是奇数或两个偶数一个奇数,所以符合条作的三位数有A33+C13A33=6+18=24(个).4.如图所示的几何体由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.解析:先涂三棱锥P-ABC的三个侧面,然后涂三棱柱ABC-A1B1C1的三个侧面,共有3×2×1×2=12种不同的涂色方案.答案:12[练常考题点——检验高考能力]一、选择题1.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A.56 B.54C.53 D.52解析:选D在8个数中任取2个不同的数可以组成A28=56个对数值;但在这56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56-4=52(个).2.如图所示,在A、B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况有()A.9种B.11种C.13种D.15种解析:选C按照焊接点脱落的个数进行分类.若脱落1个,则有(1),(4),共2种情况;若脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种情况;若脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种情况;若脱落4个,有(1,2,3,4),共1种情况.综上共有2+6+4+1=13种焊接点脱落的情况.3.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数是()A.12 B.6C.8 D.16解析:选A 若第一门安排在开头或结尾,则第二门有3种安排方法,这时共有C 12×3=6种安排方案;若第一门安排在中间的3天中,则第二门有2种安排方法,这时共有C 13×2=6种安排方案.综上可得,不同的考试安排方案共有6+6=12(种).4.有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是( )A .24B .48C .72D .96解析:选B 据题意可先摆放2本语文书,当1本物理书在2本语文书之间时,只需将2本数学书插在前3本书形成的4个空中即可,此时共有A 22A 24种摆放方法;当1本物理书放在2本语文书一侧时,共有A 22A 12C 12C 13种不同的摆放方法,由分类加法计数原理可得共有A 22A 24+A 22A 12C 12C 13=48种摆放方法.5.“住房”“医疗”“教育”“养老”“就业”成为现今社会关注的五个焦点.小赵想利用国庆节假期调查一下社会对这些热点的关注度.若小赵准备按照顺序分别调查其中的4个热点,则“住房”作为其中的一个调查热点,但不作为第一个调查热点的种数为( )A .13B .24C .18D .72解析:选D 可分三步:第一步,先从“医疗”“教育”“养老”“就业”这4个热点中选出3个,有C 34种不同的选法;第二步, 在调查时,“住房”安排的顺序有A 13种可能情况;第三步,其余3个热点调查的顺序有A 33种排法.根据分步乘法计数原理可得,不同调查顺序的种数为C 34A 13A 33=72.6.将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻),这样的排列数有( )A .12种B .20种C .40种D .60种解析:选C 五个元素没有限制全排列数为A 55,由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A ),故除以这三个元素的全排列A 33,可得这样的排列数有A 55A 33×2=40种.二、填空题7.某班组织文艺晚会,准备从A ,B 等 8 个节目中选出 4 个节目演出,要求A ,B 两个节目至少有一个选中,且A ,B 同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为________.解析:当A ,B 节目中只选其中一个时,共有C 12C 36A 44=960 种演出顺序;当A ,B 节目都被选中时,由插空法得共有C 26A 22A 23=180 种演出顺序,所以一共有1 140种演出顺序.答案:1 1408.4位同学参加某种形式的竞赛,竞赛规则规定:选甲题答对得100分,答错得-100分,选乙题答对得90分,答错得-90分,若4位同学的总分为0分,则这4位同学不同得分情况的种数是________.解析:由于4位同学的总分为0分,故4位同学选甲、乙题的人数有且只有三种情况:①甲:4人,乙:0人;②甲:2人,乙:2人;③甲:0人,乙:4人.对于①,需2人答对,2人答错,共有C24=6种情况;对于②,选甲题的需1人答对,1人答错,选乙题的也如此,有C24C12C12=24种情况;对于③,与①相同,有6种情况,故共有6+24+6=36种不同的得分情况.答案:369.把座位编号为1,2,3,4,5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为________(用数字作答).解析:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人每人一张,一人2张,且分得的票必须是连号,相当于将1,2,3,4,5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C34=4种情况,再对应到4个人,有A44=24种情况,则共有4×24=96种不同分法.答案:9610.有红、蓝、黄、绿四种颜色的球各6个,每种颜色的6个球分别标有数字1,2,3,4,5,6,从中任取3个标号不同的球,这3个球颜色互不相同且所标数字互不相邻的取法种数为________.解析:所标数字互不相邻的取法有135,136,146,246,共4种.3个球颜色互不相同有A34=4×3×2=24种取法,所以这3个球颜色互不相同且所标数字互不相邻的取法有4×24=96(种).答案:96三、解答题11.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.解:(1)先选后排,可以是2女3男,也可以是1女4男,先选有C35C23+C45C13种情况,后排有A55种情况,则符合条件的选法数为(C35C23+C45C13)·A55=5 400.(2)除去该女生后,先选后排,则符合条件的选法数为C47·A44=840.(3)先选后排,但先安排该男生,则符合条件的选法数为C47·C14·A44=3 360.。

2018高考数学大一轮复习 第六章 数列教师用书 理

2018高考数学大一轮复习 第六章 数列教师用书 理

第六章⎪⎪⎪ 数 列第一节数列的概念与简单表示突破点(一) 数列的通项公式1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常也叫做首项).2.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做数列{a n }的递推公式.4.S n 与a n 的关系已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意数列均成立.[例1] 写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…;(3)-1,32,-13,34,-15,36,…;(4)3,33,333,3 333,….[解] (1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n-12n .(3)奇数项为负,偶数项为正,故通项公式中含因式(-1)n;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n·2+-nn.也可写为a n=⎩⎪⎨⎪⎧-1n,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).[方法技巧]由数列的前几项求通项公式的思路方法给出数列的前几项求通项时,需要注意观察数列中各项与其序号之间的关系,在所给数列的前几项中,先看看哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号间的关系,主要从以下几个方面来考虑:(1)分式形式的数列,分子、分母分别求通项,较复杂的还要考虑分子、分母的关系. (2)若第n 项和第n +1项正负交错,那么符号用(-1)n 或(-1)n +1或(-1)n -1来调控.(3)熟悉一些常见数列的通项公式.(4)对于较复杂数列的通项公式,其项与序号之间的关系不容易发现,这就需要将数列各项的结构形式加以变形,可使用添项、通分、分割等方法,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.利用a n 与S n 的关系求通项[例2] n n n (1)S n =2n 2-3n ; (2)S n =3n +b .[解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,所以{a n }的通项公式为a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n+b )-(3n -1+b )=2×3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. 所以当b =-1时,a n =2×3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2×3n -1,n ≥2.[方法技巧]已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.利用递推关系求通项[例3] (1)已知数列{a n }满足a 1=2,a n +1=a n +n 2+n ,则a n =________;(2)若数列{a n }满足a 1=23,a n +1=nn +1a n ,则通项a n =________;(3)若数列{a n }满足a 1=1,a n +1=2a n +3,则a n =________; (4)若数列{a n }满足a 1=1,a n +1=2a na n +2,则a n =________. [解析] (1)由条件知a n +1-a n =1n 2+n =1n n +=1n -1n +1, 则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1) =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+1n -1-1n , 即a n -a 1=1-1n ,又∵a 1=12,∴a n =1-1n +12=32-1n .(2)由a n +1=nn +1a n (a n ≠0),得a n +1a n =nn +1, 故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =n -1n ·n -2n -1·…·12·23=23n. (3)设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,b n ≠0,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,2为公比的等比数列. 所以b n =4×2n -1=2n +1,即a n =2n +1-3.(4)∵a n +1=2a na n +2,a 1=1, ∴a n ≠0, ∴1a n +1=1a n +12, 即1a n +1-1a n =12, 又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1. [答案] (1)32-1n (2)23n (3)2n +1-3 (4)2n +1[方法技巧]由递推关系式求通项公式的常用方法(1)已知a 1且a n -a n -1=f (n ),可用“累加法”求a n .(2)已知a 1且a na n -1=f (n ),可用“累乘法”求a n . (3)已知a 1且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可由待定系数法确定),可转化为等比数列{a n +k }.(4)形如a n +1=Aa nBa n +C(A ,B ,C 为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.(5)形如a n +1+a n =f (n )的数列,可将原递推关系改写成a n +2+a n +1=f (n +1),两式相减即得a n +2-a n =f (n +1)-f (n ),然后按奇偶分类讨论即可.能力练通 抓应用体验的“得”与“失”1.[考点一]已知n ∈N *,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数,②a n =1+-n2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪⎪⎪sin n π2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( )A .①②③B .①②④C .②③④D .①③④解析:选A 检验知①②③都是所给数列的通项公式.2.[考点一]数列1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n (n ∈N *) B .a n =(-1)n -12n +1n 3+3n (n ∈N *) C .a n =(-1)n +12n -1n 2+2n (n ∈N *) D .a n =(-1)n -12n +1n 2+2n(n ∈N *) 解析:选D 所给数列各项可写成:31×3,-52×4,73×5,-94×6,…,通过对比各选项,可知选D.3.[考点二]已知数列{a n }的前n 项和为S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3 B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2 D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.4.[考点三]设数列{a n }满足a 1=1,且a n +1-a n =n +1,求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =n -+n2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n2(n ∈N *).5.[考点三]若数列{a n }满足:a 1=1,a n +1=a n +2n,求数列{a n }的通项公式. 解:由题意知a n +1-a n =2n,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=1-2n1-2=2n -1.又因为当n =1时满足此式,所以a n =2n-1.突破点(二) 数列的单调性数列的分类[例1] 已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大?[解] (1)取n =1,得λa 21=2S 1=2a 1, 即a 1(λa 1-2)=0.若a 1=0,则S n =0,当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0.若a 1≠0,则a 1=2λ,当n ≥2时,2a n =2λ+S n,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=2nλ. 综上,当a 1=0时,a n =0; 当a 1≠0时,a n =2nλ.(2)当a 1>0且λ=100时,令b n =lg 1a n,由(1)知b n =lg 1002n =2-n lg 2.所以数列{b n }是单调递减的等差数列(公差为-lg 2). 则b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027=lg 100128<lg 1=0,故当n =6时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项的和最大.[方法技巧]1.判断数列单调性的两种方法 (1)作差比较法a n +1-a n >0⇔数列{a n }是单调递增数列;a n +1-a n <0⇔数列{a n }是单调递减数列;a n +1-a n=0⇔数列{a n }是常数列.(2)作商比较法 ①当a n >0时,a n +1a n >1⇔数列{a n }是单调递增数列;a n +1a n <1⇔数列{a n }是单调递减数列;a n +1a n=1⇔数列{a n }是常数列.②当a n <0时,a n +1a n >1⇔数列{a n }是单调递减数列;a n +1a n <1⇔数列{a n }是单调递增数列;a n +1a n=1⇔数列{a n }是常数列.2.求数列最大项或最小项的方法(1)可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.利用数列的单调性求参数的取值范围[例2] 已知函数f (x )=⎩⎪⎨⎪⎧-a x +2,x ≤2,a 2x 2-9x +11,x >2(a >0,且a ≠1),若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1) B.⎣⎢⎡⎭⎪⎫83,3C .(2,3)D .(1,3)[解析] 因为{a n }是递增数列,所以⎩⎪⎨⎪⎧3-a >0,a >1,-a+2≤a ,解得83≤a <3,所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫83,3. [答案] B [方法技巧]已知数列的单调性求参数取值范围的两种方法(1)利用数列的单调性构建不等式,然后将其转化为不等式的恒成立问题进行解决,也可通过分离参数将其转化为最值问题处理.(2)利用数列与函数之间的特殊关系,将数列的单调性转化为相应函数的单调性,利用函数的性质求解参数的取值范围,但要注意数列通项中n 的取值范围.能力练通 抓应用体验的“得”与“失”1.[考点一]设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4D .0解析:选D a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质,得当n =2或n =3时,a n 取最大值,最大值为a 2=a 3=0.故选D.2.[考点一]若数列{a n }满足:a 1=19,a n +1=a n -3,则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n ,则a n 是递减数列.设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-k +,∴193≤k ≤223,∵k ∈N *,∴k =7.∴满足条件的n 的值为7.3.[考点二]已知{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.解析:∵对于任意的n ∈N *,a n =n 2+λn 恒成立, ∴a n +1-a n =(n +1)2+λ(n +1)-n 2-λn =2n +1+λ. 又∵{a n }是递增数列,∴a n +1-a n >0,且当n =1时,a n +1-a n 最小, ∴a n +1-a n ≥a 2-a 1=3+λ>0,∴λ>-3. 答案:(-3,+∞)4.[考点一、二]已知数列{a n }中,a n =1+1a +n -(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +n -(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +n -=1+12n -2-a 2.∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性,知5<2-a 2<6,∴-10<a <-8.故a 的取值范围为(-10,-8).[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴1S n =-1+(n -1)×(-1)=-n ,∴S n =-1n.答案:-1n2.(2014·新课标全国卷Ⅱ)数列 {a n }满足 a n +1=11-a n , a 8=2,则a 1 =________.解析:将a 8=2代入a n +1=11-a n ,可求得a 7=12;再将a 7=12代入a n +1=11-a n,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n ,可求得a 5=2;由此可以推出数列{a n }是一个周期数列,且周期为3,所以a 1=a 7=12.答案:123.(2013·新课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n=________.解析:当n =1时,由已知S n =23a n +13,得a 1=23a 1+13,即a 1=1;当n ≥2时,由已知得到S n -1=23a n -1+13,所以a n =S n -S n -1=⎝ ⎛⎭⎪⎫23a n +13-⎝ ⎛⎭⎪⎫23a n -1+13=23a n -23a n -1,所以a n =-2a n -1,所以数列{a n }为以1为首项,以-2为公比的等比数列,所以a n =(-2)n -1.答案:(-2)n -14.(2016·全国丙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.解:(1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1). 因此{a n }的各项都为正数,所以a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.数列1,23,35,47,59,…的一个通项公式a n =( )A.n 2n +1B.n 2n -1C.n2n -3D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故该数列的一个通项公式为n2n -1.2.设数列{a n }的前n 项和S n =n 2+n ,则a 4的值为( ) A .4 B .6 C .8 D .10 解析:选C a 4=S 4-S 3=20-12=8.3.已知数列{a n }满足a 1=1,a n +1a n =2n(n ∈N *),则a 10=( ) A .64 B .32 C .16 D .8解析:选B ∵a n +1a n =2n,∴a n +2a n +1=2n +1,两式相除得a n +2a n=2.又a 1a 2=2,a 1=1,∴a 2=2.则a 10a 8·a 8a 6·a 6a 4·a 4a 2=24,即a 10=25=32.4.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( ) A.1516 B.158 C.34 D.38解析:选C 由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.5.现定义a n =5n+⎝ ⎛⎭⎪⎫15n ,其中n ∈⎩⎨⎧⎭⎬⎫110,15,12,1,则a n 取最小值时,n 的值为________.解析:令5n=t >0,考虑函数y =t +1t,易知其在(0,1]上单调递减,在(1,+∞)上单调递增,且当t =1时,y 的值最小,再考虑函数t =5x,当0<x ≤1时,t ∈(1,5],则可知a n =5n+⎝ ⎛⎭⎪⎫15n 在(0,1]上单调递增,所以当n =110时,a n 取得最小值.答案:110[练常考题点——检验高考能力]一、选择题1.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18=( ) A .36 B .35 C .34 D .33解析:选C 当n ≥2时,a n =S n -S n -1=2n -3;当n =1时,a 1=S 1=-1,所以a n =2n -3(n ∈N *),所以a 2+a 18=34.2.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=( )A.6116B.259C.2516D.3115解析:选A 令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116.3.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .∴a 6=a 3·a 3=64,a 3=8.∴a 9=a 6·a 3=64×8=512.4.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C 由3a n +1=3a n -2得a n +1=a n -23,则{a n }是等差数列,又a 1=15,∴a n =473-23n .∵a k ·a k +1<0,∴⎝ ⎛⎭⎪⎫473-23k ·⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472,∴k =23,故选C.5.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 015=( ) A .8 B .6 C .4D .2解析:选D 由题意得:a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8;所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 015=a 335×6+5=a 5=2.6.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( )A.1210 B.129 C.15 D.110解析:选C ∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,即a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又∵d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15. 二、填空题7.已知数列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是________. 解析:∵a n =2a n -1+1,∴a n +1=2(a n -1+1),∴a n +1a n -1+1=2,又a 1=1,∴{a n +1}是以2为首项,2为公比的等比数列,即a n +1=2×2n -1=2n,∴a 5+1=25,即a 5=31.答案:318.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项.解析:令n -2n2=0.08,得2n 2-25n +50=0, 即(2n -5)(n -10)=0.解得n =10或n =52(舍去).即0.08是该数列的第10项.答案:109.已知数列{a n }满足:a 1=1,a n +1(a n +2)=a n (n ∈N *),若b n +1=(n -p )⎝ ⎛⎭⎪⎫1a n+1,b 1=-p ,且数列{b n }是单调递增数列,则实数p 的取值范围为________.解析:由题中条件,可得1a n +1=2a n+1,则1a n +1+1=21a n +1,易知1a 1+1=2≠0,则⎩⎨⎧⎭⎬⎫1a n+1是等比数列,所以1a n+1=2n ,可得b n +1=2n (n -p ),则b n =2n -1(n -1-p )(n ∈N *),由数列{b n }是单调递增数列,得2n (n -p )>2n -1(n -1-p ),则p <n +1恒成立,又n +1的最小值为2,则p 的取值范围是(-∞,2).答案:(-∞,2)10.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________.解析:∵(n +1)a 2n +1+a n +1·a n -na 2n =0, ∴(a n +1+a n )[(n +1)a n +1-na n ]=0, 又a n +1+a n >0,∴(n +1)a n +1-na n =0,即a n +1a n =n n +1, ∴a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12×23×34×45×…×n -1n ,∵a 1=1,∴a n =1n. 答案:1n三、解答题11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理,a 3=3,a 4=4. (2)S n =12a 2n +12a n ,①当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②,整理得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n . 12.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由对于n ∈N *,都有a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 第二节等差数列及其前n 项和突破点(一) 等差数列的性质及基本量的计算1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -2d =n a 1+a n 2.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(5)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.考点贯通 抓高考命题的“形”与“神”等差数列的基本运算[例1] (1)(2016·东北师大附中摸底考试)在等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4(2)(2016·惠州调研)已知等差数列{a n }的前n 项和为S n ,若S 3=6,a 1=4,则公差d 等于( )A .1 B.53 C .-2D .3[解析] (1)∵a 1+a 5=2a 3=10, ∴a 3=5,则公差d =a 4-a 3=2,故选B. (2)由S 3=a 1+a 32=6,且a 1=4,得a 3=0, 则d =a 3-a 13-1=-2,故选C.[答案] (1)B (2)C [方法技巧]1.等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.2.等差数列设项技巧若奇数个数成等差数列且和为定值时,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列且和为定值时,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.等差数列的性质[例2] (1)n 396n n 的前n 项和,则S 11=( )A .18B .99C .198D .297(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. [解析] (1)因为a 3+a 9=27-a 6,2a 6=a 3+a 9, 所以3a 6=27,所以a 6=9, 所以S 11=112(a 1+a 11)=11a 6=99.(2)因为{a n },{b n }都是等差数列, 所以2a 3=a 1+a 5,2b 8=b 10+b 6, 所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6), 即2×15=9+(a 5+b 6), 解得a 5+b 6=21. [答案] (1)B (2)21能力练通 抓应用体验的“得”与“失” 1.[考点一]《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱 D.43钱 解析:选D 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,解得⎩⎪⎨⎪⎧a 1=43,d =-16,即甲得43钱,故选D.2.[考点一]设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( )A .5B .6C .7D .8解析:选D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.3.[考点二]已知数列{a n }为等差数列,且a 1+a 7+a 13=π,则cos(a 2+a 12)的值为( ) A.32 B .-32 C.12 D .-12解析:选D 在等差数列{a n }中,因为a 1+a 7+a 13=π,所以a 7=π3,所以a 2+a 12=2π3,所以cos(a 2+a 12)=-12.故选D.4.[考点一]设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.所以S 16=16×3+16×152×(-1)=-72.答案:-725.[考点二]设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),求数列{a n }的项数及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,①a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n a 1+a n2=324,∴18n =324,∴n =18. ∵a 1+a n =36,n =18, ∴a 1+a 18=36,从而a 9+a 10=a 1+a 18=36.突破点(二) 等差数列前n 项和及性质的应用等差数列前n 项和的性质(1)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d . (2)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1).(3)当项数为偶数2n 时,S 偶-S 奇=nd ;项数为奇数2n -1时,S 奇-S 偶=a 中,S 奇∶S 偶=n ∶(n -1).(4){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(5)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.[例1] 已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.[解析] 法一:设数列{}a n 的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D .所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. [答案] 20[例2] n 1n 512n 为何值时,S n 有最大值?[解] 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一:S n =na 1+n n -2d=na 1+n n -2·⎝ ⎛⎭⎪⎫-18a 1 =-116a 1(n 2-17n )=-116a 1⎝ ⎛⎭⎪⎫n -1722+28964a 1,因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值.法二:设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+n -⎝ ⎛⎭⎪⎫-18a 1≥0,a 1+n ·⎝ ⎛⎭⎪⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值. 法三:由于S n =na 1+n n -2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,设f (x )=d2x 2+⎝ ⎛⎭⎪⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线,由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示),由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[方法技巧]求等差数列前n 项和S n 最值的三种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方结合图象借助求二次函数最值的方法求解.(2)邻项变号法: ①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .(3)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q2时,S n 最大; ②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.能力练通 抓应用体验的“得”与“失”1.[考点二]在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n n -12×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.[考点二]设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7 解析:选 D 由(n +1)S n <nS n +1得(n +1)n a 1+a n2<nn +a 1+a n +12,整理得a n <a n +1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.3.[考点一]已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=20×2-10=30,∴S 30=60.答案:604.[考点一]已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数是________.解析:由等差数列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n =1,2,3,5,11时,a nb n为整数, 故使得a n b n为整数的正整数n 的个数是5. 答案:55.[考点一]一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:5突破点(三) 等差数列的判定与证明等差数列的判定与证明方法[典例] 已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.[解] 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n .所以当n ≥2时,a n =S n -S n -1=12n -1n -=-12nn -,所以a n +1=-12n n +,而a n +1-a n =-12n n +--12n n -=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n n -n +.所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列.1.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列 D .公差为9的等差数列解析:选C 令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,故b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.即{a 2n -1+2a 2n }是公差为6的等差数列.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1,∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列. 3.已知公差大于零的等差数列{}a n 的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求数列{a n }的通项公式; (2)若数列{}b n 满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)∵数列{}a n 为等差数列,∴a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴数列{a n }的通项公式为a n =4n -3. (2)由(1)知a 1=1,d =4, ∴S n =na 1+n n -2×d =2n 2-n ,∴b n =S nn +c =2n 2-nn +c ,∴b 1=11+c ,b 2=62+c ,b 3=153+c,其中c ≠0. ∵数列{}b n 是等差数列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0, ∴c =-12或c =0(舍去),故c =-12.即存在一个非零实数c =-12,使数列{b n }为等差数列.[全国卷5年真题集中演练——明规律] 1.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97解析:选C ∵{a n }是等差数列,设其公差为d ,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C.2.(2015·新课标全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192 C .10 D .12 解析:选B ∵数列{a n }的公差为1,∴S 8=8a 1+-2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.3.(2013·新课标全国卷Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:选C 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以等差数列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+m -d =2,S m =a 1m +12m m -d =0,得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m m -=0,解得⎩⎪⎨⎪⎧a 1=-2,m =5,选C.4.(2013·新课标全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎪⎨⎪⎧S 10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,则nS n =n 2a 1+n 2n -2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49<6S 6,所以当n =7时,nS n 取最小值,最小值为-49.答案:-495.(2016·全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设数列{a n }的公差为d ,由已知得7+21d =28,解得d =1.所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.6.(2014·新课标全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n-1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,则a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 由S 5=a 2+a 42,得25=+a 42,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37 B .36 C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,即m =37.3.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D.12解析:选B 由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0.4.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .9B .8C .7D .6解析:选D 设等差数列{a n }的公差为d .因为a 3+a 7=-6,所以a 5=-3,d =2,则S n=n 2-12n ,故当n 等于6时S n 取得最小值.5.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________. 解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38,解得n =10.答案:10[练常考题点——检验高考能力]一、选择题1.(2017·黄冈质检)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( )A .95B .100C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2017·东北三校联考)已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=b 1+b 72=72[(b 2-d )+(b 2+5d )]=-112,又a 1=3,则a 8=-109.3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84解析:选B 由a 3+a 5+a 11+a 17=4,得2(a 4+a 14)=4,即a 4+a 14=2,则a 1+a 17=2,故S 17=a 1+a 172=17.4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选 C ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零.又∵a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n n -d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( ) A .310 B .212 C .180D .121解析:选D 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,因为a 1=1,所以22a 1+d =a 1+3a 1+3d ,化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n n -2。

教育最新K122018版高考数学大一轮复习高考专题突破六高考中的圆锥曲线问题教师用书

教育最新K122018版高考数学大一轮复习高考专题突破六高考中的圆锥曲线问题教师用书

(浙江专用)2018版高考数学大一轮复习 高考专题突破六 高考中的圆锥曲线问题教师用书1.(2015·课标全国Ⅱ)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B .2 C. 3 D. 2 答案 D解析 如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°, ∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e=c a= a 2+b 2a 2=2,选D. 2.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94答案 D解析 由已知得焦点坐标为F (34,0),因此直线AB 的方程为y =33(x -34), 即4x -43y -3=0.方法一 联立直线方程与抛物线方程化简得4y 2-123y -9=0, 故|y A -y B |=y A +y B2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94.方法二 联立方程得x 2-212x +916=0,故x A +x B =212.根据抛物线的定义有|AB |=x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+-432=38, 因此S △OAB =12|AB |·h =94.3.(2016·山西质量监测)已知A ,B 分别为椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点,直线y=kx (k >0)与椭圆交于C ,D 两点,若四边形ACBD 的面积的最大值为2c 2,则椭圆的离心率为( )A.13B.12C.33D.22 答案 D解析 设C (x 1,y 1)(x 1>0),D (x 2,y 2), 将y =kx 代入椭圆方程可解得x 1=ab b 2+a 2k2,x 2=-abb 2+a 2k 2,则|CD |=1+k 2|x 1-x 2|=2ab 1+k 2b 2+a 2k 2.又点A (a,0)到直线y =kx 的距离d 1=ak1+k2,点B (0,b )到直线y =kx 的距离d 2=b1+k2,所以S 四边形ACBD =12d 1|CD |+12d 2|CD |=12(d 1+d 2)·|CD |=12·b +ak 1+k 2·2ab 1+k2b 2+a 2k 2=ab ·b +akb 2+a 2k 2.令t =b +akb 2+a 2k 2,则t 2=b 2+a 2k 2+2abk b 2+a 2k 2=1+2ab ·k b 2+a 2k2=1+2ab ·1b 2k+a 2k ≤1+2ab ·12ab=2, 当且仅当b 2k =a 2k ,即k =ba时,t max =2,所以S 四边形ACBD 的最大值为2ab . 由条件,有2ab =2c 2,即2c 4=a 2b 2=a 2(a 2-c 2)=a 4-a 2c 2,2c 4+a 2c 2-a 4=0,2e 4+e 2-1=0, 解得e 2=12或e 2=-1(舍去),所以e =22,故选D.4.(2016·北京)双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =________. 答案 2解析 设B 为双曲线的右焦点,如图所示.∵四边形OABC 为正方形且边长为2, ∴c =|OB |=22, 又∠AOB =π4,∴b a =tan π4=1,即a =b . 又a 2+b 2=c 2=8,∴a =2.题型一 求圆锥曲线的标准方程例1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1答案 A 解析 由e =33,得c a =33.① 又△AF 1B 的周长为43,由椭圆定义,得4a =43,得a =3, 代入①,得c =1,所以b 2=a 2-c 2=2, 故椭圆C 的方程为x 23+y 22=1.思维升华 求圆锥曲线的标准方程是高考的必考题型,主要利用圆锥曲线的定义、几何性质,解得标准方程中的参数,从而求得方程.(2015·天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0 )的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( ) A.x 29-y 213=1 B.x 213-y 29=1 C.x 23-y 2=1 D .x 2-y 23=1答案 D解析 双曲线x 2a 2-y 2b2=1的一个焦点为F (2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±b ax , 由题意得2ba 2+b2=3,②联立①②解得b =3,a =1, 所求双曲线的方程为x 2-y 23=1,选D.题型二 圆锥曲线的几何性质例2 (1)(2015·湖南)若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( ) A.73 B.54 C.43 D.53(2)(2016·天津)设抛物线⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C ⎝ ⎛⎭⎪⎫72p ,0,AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________. 答案 (1)D (2) 6解析 (1)由条件知y =-b ax 过点(3,-4),∴3ba=4,即3b =4a ,∴9b 2=16a 2,∴9c 2-9a 2=16a 2, ∴25a 2=9c 2,∴e =53.故选D.(2)由⎩⎪⎨⎪⎧x =2pt 2,y =2pt(p >0)消去t 可得抛物线方程为y 2=2px (p >0),∴F ⎝ ⎛⎭⎪⎫p2,0, |AB |=|AF |=32p ,可得A (p ,2p ).易知△AEB ∽△FEC ,∴|AE ||FE |=|AB ||FC |=12,故S △ACE =13S △ACF =13×3p ×2p ×12=22p 2=32, ∴p 2=6,∵p >0,∴p = 6.思维升华 圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线渐近线,是常考题型,解决这类问题的关键是熟练掌握各性质的定义,及相关参数间的联系.掌握一些常用的结论及变形技巧,有助于提高运算能力.已知椭圆x 2a 2+y 2b2=1(a >b >0)与抛物线y 2=2px (p >0)有相同的焦点F ,P ,Q 是椭圆与抛物线的交点,若PQ 经过焦点F ,则椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为____________.答案2-1解析 因为抛物线y 2=2px (p >0)的焦点F 为⎝ ⎛⎭⎪⎫p2,0,设椭圆另一焦点为E .当x =p2时,代入抛物线方程得y =±p ,又因为PQ 经过焦点F ,所以P ⎝ ⎛⎭⎪⎫p2,p 且PF ⊥OF . 所以|PE |=p 2+p22+p 2=2p ,|PF |=p ,|EF |=p .故2a = 2p +p,2c =p ,e =2c2a=2-1.题型三 最值、范围问题例3 若直线l :y =3x 3-233过双曲线x 2a 2-y2b 2=1(a >0,b >0)的一个焦点,且与双曲线的一条渐近线平行. (1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 在y 轴上的截距的取值范围. 解 (1)由题意,可得c =2,ba =33, 所以a 2=3b 2,且a 2+b 2=c 2=4,解得a =3,b =1.故双曲线的方程为x 23-y 2=1.(2)由(1)知B (0,1),依题意可设过点B 的直线方程为y =kx +1(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =kx +1,x 23-y 2=1,得(1-3k 2)x 2-6kx -6=0,所以x 1+x 2=6k 1-3k2,Δ=36k 2+24(1-3k 2)=12(2-3k 2)>0⇒0<k 2<23,且1-3k 2≠0⇒k 2≠13.设MN 的中点为Q (x 0,y 0),则x 0=x 1+x 22=3k 1-3k 2,y 0=kx 0+1=11-3k2, 故直线m 的方程为y -11-3k 2=-1k ⎝ ⎛⎭⎪⎫x -3k 1-3k 2, 即y =-1k x +41-3k 2.所以直线m 在y 轴上的截距为41-3k2, 由0<k 2<23,且k 2≠13,得1-3k 2∈(-1,0)∪(0,1),所以41-3k2∈(-∞,-4)∪(4,+∞).故直线m 在y 轴上的截距的取值范围为(-∞,-4)∪(4,+∞).思维升华 圆锥曲线中的最值、范围问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和均值不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值与范围.直线l :x -y =0与椭圆x 22+y 2=1相交于A ,B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________. 答案2解析 由⎩⎪⎨⎪⎧x -y =0,x 2+2y 2-2=0,得3x 2=2,∴x =±63,设点A 在第一象限, ∴A (63,63),B (-63,-63),∴|AB |=433. 设与l 平行的直线l ′:y =x +m 与椭圆相切于P 点. 则△ABP 面积最大.由⎩⎪⎨⎪⎧y =x +m ,x 22+y 2=1,得3x 2+4mx +2m 2-2=0,∴Δ=(4m )2-4×3×(2m 2-2)=0,∴m =±3.∴P 到AB 的距离即为l 与l ′的距离,∴d =32.∴S △ABC =12×433×32= 2.题型四 定值、定点问题例4 (2016·全国乙卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.解 (1)因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0).(2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k x -,x 24+y23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0.则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=k 2+4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k(x -1),点A 到m 的距离为2k 2+1,所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83). 思维升华 求定点及定值问题常见的方法有两种(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2016·北京)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3. ∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1·⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, ∴|AN |·|BM |=4.故|AN |·|BM |为定值. 题型五 探索性问题例5 (2015·广东)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解 (1)圆C 1:x 2+y 2-6x +5=0化为(x -3)2+y 2=4,∴圆C 1的圆心坐标为(3,0). (2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知MC 1⊥MO ,∴MC 1→·MO →=0. 又∵MC 1→=(3-x ,-y ),MO →=(-x ,-y ), ∴由向量的数量积公式得x 2-3x +y 2=0. 易知直线l 的斜率存在, ∴设直线l 的方程为y =mx , 当直线l 与圆C 1相切时,d =|3m -0|m 2+1=2, 解得m =±255.把相切时直线l 的方程代入圆C 1的方程, 化简得9x 2-30x +25=0,解得x =53.当直线l 经过圆C 1的圆心时,M 的坐标为(3,0). 又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴53<x ≤3. ∴点M 的轨迹C 的方程为x 2-3x +y 2=0,其中53<x ≤3.(3)由题意知直线L 表示过定点(4,0),斜率为k 的直线,把直线L 的方程代入轨迹C 的方程x 2-3x +y 2=0,其中53<x ≤3,化简得(k 2+1)x 2-(3+8k 2)x +16k 2=0,其中53<x ≤3,记f (x )=(k 2+1)x 2-(3+8k 2)x +16k 2,其中53<x ≤3.若直线L 与曲线C 只有一个交点,令f (x )=0.当Δ=0时,解得k 2=916,即k =±34,此时方程可化为25x 2-120x +144=0,即(5x -12)2=0,解得x =125∈⎝ ⎛⎦⎥⎤53,3,∴k =±34满足条件.当Δ>0时,①若x =3是方程的解,则f (3)=0⇒k =0⇒另一根为x =0<53,故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一个根,满足题意;②若x =53是方程的解,则f ⎝ ⎛⎭⎪⎫53=0⇒k =±257⇒另外一根为x =6423,53<6423≤3,故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一根,满足题意;③若x =3和x =53均不是方程的解,则方程在区间⎝ ⎛⎭⎪⎫53,3上有且仅有一个根,只需f ⎝ ⎛⎭⎪⎫53·f (3)<0⇒-257<k <257.故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一个根,满足题意. 综上所述,k 的取值范围是-257≤k ≤257或k =±34.思维升华 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.(2016·山东枣庄八中月考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且过点(1,32).若点M (x 0,y 0)在椭圆C 上,则点N (x 0a ,y 0b )称为点M 的一个“椭点”.(1)求椭圆C 的标准方程.(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点,且A ,B 两点的“椭点”分别为P ,Q ,以PQ 为直径的圆经过坐标原点,试判断△AOB 的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.解 (1)由题意知e =c a =12,∴e 2=c 2a 2=a 2-b 2a 2=14,即a 2=43b 2,又1a 2+94b2=1,∴a 2=4,b 2=3,∴椭圆C 的标准方程为x 24+y 23=1.(2)△AOB 的面积为定值.理由如下:设A (x 1,y 1),B (x 2,y 2),则P (x 12,y 13),Q (x 22,y 23),∵以PQ 为直径的圆经过坐标原点,∴OP →·OQ →=0,即x 1x 24+y 1y 23=0.由⎩⎪⎨⎪⎧y =kx +m ,x 24+y23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0, 得3+4k 2-m 2>0.x 1+x 2=-8mk 3+4k 2,x 1x 2=m 2-3+4k2. y 1y 2=(kx 1+m )·(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=m 2-4k 23+4k2, 代入x 1x 24+y 1y 23=0,即y 1y 2=-34x 1x 2,得 m 2-4k 23+4k 2=-34·m 2-3+4k2,即2m 2-4k 2=3, ∴|AB |=1+k 2·|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=1+k 2·k 2-m 2+3+4k2,由点O 到直线AB 的距离公式得d =|m |1+k2,∴S △AOB =12|AB |d =121+k 2·k 2-m 2+3+4k 2·|m |1+k 2=12k 2-m 2+|m |3+4k2,把2m 2-4k 2=3代入上式,得S △AOB = 3.1.(2015·陕西)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.(1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0, 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4kk -1+2k2,x 1x 2=2kk -1+2k2,从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k k -2k k -=2k -2(k -1)=2.2.(2016·金华十校联考)椭圆C :x 2a 2+y 2b2=1(a >b >0)的上,下顶点分别为A ,B ,右焦点为F ,点P (21313,23913)在椭圆C 上,且OP ⊥AF .(1)求椭圆C 的方程;(2)设不经过顶点A ,B 的直线l 与椭圆交于两个不同的点M (x 1,y 1),N (x 2,y 2),且1x 1+1x 2=2,求椭圆右顶点D 到直线l 距离的取值范围. 解 (1)∵点P (21313,23913),∴k OP =3,又∵AF ⊥OP ,-b c×3=-1,∴c =3b ,∴a 2=4b 2. 又点P (21313,23913)在椭圆上,∴413a 2+1213b 2=4134b 2+1213b 2=1313b2=1, 解得a 2=4,b 2=1,故椭圆方程为x 24+y 2=1.(2)(ⅰ)当直线l 的斜率不存在时,方程为x =1,此时d =1. (ⅱ)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠±1), 联立椭圆方程得(4k 2+1)x 2+8kmx +4(m 2-1)=0, 由根与系数的关系得x 1+x 2=-8km 4k 2+1,x 1x 2=m 2-4k 2+1, 由Δ>0⇒4k 2-m 2+1>0,①由1x 1+1x 2=2⇒x 1+x 2=2x 1x 2⇒-8km 4k 2+1=2m 2-4k 2+1, 即km =1-m 2⇒k =1m-m (m ≠0),②把②式代入①式得m 2>43或0<m 2<1.椭圆右顶点D (2,0)到直线l 的距离 d =|2k +m |k 2+1=|2m-m |1m2+m 2-1=|2-m 2|m 4-m 2+1=m 4-4m 2+4m 4-m 2+1=1-m 2-m 4-m 2+1,令m 2-1=t ∈(-1,0)∪(13,+∞),则d =1-3tt 2+t +1=1-3t +1t+1∈[0,1)∪(1,2), 综上可知d ∈[0,2).3.(2017·浙江新高考预测)已知曲线C 的方程是mx 2+ny 2=1(m >0,n >0),且曲线C 过A (24,22),B (66,33)两点,O 为坐标原点. (1)求曲线C 的方程;(2)设M (x 1,y 1),N (x 2,y 2)是曲线C 上两点,且OM ⊥ON ,求证:直线MN 恒与一个定圆相切. (1)解 由题可得⎩⎪⎨⎪⎧18m +12n =1,16m +13n =1,解得m =4,n =1.所以曲线C 的方程为y 2+4x 2=1.(2)证明 由题得y 21+4x 21=1,y 22+4x 22=1,x 1x 2+y 1y 2=0, 原点O 到直线MN 的距离d =|OM |·|ON ||MN |=x 21+y 21x 22+y 22x1-x 22+y 1-y 22= x 21+y 21x 22+y 22x 21+x 22+y 21+y 22= -3x 21-3x 222-x 21+x 22=1-x 21+x 22+9x 21x 222-x 21+x 22. 由x 1x 2+y 1y 2=0,得x 21x 22=y 21y 22=(1-4x 21)(1-4x 22)=1-4(x 21+x 22)+16x 21x 22, 所以x 21x 22=415(x 21+x 22)-115, d =-x 21+x 22+125x 21+x22+252-x 21+x 22=25-35x 21+x 222-x 21+x 22=55, 所以直线MN 恒与定圆x 2+y 2=15相切.4.已知椭圆x 24+y 23=1的左顶点为A ,右焦点为F ,过点F 的直线交椭圆于B ,C 两点.(1)求该椭圆的离心率;(2)设直线AB 和AC 分别与直线x =4交于点M ,N ,问:x 轴上是否存在定点P 使得MP ⊥NP ?若存在,求出点P 的坐标;若不存在,说明理由. 解 (1)由椭圆方程可得a =2,b =3, 从而椭圆的半焦距c =a 2-b 2=1.所以椭圆的离心率为e =c a =12.(2)依题意,直线BC 的斜率不为0, 设其方程为x =ty +1.将其代入x 24+y 23=1,整理得(4+3t 2)y 2+6ty -9=0.设B (x 1,y 1),C (x 2,y 2),所以y 1+y 2=-6t 4+3t 2,y 1y 2=-94+3t2.易知直线AB 的方程是y =y 1x 1+2(x +2),从而可得M (4,6y 1x 1+2),同理可得N (4,6y 2x 2+2). 假设x 轴上存在定点P (p,0)使得MP ⊥NP , 则有PM →·PN →=0. 所以(p -4)2+36y 1y 2x 1+x 2+=0.将x 1=ty 1+1,x 2=ty 2+1代入上式,整理得 (p -4)2+36y 1y 2t 2y 1y 2+3t y 1+y 2+9=0,所以(p -4)2+-t2-+3t -6t ++3t2=0,即(p -4)2-9=0,解得p =1或p =7. 所以x 轴上存在定点P (1,0)或P (7,0), 使得MP ⊥NP .5.(2016·浙江名校第一次联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点为F 1,F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A ,B 两点,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM →=λAB →. (1)若λ=34,求椭圆C 的离心率;(2)若△PF 1F 2为等腰三角形,求λ的值.解 (1)因为A ,B 分别是直线l :y =ex +a 与x 轴,y 轴的交点, 所以A ,B 的坐标分别为(-a e,0),(0,a ),由⎩⎪⎨⎪⎧y =ex +a ,x 2a 2+y2b2=1, 得⎩⎪⎨⎪⎧x =-c ,y =b 2ac =a 2+b 2所以点M 的坐标是(-c ,b 2a),由AM →=λAB →,得(-c +a e,b 2a)=λ(a e,a ).即⎩⎪⎨⎪⎧a e -c =λa e ,b 2a =λa ,解得λ=1-e 2,因为λ=34,所以e =12.(2)因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角, 要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 即12|PF 1|=c .设点F 1到l 的距离为d , 由12|PF 1|=d =|e -c +0+a |1+e 2=|a -ec |1+e2=c ,得 1-e21+e2=e ,所以e 2=13,于是λ=1-e 2=23.即当λ=23时,△PF 1F 2为等腰三角形.。

高考数学大一轮复习 高考专题突破三 高考中的数列问题教师用书 文 苏教版(2021年最新整理)

高考数学大一轮复习 高考专题突破三 高考中的数列问题教师用书 文 苏教版(2021年最新整理)

(江苏专用)2018版高考数学大一轮复习高考专题突破三高考中的数列问题教师用书文苏教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018版高考数学大一轮复习高考专题突破三高考中的数列问题教师用书文苏教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018版高考数学大一轮复习高考专题突破三高考中的数列问题教师用书文苏教版的全部内容。

高考专题突破三高考中的数列问题1。

(2017·苏州月考)数列{a n}是公差不为0的等差数列,且a1,a3,a7为等比数列{b n}中连续的三项,则数列{b n}的公比为____。

答案2解析设数列{a n}的公差为d(d≠0),由a错误!=a1a7,得(a1+2d)2=a1(a1+6d),解得a1=2d,故数列{b n}的公比q=错误!=错误!=错误!=2。

2.已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列错误!的前100项和为_____。

答案错误!解析设等差数列{a n}的首项为a1,公差为d。

∵a5=5,S5=15,∴错误!∴错误!∴a n=a1+(n-1)d=n.∴错误!=错误!=错误!-错误!,∴数列错误!的前100项和为错误!+错误!+…+错误!=1-错误!=错误!。

3。

(2016·南通、淮安模拟)在等比数列{a n}中,a2=1,公比q≠±1。

若a1,4a3,7a5成等差数列,则a6的值是________。

答案错误!解析因为{a n}为等比数列,且a2=1,所以a1=1q,a3=q,a5=q3,由a1,4a3,7a5成等差数列得8q=错误!+7q3,解得q2=1(舍去)或q2=错误!,故a6=a2q4=错误!。

2018高考数学一轮复习 第5章 数列 热点探究课3 数列中的高考热点问题教师用书 文 北师大版

2018高考数学一轮复习 第5章 数列 热点探究课3 数列中的高考热点问题教师用书 文 北师大版

热点探究课(三) 数列中的高考热点问题[命题解读] 数列在中学数学中既具有独立性,又具有较强的综合性,是初等数学与高等数学的一个重要衔接点,从近五年全国卷高考试题来看,解答题第1题(全国卷T 17)交替考查数列与解三角形,本专题的热点题型有:一是等差、等比数列的综合问题;二是数列的通项与求和;三是数列与函数、不等式的交汇,难度中等.热点1 等差、等比数列的综合问题解决等差、等比数列的综合问题,关键是理清两种数列的项之间的关系,并注重方程思想的应用,等差(比)数列共涉及五个量a 1,a n ,S n ,d (q ),n ,“知三求二”.(2016·天津高考)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.[解] (1)设数列{a n }的公比为q . 由已知,有1a 1-1a 1q =2a 1q2,解得q =2或q =-1. 2分 又由S 6=a 1·1-q61-q =63,知q ≠-1,所以a 1·1-261-2=63,得a 1=1.所以a n =2n -1. 5分(2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n)=n -12, 即{b n }是首项为12,公差为1的等差数列. 8分设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2nb 1+b 2n2=2n 2. 10分[规律方法] 1.若{a n }是等差数列,则{ba n }(b >0,且b ≠1)是等比数列;若{a n }是正项等比数列,则{log b a n }(b >0,且b ≠1)是等差数列.2.对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系,以便实现等差、等比数列之间的相互转化.[对点训练1] 已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大?【导学号:66482265】[解] (1)取n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0. 若a 1=0,则S n =0.当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0(n ≥1). 2分 若a 1≠0,则a 1=2λ.当n ≥2时,2a n =2λ+S n,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=2nλ.综上,当a 1=0时,a n =0;当a 1≠0时,a n =2nλ. 5分(2)当a 1>0,且λ=100时,令b n =lg 1a n,由(1)知,b n =lg 1002n =2-n lg 2. 7分所以数列{b n }是递减的等差数列,公差为-lg 2.b 1>b 2>…>b 6=lg10026=lg10064>lg 1=0, 当n ≥7时,b n ≤b 7=lg 10027=lg 100128<lg 1=0.故数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大. 12分热点2 数列的通项与求和(答题模板)“基本量法”是解决数列通项与求和的常用方法,同时应注意方程思想的应用.(本小题满分12分)(2016·全国卷Ⅰ)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.[思路点拨] (1)取n =1,先求出a 1,再求{a n }的通项公式.(2)将a n 代入a n b n +1+b n +1=nb n ,得出数列{b n }为等比数列,再求{b n }的前n 项和. [规范解答] (1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2. 3分所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n -1. 5分 (2)由(1)知a n b n +1+b n +1=nb n ,得b n +1=b n3,7分因此{b n }是首项为1,公比为13的等比数列. 9分记{b n }的前n 项和为S n ,则S n =1-⎝ ⎛⎭⎪⎫13n 1-13=32-12×3n -1. 12分[答题模板] 第一步:求出{a n }的首项a 1; 第二步:求出{a n }的通项公式; 第三步:判定{b n }为等比数列; 第四步:求出{b n }的前n 项和;第五步:反思回顾,查看关键点,易错点注意解题规范.[温馨提示] 若干个能唯一确定一个数列的量称为该数列的“基本量”.首项与公差是等差数列的“基本量”,首项与公比是等比数列的“基本量”.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法.[对点训练2] 数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n·a n ,求数列{b n }的前n 项和S n . [解] (1)证明:由已知可得a n +1n +1=a nn+1,2分 即a n +1n +1-a nn=1.所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列. 5分(2)由(1)得a n n=1+(n -1)·1=n ,所以a n =n 2. 7分 从而b n =n ·3n.S n =1·31+2·32+3·33+…+n ·3n ,①3S n =1·32+2·33+…+(n -1)·3n +n ·3n +1.②①-②得-2S n =31+32+…+3n -n ·3n +1=3·1-3n1-3-n ·3n +1=1-2n ·3n +1-32.所以S n =2n -1·3n +1+34. 12分热点3 数列与函数、不等式的交汇数列与函数的交汇一般体现在两个方面:一是以数列的特征量n ,a n ,S n 等为坐标的点在函数图像上,可以得到数列的递推关系;二是数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题.数列与不等式的交汇考查方式主要有三种:一是判断数列中的一些不等关系;二是以数列为载体,考查不等式恒成立问题;三是考查与数列有关的不等式的证明.☞角度1 数列与函数的交汇(2016·湖北七市4月联考)已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n .(1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2 x 的图像上,求数列{b n }的前n 项和T n .【导学号:66482266】[解] (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n ,当n =1时,a 1=S 1=4=4×1,所以数列{a n }的通项公式为a n =4n . 5分(2)由点(b n ,a n )在函数y =log 2 x 的图像上得a n =log 2b n ,且a n =4n ,所以b n =2a n =24n=16n,8分故数列{b n }是以16为首项,公比为16的等比数列. T n =161-16n1-16=16n +1-1615. 12分 [规律方法] 解决此类问题要抓住一个中心——函数,两个密切联系:一是数列和函数之间的密切联系,数列的通项公式是数列问题的核心,函数的解析式是研究函数问题的基础;二是方程、不等式与函数的联系,利用它们之间的对应关系进行灵活的处理.☞角度2 数列与不等式的交汇(2017·贵阳适应性考试(二))已知数列{a n }满足2a n +1=a n +2+a n (n ∈N *),且a 3+a 7=20,a 2+a 5=14.(1)求数列{a n }的通项公式; (2)设b n =1a n -1a n +1,数列{b n }的前n 项和为S n ,求证:S n <12.[解] (1)由2a n +1=a n +2+a n 得{a n }为等差数列. 2分 设等差数列{a n }的公差为d ,由a 3+a 7=20,a 2+a 5=14,解得d =2,a 1=2, ∴数列{a n }的通项公式为a n =2n . 5分 (2)证明:b n =1a n -1a n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,8分S n =12⎝⎛⎭⎪⎫1-13+13-15+15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1,当n ∈N *,S n =12⎝ ⎛⎭⎪⎫1-12n +1<12. 12分[规律方法] 解决数列与不等式的综合问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法等.总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(浙江专用)2018版高考数学大一轮复习 高考专题突破三 高考中的数列问题教师用书1.(2016·金华十校高三上学期调研)等差数列{a n }的前n 项和为S n ,若a 1=1,S 2=a 3,且a 1,a 2,a k 成等比数列,则k 等于( )A .1B .2C .3D .4 答案 D解析 设公差为d ,则2+d =1+2d , ∴d =1,∴a n =n ,由a 22=a 1·a k ,得4=1×k ,∴k =4.2.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( ) A.100101 B.99101 C.99100D.101100答案 A解析 设等差数列{a n }的首项为a 1,公差为d .∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+-2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n n +=1n -1n +1, ∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1100-1101=1-1101=100101. 3.(2016·杭州学军中学模拟)已知等比数列{a n }的公比q >0,前n 项和为S n .若2a 3,a 5,3a 4成等差数列,a 2a 4a 6=64,则q =________,S n =________. 答案 2 2n-12解析 由a 2a 4a 6=64,得a 34=64,解得a 4=4. 由2a 3,a 5,3a 4成等差数列,得2a 4q =3a 4+2a 4q,即8q =12+8q ,解得q =2或q =-12(舍去).又a 1q 3=4,所以a 1=12,所以S n =12-2n1-2=2n-12.4.(2015·课标全国Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =____________. 答案 -1n解析 由题意,得S 1=a 1=-1,又由a n +1=S n S n +1,得S n +1-S n =S n S n +1,因为S n ≠0,所以S n +1-S nS n S n +1=1,即1S n +1-1S n=-1,故数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列,所以1S n=-1-(n -1)=-n ,所以S n =-1n.题型一 等差数列、等比数列的综合问题例1 (2016·四川)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若a 2,a 3,a 2+a 3成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n=1的离心率为e n ,且e 2=2,求e 21+e 22+…+e 2n .解 (1)由已知,S n +1=qS n +1,得S n +2=qS n +1+1,两式相减得a n +2=qa n +1,n ≥1. 又由S 2=qS 1+1得a 2=qa 1,故a n +1=qa n 对所有n ≥1都成立.所以,数列{a n }是首项为1,公比为q 的等比数列. 从而a n =q n -1.由a 2,a 3,a 2+a 3成等差数列,可得2a 3=a 2+a 2+a 3,所以a 3=2a 2,故q =2. 所以a n =2n -1(n ∈N *).(2)由(1)可知,a n =qn -1,所以双曲线x 2-y 2a 2n=1的离心率e n =1+a 2n =1+qn -.由e 2=1+q 2=2,解得q =3, 所以e 21+e 22+…+e 2n=(1+1)+(1+q 2)+…+[1+q 2(n -1)]=n +[1+q 2+…+q2(n -1)]=n +q 2n -1q 2-1=n +12(3n-1).思维升华 等差数列、等比数列综合问题的解题策略(1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n . (2)由(1),得S n=1-⎝ ⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大, 所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n ≤56.所以数列{T n }的最大项的值为56,最小项的值为-712.题型二 数列的通项与求和例2 已知数列{a n }的前n 项和为S n ,在数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. (1)证明 ∵a n +S n =n , ① ∴a n +1+S n +1=n +1.②②-①,得a n +1-a n +a n +1=1, ∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列. ∵首项c 1=a 1-1,又a 1+a 1=1. ∴a 1=12,∴c 1=-12,公比q =12.又c n =a n -1,∴{c n }是以-12为首项,12为公比的等比数列.(2)解 由(1)可知c n =(-12)·(12)n -1=-(12)n,∴a n =c n +1=1-(12)n.∴当n ≥2时,b n =a n -a n -1 =1-(12)n -[1-(12)n -1]=(12)n -1-(12)n =(12)n. 又b 1=a 1=12,代入上式也符合,∴b n =(12)n .思维升华 (1)一般求数列的通项往往要构造数列,此时要从证的结论出发,这是很重要的解题信息.(2)根据数列的特点选择合适的求和方法,常用的有错位相减法,分组求和法,裂项相消法等.已知数列{a n }的前n 项和为S n ,且a 1=12,a n +1=n +12na n .(1)证明:数列{a n n}是等比数列; (2)求数列{a n }的通项公式与前n 项和S n . (1)证明 ∵a 1=12,a n +1=n +12n a n ,当n ∈N *时,a n n≠0.又a 11=12,a n +1n +1∶a n n =12(n ∈N *)为常数, ∴{a n n }是以12为首项,12为公比的等比数列.(2)解 由{a n n }是以12为首项,12为公比的等比数列,得a n n =12·(12)n -1,∴a n =n ·(12)n. ∴S n =1·12+2·(12)2+3·(12)3+…+n ·(12)n,12S n =1·(12)2+2·(12)3+…+(n -1)(12)n +n ·(12)n +1, ∴12S n =12+(12)2+(12)3+…+(12)n -n ·(12)n +1 =12-12n +11-12-n ·(12)n +1,∴S n =2-(12)n -1-n ·(12)n=2-(n +2)·(12)n.综上,a n =n ·(12)n ,S n =2-(n +2)·(12)n.题型三 数列与其他知识的交汇 命题点1 数列与函数的交汇例3 (2016·温州十校联考)已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n ,n ∈N *,数列{a n }满足1a n +1=f ′⎝ ⎛⎭⎪⎫1an ,且a 1=4.(1)求数列{a n }的通项公式;(2)记b n =a n a n +1,求数列{b n }的前n 项和T n .解 (1)f ′(x )=2ax +b ,由题意知b =2n,16n 2a -4nb =0,∴a =12,则f (x )=12x 2+2nx ,n ∈N *.数列{a n }满足1a n +1=f ′⎝ ⎛⎭⎪⎫1an ,又f ′(x )=x +2n , ∴1a n +1=1a n+2n ,∴1a n +1-1a n=2n ,由叠加法可得1a n -14=2+4+6+…+2(n -1)=n 2-n ,化简可得a n =4n -2(n ≥2),当n =1时,a 1=4也符合, ∴a n =4n -2(n ∈N *).(2)∵b n =a n a n +1=4n -n +=2⎝⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =a 1a 2+a 2a 3+…+a n a n +1=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=2⎝ ⎛⎭⎪⎫1-12n +1=4n 2n +1. 命题点2 数列与不等式的交汇例4 (2016·宁波高三上学期期末考试)对任意正整数n ,设a n 是方程x 2+xn=1的正根. 求证:(1)a n +1>a n ;(2)12a 2+13a 3+…+1na n <1+12+13+…+1n . 证明 由a 2n +a n n=1且a n >0,得0<a n <1. (1)a 2n +a n n=1,a 2n +1+a n +1n +1=1, 两式相减得 0=a 2n +1-a 2n +a n +1n +1-a n n <a 2n +1-a 2n +a n +1n -a n n =(a n +1-a n )(a n +1+a n +1n ). 因为a n +1+a n +1n>0, 故a n +1-a n >0,即a n +1>a n .(2)因为a n (a n +1n )=1,所以1a n =a n +1n,由0<a n <1,得1a n <1+1n,从而当i ≥2时,1i (1a i -1)<1i (1+1i -1)=1i 2<1i -1-1i,∑ni =1 1i (1a i -1)=1a 1-1+∑n i =2 1i (1a i -1)<1a 1-1+ni =2 (1i -1-1i )=1a 1-1n <1a 1. 所以12a 2+13a 3+...+1na n <1+12+13+ (1).思维升华 数列与其他知识交汇问题的常见类型及解题策略 (1)数列与函数的交汇问题①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; ②已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.另外,解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常见解法有助于该类问题的解决.(2)数列与不等式的交汇问题①函数方法:即构造函数,通过函数的单调性、极值等得出关于正实数的不等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式;②放缩方法:数列中不等式可以通过对中间过程或者最后的结果放缩得到; ③比较方法:作差或者作商比较. (3)数列应用题①根据题意,确定数列模型; ②准确求解模型;③问题作答,不要忽视问题的实际意义.(2017·浙江新高考预测一)已知f (x )=ln x -x +1,x 为正实数,g (x )=mx -1(m >0).(1)判断函数y =f (x )的单调性,给出你的结论;(2)若数列{a n }的各项均为正数,a 1=1,在m =2时,a n +1=f (a n )+g (a n )+2 (n ∈N *),求证:a n ≤2n -1.(1)解 求导,得f ′(x )=1x -1=1-x x,由f ′(x )=0,得x =1. 当x ∈(0,1)时,f ′(x )>0; 当x ∈(1,+∞)时,f ′(x )<0,所以函数y =f (x )在(0,1)上是增函数,在(1,+∞)上是减函数.(2)证明 由题意,正项数列{a n }满足a 1=1,a n +1=ln a n +a n +2, 由(1)知f (x )=ln x -x +1≤f (1)=0, 即有不等式ln x ≤x -1(x >0).下面用数学归纳法证明a n ≤2n-1 (*)成立. ①当n =1时,a 1=1≤21-1,(*)式成立. ②假设当n =k 时,a k ≤2k -1成立, 则当n =k +1时,a k +1=ln a k +a k +2≤a k -1+a k +2=2a k +1≤2(2k-1)+1=2k +1-1.所以当n =k +1时,(*)式也成立. 由①②可知,a n ≤2n-1成立.1.(2016·北京)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和. 解 (1)设数列{a n }的公差为d ,{b n }的公比为q ,由⎩⎪⎨⎪⎧b 2=b 1q =3,b 3=b 1q 2=9得⎩⎪⎨⎪⎧b 1=1,q =3. ∴{b n }的通项公式b n =b 1q n -1=3n -1,又a 1=b 1=1,a 14=b 4=34-1=27,∴1+(14-1)d =27,解得d =2.∴{a n }的通项公式a n =a 1+(n -1)d =1+(n -1)×2=2n -1(n =1,2,3,…). (2)设数列{c n }的前n 项和为S n . ∵c n =a n +b n =2n -1+3n -1,∴S n =c 1+c 2+c 3+…+c n=2×1-1+30+2×2-1+31+2×3-1+32+…+2n -1+3n -1=2(1+2+…+n )-n +3-3n1-3=2×n +n2-n +3n -12=n 2+3n-12.即数列{c n }的前n 项和为n 2+3n-12.2.(2016·全国甲卷)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }的首项为a 1,公差为d ,由题意有⎩⎪⎨⎪⎧2a 1+5d =4,2a 1+10d =6,解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35.当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为 1×3+2×2+3×3+4×2=24.3.(2017·诸暨高三5月教学质检)已知数列{a n }的各项都大于1,且a 1=2,a 2n +1-a n +1-a 2n +1=0(n ∈N *). (1)求证:n +74≤a n <a n +1<n +2;(2)求证:12a 21-3+12a 22-3+12a 23-3+…+12a 2n -3<1.证明 (1)由a 2n +1-a 2n =a n +1-1>0,得a n +1>a n , ∵a n +1-a n =a n +1-1a n +1+a n<1,∴a n +1=(a n +1-a n )+…+(a 2-a 1)+a 1<n +2.a n +1-a n =a n +1-1a n +1+a n >a n +1-12a n +1=12-12a n +1>14,∴a n =(a n -a n -1)+…+(a 2-a 1)+a 1>n -14+2=n +74(n ≥2),又a 1=2=1+74,∴a n ≥n +74.(2)∵a 2n +1-a 2n =a n +1-1≥n +84-1=n +44,∴a 2n +1>n 2+a n8+a 21=n 2+9n +328,即a 2n ≥n 2+7n +248, 2a 2n -3≥n 2+7n +124=n +n +4,12a 21-3+12a 22-3+…+12a 2n -3≤4(14-15+15-16+…)<1. 4.已知正项数列{a n }中,a 1=1,点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上,数列{b n }的前n 项和S n =2-b n .(1)求数列{a n }和{b n }的通项公式; (2)设c n =-1a n +1log 2b n +1,求{c n }的前n 项和T n .解 (1)∵点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上, ∴a n +1=a n +1,∴数列{a n }是公差为1的等差数列. ∵a 1=1,∴a n =1+(n -1)×1=n , ∵S n =2-b n ,∴S n +1=2-b n +1, 两式相减,得b n +1=-b n +1+b n ,即b n +1b n =12, 由S 1=2-b 1,即b 1=2-b 1,得b 1=1. ∴数列{b n }是首项为1,公比为12的等比数列,∴b n =(12)n -1.(2)log 2b n +1=log 2(12)n=-n ,∴c n =1nn +=1n -1n +1, ∴T n =c 1+c 2+…+c n =(1-12)+(12-13)+(13-14)+…+(1n -1n +1)=1-1n +1=nn +1.5.已知f n (x )=a 1x +a 2x 2+a 3x 3+…+a n x n ,且f n (-1)=(-1)n·n ,n =1,2,3,…. (1)求a 1,a 2,a 3;(2)求数列{a n }的通项公式;(3)当k >7且k ∈N *时,证明:对任意n ∈N *都有2a n +1+2a n +1+1+2a n +2+1+…+2a nk -1+1>32成立. (1)解 由f 1(-1)=-a 1=-1,得a 1=1,由f 2(-1)=-a 1+a 2=2,得a 2=3,又f 3(-1)=-a 1+a 2-a 3=-3,所以a 3=5.(2)解 由题意得f n (-1)=-a 1+a 2-a 3+…+(-1)n a n =(-1)n ·n , f n -1(-1)=-a 1+a 2-a 3+…+(-1)n -1a n -1=(-1)n -1·(n -1),n ≥2,两式相减,得(-1)n a n =(-1)n ·n -(-1)n -1(n -1)=(-1)n (2n -1), 当n ≥2时,a n =2n -1,又a 1=1符合,∴a n =2n -1(n ∈N *).(3)证明 令b n =a n +12=n ,则S =1b n +1b n +1+1b n +2+…+1b nk -1=1n +1n +1+1n +2+…+1nk -1, ∴2S =(1n +1nk -1)+(1n +1+1nk -2)+(1n +2+1nk -3)+…+(1nk -1+1n).(*) 当x >0,y >0时,x +y ≥2xy ,1x +1y ≥21xy ,∴(x +y )(1x +1y)≥4, ∴1x +1y ≥4x +y,当且仅当x =y 时等号成立. 上述(*)式中,k >7,n >0,n +1,n +2,…,nk -1全为正,∴2S >4n +nk -1+4n +1+nk -2+4n +2+nk -3+…+4nk -1+n =4n k -n +nk -1, ∴S >k -1+k -1n >k -k +1=2(1-2k +1)>2(1-27+1)=32.。

相关文档
最新文档