北师大版九年级数学上册__第一章__证明二__单元测试题

合集下载

北师大版九年级上数学第一第二章测试题 (4)

北师大版九年级上数学第一第二章测试题 (4)

九年级数学(上册)第一章测试题一、填空题:(每题3分,共30分)1、等腰三角形底边上的__________,底边上的__________,顶角__________,均把它分成两个全等三角形。

2、如图1,在△ABC 中,AB =AC ,∠BC A =120°,D 是BC 的中点,DE ⊥AC ,则 ∠C = ;CE ∶EA =__________。

图1 图23、如图2,已知AD 是△ABC 的外角平分线,且AD ∥BC ,则∠1__________∠B , ∠2__________∠C ,△ABC 是__________三角形。

4、在△ABC 中,∠A =∠B =21∠C ,则△ABC 是__________三角形。

5、Rt △ABC 中,∠C =90°,如图3,若b =5,c =13,则a =__________;若a =8,b =6,则c =__________。

6、等边△ABC ,AD 为它的高线,如图4所示,若它的边长为2,则它的周长为__________,AD =__________,BD ∶AD =__________。

图3 图4 图57、如图5,正方形ABCD ,AC 为它的一条对角线,若AB =3,则AC =__________;若AC =3,则AB =__________;AC ∶AB =_______。

8、在△ABC 中,AB =AC =8cm ,AB 的垂直平分线与AC 相交于E 点,且△BCE 的周长为10 cm ,则BC =______ cm 。

9、已知,如图6,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,若CD =CE ,则∠COD +∠AOB =__________度。

10、如图7,已知MP ⊥OP 于P ,MQ ⊥OQ 于Q ,S △QOM =6 cm 2,OP =3 cm ,则MQ =__________cm 。

北师大九年级数学上册全套单元测试题【含答案】

北师大九年级数学上册全套单元测试题【含答案】

北师大九年级数学上册全套单元测试题【含答案】2010~2011学年度上期目标检测题九年级 数学第一章 证明(Ⅱ)班级 姓名 学号 成绩一、判断题(每小题2分,共10分)下列各题正确的在括号内画“√”,错误的在括号内画“×”.1、两个全等三角形的对应边的比值为1 . ( )2、两个等腰三角形一定是全等的三角形. ( )3、等腰三角形的两条中线一定相等. ( )4、两个三角形若两角相等,则两角所对的边也相等. ( )5、在一个直角三角形中,若一边等于另一边的一半,那么,一个锐角一定等于30°.( )二、选择题(每小题3分,共30分)每小题只有一个正确答案,请将正确答案的番号填在括号内.1、在△ABC 和△DEF 中,已知AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件是( )A 、∠A=∠DB 、∠C=∠FC 、∠B=∠ED 、∠C=∠D2、下列命题中是假命题的是( )A 、两条中线相等的三角形是等腰三角形B 、两条高相等的三角形是等腰三角形C 、两个内角不相等的三角形不是等腰三角形D 、三角形的一个外角的平分线平行于这个三角形的一边,则这个三角形是等腰三角形3、如图(一),已知AB=AC ,BE=CE ,D 是AE 上的一点,则下列结论不一定成立的是( )A 、∠1=∠2B 、AD=DEC 、BD=CD D 、∠BDE=∠CDE4、如图(二),已知AC 和BD 相交于O 点,AD ∥BC ,AD=BC ,过O (一)任作一条直线分别交AD 、BC 于点E 、F ,则下列结论:①OA=OC②OE=OF ③AE=CF ④OB=OD ,其中成立的个数是( )A 、1B 、2C 、3D 、45、若等腰三角形的周长是18,一条边的长是5,则其他两边的长是( ) (二)A 、5,8B 、6.5,6.5C 、5,8或6.5,6.5D 、8,6.56、下列长度的线段中,能构成直角三角形的一组是( )A 、543,, ;B 、6, 7, 8;C 、12, 25, 27;D 、245232,,7、如图(三),AC=AD BC=BD ,则下列结果正确的是( ) (三)A 、∠ABC=∠CAB B 、OA=OBC 、∠ACD=∠BDCD 、AB ⊥CD8、如图(四),△ABC 中,∠A=30°,∠C=90°AB 的垂直平分线交AC 于D 点,交AB 于E 点,则下列结论错误的是( )A 、AD=DB B 、DE=DCC 、BC=AED 、AD=BC (四)9、如图(五),在梯形ABCD 中,∠C=90°,M 是BC 的中点,DM 平分∠ADC ,∠CMD=35°,则∠MAB 是( )A 、35°B 、55°C 、70°D 、20°10、如图(六),在Rt △ABC 中,AD 平分∠BAC ,AC=BC , (五) ∠C=Rt ∠,那么,DCAC 的值为( ) A 、112∶)(- B 、()112∶+ C 、12∶ D 、 12∶ (六)三、填空题,(每空2分,共20分)1、如图(七),AD=BC ,AC=BD AC 与BD 相交于O 点,则图中全等三角形共有 对. (七)2、如图(八),在△ABC 和△DEF 中,∠A=∠D ,AC=DF ,若根据“ASA ”说明△ABC ≌△DEF ,则应添加条件 = . (八) 或 ∥ .3、一个等腰三角形的底角为15°,腰长为4cm ,那么,该三角形的面积等于 .4、等腰三角形一腰上的高与底边的夹角等于45°,则这个三角形的顶角等于 .5、命题“如果三角形的一个内角是钝角,则其余两个内角一定是锐角”的逆命题是 于D ,则CD= .9、如图(十)的(1)中,ABCD 是一张正方形纸片,E ,F 分别为AB ,CD 的中点,沿过点D 的折痕将A 角翻折,使得点A 落在(2)中EF 上,折痕交AE 于点G ,那么∠ADG= .四、作图题(保留作图的痕迹,写出作法)(共6分) (十)如图(十一),在∠AOB 内,求作点P ,使P 点到OA ,OB 的 距离相等,并且P 点到M ,N 的距离也相等.(十一)五、解答题(5分)如图(十二),一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直, 则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.(十二)六、证明题(第1,第2两小题各6分,第3小题8分,第4小题9分)1、已知:如图(十三),AB ∥CD ,F 是AC 的中点,求证:F 是DE 中点.(十三)2、已知:如图(十四),AB=AD , CB=CD ,E ,F 分别是AB ,AD 的中点.求证:CE=CF .(十四)3、如图(十五),△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F.求证:(1)AD ⊥EF ;(2)当有一点G 从点D 向A 运动时,DE ⊥AB 于E ,DF ⊥AC 于F ,此时上面结论是否成立?(十五)4、如图(十六),△ABC 、△DEC 均为等边三角形,点M 为线段AD 的中点,点N 为线段BE 的中点,求证:△CNM 为等边三角形.(十六)2010~2011学年度上期目标检测题九年级 数学第二章 一元二次方程班级 姓名 学号 成绩一、填空题(每小题2分,共36分)1.一元二次方程)3(532-=x x 的二次项系数是 ,一次项系数是 , 常数项是 .2.当m 时, 012)1(2=+++-m mx x m 是一元二次方程.3.方程022=-x x 的根是 ,方程036)5(2=--x 的根是 . 4.方程)32(5)32(2-=-x x 的两根为==21,x x .5.a 是实数,且0|82|42=--+-a a a ,则a 的值是 .6.已知322--x x 与7+x 的值相等,则x 的值是 . 7.(1)22___)(96+=++x x x ,(2)222)2(4___p x p x -=+-. 8.如果-1是方程0422=-+bx x 的一个根,则方程的另一个根是 ,b 是 .9.若1x 、2x 为方程0652=-+x x 的两根,则21x x +的值是,21x x 的值是. 10.用22cm 长的铁丝,折成一个面积为228cm 的矩形,这个矩形的长是__ __.11.甲、乙两人同时从A 地出发,骑自行车去B 地,已知甲比乙每小时多走3千米,结果比乙早到0.5小时,若A 、B 两地相距30千米,则乙每小时 千米.二、选择题(每小题3分,共18分)每小题只有一个正确答案,请将正确答案的番号填在括号内.1、已知关于的方程,(1)ax 2+bx+c=0;(2)x 2-4x=8+x 2;(3)1+(x-1)(x+1)=0;(4)(k 2+1)x 2 + kx + 1= 0中,一元二次方程的个数为( )个A 、1B 、2C 、3D 、42、如果01)3(2=+-+mx x m 是一元二次方程,则 ( )A 、3-≠mB 、3≠mC 、0≠mD 、 03≠-≠m m 且3、已知方程()031222=+--m x m x 的两个根是互为相反数,则m 的值是 ( )A 、1±=mB 、1-=mC 、1=mD 、0=m4、将方程0982=++x x 左边变成完全平方式后,方程是( )A 、7)4(2=+xB 、25)4(2=+xC 、9)4(2-=+xD 、7)4(2-=+x5、如果022=--m x x 有两个相等的实数根,那么022=--mx x 的两根和是 ( )A 、 -2B 、 1C 、 -1D 、 26、一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是 ( )A 、 5%B 、 10%C 、15%D 、 20% 三、按指定的方法解方程(每小题3分,共12分)1.02522=-+)(x (直接开平方法) 2. 0542=-+x x (配方法) 3.025)2(10)2(2=++-+x x (因式分解法) 4. 03722=+-x x (公式法) 四、适当的方法解方程(每小题4分,共8分)1.036252=-x 2. 0)4()52(22=+--x x 五、完成下列各题(每小题5分,共15分)1、已知函数222a ax x y --=,当1=x 时,0=y , 求a 的值. 2、若分式1|3|432----x x x 的值为零,求x 的值. 3、关于x 的方程021)1(2)21(2=-+--k x k x k 有实根.(1)若方程只有一个实根,求出这个根;(2)若方程有两个不相等的实根1x ,2x ,且61121-=+x x ,求k 的值. 六、应用问题(第1小题5分,第2小题6分,共11分)1、请求解我国古算经《九章算术》中的一个题:在一个方形池,每边长一丈,池中央长了一颗芦苇,露出水面恰好一尺,把芦苇的顶端收到岸边,芦苇顶端和岸边水面恰好相齐,问水深和芦苇的长度各是多少?(1丈=10尺)2、某科技公司研制成功一种新产品,决定向银行贷款200万元资金用于生产这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元;若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.2010~2011学年度上期目标检测题九年级 数学第三章 证明(Ⅲ)班级 姓名 学号 成绩一、选择题(每题4分,共40答案的番号填在括号内. 1、如图1中,O 为对角线AC 、BD 则图中共有相等的角( )A 、4对B 、5对C 、6对D 、8对 2、如图2,已知E 、F 的中点, 连接AE 、CF 所形成的四边形AECF 的面 的面积的比为( )A 、1:1B 、1:2C 、1:3D 、1:43、过四边形ABCD 的顶点A 、B 、C 、D 作BD 、AC 的平行线围成四边形EFGH,若EFGH 是菱形,则四边形ABCD 一定是( ) A 、平行四边形 B 、菱形C 、矩形D 、对角线相等的四边形4、在菱形ABCD 中,,,CD AF BC AE ⊥⊥ 且E 、F 分别是BC 、CD 的中点, 那么=∠EAF ( )A 、075B 、055C 、450D 、0605、矩形的一条长边的中点与另一条长边构成等腰直角三角形,已知矩形的周长是36,则矩形一条对角线长是( )A 、56B 、55C 、54D 、356、矩形的内角平分线能够组成一个( )A 、矩形B 、菱形C 、正方形D 、平行四边形7、以正方形ABCD 的一组邻边AD 、CD 向形外作等边三角形ADE 、CDF ,则下列结论中错误的是( )A 、BD 平分EBF ∠B 、030=∠DEFC 、BD EF ⊥ D 、045=∠BFD8、已知正方形ABCD 的边长是10cm ,APQ ∆是等边三角形,点P 在BC 上,点Q 在CD 上,则BP 的边长是( )A 、55cmB 、3320cm C 、)31020(-cm D 、)31020(+cm 9、若两个三角形的两条中位线对应相等且两条中位线与一对应边的夹角相等,则这两个三角形的关系是( )A 、全等B 、周长相等C 、不全等D 、不确定10、正方形具有而菱形不具有的性质是( )A 、四个角都是直角B 、两组对边分别相等C 、内角和为0360 D 、对角线平分对角 二、填空题(每空1分,共11分)1、平行四边形两邻边上的高分别为32和33,这两条高的夹角为060,此平行四边形的周长为 ,面积为 .2、等腰梯形的腰与上底相等且等于下底的一半,则该梯形的腰与下底的夹角为 .3、三角形三条中位线围成的三角形的周长为19,则原三角形的周长为 .4、在ABC ∆中,D 为AB 的中点,E 为AC 上一点,AC CE 31=,BE 、CD 交于点O ,cm BE 5=,则=OE .5、顺次连接任意四边形各边中点的连线所成的四边形是 .6、将长为12,宽为5的矩形纸片ABCD 沿对角线AC 对折后,AD 与BC 交于点E ,则DE 的长度为 .7、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,则矩形的两条对角线夹角为 .8、菱形两条对角线长度比为1:3,则菱形较小的内角的度数为 .9、正方形的一条对角线和一边所成的角是 度.10、已知四边形ABCD 是菱形,AEF ∆是正三角形,E 、F 分别在BC 、CD 上,且CD EF =,则=∠BAD .三、解答题(第1、2小题各10分,第3、4小题各5分,共30分)1、如图3,AB//CD ,090=∠ACB ,E 是AB CE=CD ,DE 和AC 相交于点F.求证:(1)AC DE ⊥; (2)ACE ACD ∠=∠.2、如图4,ABCD 为平行四边形,DFEC 和BCGH 34四、(第1、2小题各6分,第3小题7分,共1、如图5,正方形纸片ABCD 的边BC 上有一点E ,E 重合,则纸片折痕的长是多少?2、如图6,在矩形ABCD 中,E 是BC 上一点且AE=AD3、如图7,已知P 是矩形ABCD 的内的一点.求证:2010~2011学年度上期目标检测题九年级 数学半期检测题(总分120分,100分钟完卷)班级 姓名 学号 成绩一、选择题(每小题3分,共36案的番号填在括号内.1、下列数据为长度的三条线段可以构成直角三角形的是((A )3、5、6 (B )2、3、4(C ) 6、7、9 (D )9、12、15 2、如图(一):AB=AC ,D 、E 、F 分别是三边中点,则图中全等三角形共有( )(A ) 5对 (B ) 6对 (C ) 7对 (D ) 8对 3、△ABC 中,∠A=150º,AB=10,AC=18,则△ABC (A )45 (B )90 (C )180 (D )不能确定4、已知△ABC 中,∠C=90º,∠A=30º,BD 平分∠B 交AC 于点D ,则点D ( )(A )是AC 的中点 (B )在AB 的垂直平分线上(C )在AB 的中点 (D )不能确定5、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值是( )(A )1 (B ) -1 (C ) 1或-1 (D )21 6、方程x x 52=的根是( )(A )5=x (B )0=x (C ) 5,021==x x (D ) 0,521=-=x x7、用配方法将二次三项式9642-+x x 变形,结果为( )(A )100)2(2++x (B )100)2(2--x (C )100)2(2-+x (D ) 100)2(2+-x8、两个连续奇数的乘积是483,则这两个奇数分别是( )(A ) 19和21 (B ) 21和23 (C ) 23和25 (D ) 20和229、根据下列条件,能判定一个四边形是平行四边形的是( )(A )两条对角线相等 (B )一组对边平行,另一组对边相等(C )一组对角相等,一组邻角互补 (D )一组对角互补,一组对边相等10、能判定一个四边形是矩形的条件是( )(A )对角线相等 (B )对角线互相平分且相等(C )一组对边平行且对角线相等 (D )一组对边相等且有一个角是直角11、如果一个四边形要成为一个正方形,那么要增加的条件是( )(A )对角线互相垂直且平分 (B )对角互补(C )对角线互相垂直、平分且相等 (D )对角线相等12、矩形的四个内角平分线围成的四边形( )(A )一定是正方形 (B )是矩形 (C )菱形 (D )只能是平行四边形 二、填空题(每空2分,共38分)1、直角三角形两直角边分别是5cm 和12cm ,则斜边长是 ,斜边上的高 是 cm.2、命题“对顶角相等”的逆命题是 ,这个逆命题是 命题.3、有一个角是304、如图( 二),△ABC 中,AB=AC ,∠BAC=120AD ⊥AC ,DC=8,则BD= .5、已知:如图(三),△ABC 中,AB=AC ,∠AB 的中垂线交AC 于点D ,交AB 于点E , 则∠C= ,∠DBC= .6、若关于x 的方程42322-=+x x kx 则k 的取值范围是 .7、关于x 的方程124322+-=-a ax x x ,若常数项为0,则a = .8、如果m x x ++32是一个完全平方式,则m = .9、已知9)2(222=++y x ,则=+22y x . 10、方程012=--x x 的根是 .11、已知04322=--y xy x ,则yx 的值是 . 12、如图(四),平行四边形ABCD 中,AD=6cm ,AB=9cm,AE 平分∠DAB ,则CE= cm. (四)13、已知矩形ABCD 的周长是24 cm,点M 是CD 中点,∠AMB=90°,则AB= cm,AD= cm.14、已知菱形周长为52,一条对角线长是24,则这个菱形的面积是 .15、等腰梯形上底长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是 .三、解方程(每小题4分,共16分)1、0862=--x x (用配方法).2、23142-=--x x x (用公式法).3、04)5(=+-x x x (用因式分解法).4、02)12(2=++-x x .四、解答题(每小题5分,共15分)1、为响应国家“退耕还林”的号召,改变我省水土流失严重的状况,2002年我省退耕还林1600亩,计划2004年退耕还林1936亩,问这两年平均每年退耕还林的增长率是多少?2、学校准备在图书管后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建较合适?3、如图(五),ΔABC 中,AB=20,AC=12,AD 是中线,且AD=8,求BC 的长. 五、证明(计算)(每小题5分,共15分)1、已知:如图(六),点C 、D 在BE 上,BC=DE ,AB ∥EF ,AD ∥CF.求证:AD=CF.2、如图(七),正方形ABCD 中,E 为CD 上一点,F 为BC (1)求证:△BCE ≌△DCF ;(2)若∠BEC=600,求∠EFD3、已知:如图(八),在直角梯形ABCD 中,AB ∥CD ,AD ⊥求证:CD=CE.(八)2010~2011学年度上期目标检测题九年级数学第四章视图与投影班级姓名学号成绩一、选择题(每小题4分,共32分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题的括号内.1、一个几何体的主视图和左视图都是相同的长方形,府视图为圆,则这个几何体为()A、圆柱B、圆锥C、圆台D、球2、从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是()A、先变长,后变短B、先变短,后变长C、方向改变,长短不变D、以上都不正确3、在相同的时刻,物高与影长成比例.如果高为1.5米人测竿的影长为2.5米,那么影长为30米的旗杆的高是()A、20米B、16米C、18米D、15米4、下列说法正确的是()A、物体在阳光下的投影只与物体的高度有关B、小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C、物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D、物体在阳光照射下,影子的长度和方向都是固定不变的.5、关于盲区的说法正确的有()(1)我们把视线看不到的地方称为盲区(2)我们上山与下山时视野盲区是相同的(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比矮的建筑物挡住(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大A、1 个B、2个C、3个D、4个6、如图1是空心圆柱体在指定方向上的视图,正确的是()图17、如图2所示,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡距离地面3m,则地面上阴影部分的面积为()图 2A、0.36πm2B、0.81πm2C、2πm2D、3.24πm28、如图(三)是小明一天上学、放学时看到的一根电线杆的影子的府视图,按时间先后顺序进行排列正确的是()(三)A、(1)(2)(3)(4)B、(4)(3)(1)(2)C、(4)(3)(2)(1)D、(2)(3)(4)(1)二、填空题(每小题3分,共21分)1、主视图、左视图、府视图都相同的几何体为(写出两个).2、太阳光线形成的投影称为,手电筒、路灯、台灯的光线形成的投影称为 .3、我们把大型会场、体育看台、电影院建为阶梯形状,是为了 .4、为了测量一根电线杆的高度,取一根2米长的竹竿竖直放在阳光下,2米长的竹竿的影长为1米,并且在同一时刻测得电线杆的影长为7.3米,则电线杆的高为米.5、如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我们可以确定这个几何体是 .6、将一个三角板放在太阳光下,它所形成的投影是,也可能是 .7、身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影 .三、解答题(本题7个小题,共47分)1、某糖果厂为儿童设计一种新型的装糖果的不倒翁(如图4所示)请你为包装厂设计出它的主视图、左视图和府视图.图 42、画出图5中三棱柱的主视图、左视图、俯视图.图 53、画出图6中空心圆柱的主视图、左视图、俯视图.图 64、如图7所示,屋顶上有一只小猫,院子里有一只小老鼠,若小猫看见了小老鼠,则小老鼠就会有危险,试画出小老鼠在墙的左端的安全区.图 75、如图8为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=30m,现需了解甲楼对乙楼的采光的影响情况,(1)当太阳光与水平线的夹角为30°角时,求甲楼的影3 1.73);(2)若要甲楼的影子刚好不落在乙楼的子在乙楼上有多高(精确到0.1m,墙上,此时太阳与水平线的夹角为多少度?图 86、阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子[如图(9)所示],已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度(即AB的值)图 97、一位同学想利用有关知识测旗杆的高度,他在某一时刻测得高为0.5m的小木棒的影长为0.3m,但当他马上测量旗杆的影长时,因旗杆靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影子CD=1.0m,又测地面部分的影长BC=3.0m,你能根据上述数据帮他测出旗杆的高度吗?图 102010~2011学年度上期目标检测题九年级 数学第五章 反比例函数班级 姓名 学号 成绩一、填空题(每小题3分,共30分)1、近视眼镜的度数y (度)与镜片焦距x 成反比例.已知400度近视眼镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式是 .2、如果反比例函数xk y =的图象过点(2,-3),那么k = . 3、已知y 与x 成反比例,并且当x=2时,y=-1,则当y=3时,x 的值是 . 4、已知y 与(2x+1)成反比例,且当x=1时,y=2,那么当x=0,y 的值是 . 5、若点A (6,y 1)和B (5,y 2)在反比例函数x y 4-=的图象上,则y 1与y 2的大小关系是 .6、已知函数xy 3=,当x <0时,函数图象在第 象限,y 随x 的增大而 . 7、若函数12)1(---=m m x m y 是反比例函数,则m 的值是 .8、直线y=-5x+b 与双曲线x y 2-=相交于 点P (-2,m ),则b= .9、如图1,点A 在反比例函数图象上,过点A 作AB 垂直于x 轴,垂足为B ,若S △AOB =2,则这个反比例函数的解析式为 . 图 110、如图2,函数y=-kx(k≠0)与xy 4-=的图 象交于点A 、B ,过点A 作AC 垂直于y 轴,垂足为C ,则△BOC 的面积为 . 图 2二、选择题(每小题3分,共30分)下列每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、如果反比例函数的图象经过点P (-2,-1),那么这个反比例函数的表达式为( )A 、x y 21=B 、x y 21-=C 、x y 2=D 、xy 2-= 2、已知y 与x 成反比例,当x=3时,y=4,那么当y=3时,x 的值等于( )A 、4B 、-4C 、3D 、-33、若点A (-1,y 1),B(2,y 2),C (3,y 3)都在反比例函数xy 5=的图象上,则下列关系式正确的是( )A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 2<y 1D 、y 1<y 3<y 24、反比例函数xm y 5-=的图象的两个分支分别在第二、四象限内,那么m 的取值范围是( )A 、m <0B 、m >0C 、m <5D 、m >55、已知反比例函数的图象经过点(1,2),则它的图象也一定经过( )A 、(-1,-2)B 、(-1,2)C 、(1,-2)D 、(-2,1)6、若一次函数b kx y +=与反比例函数xk y =的图象都经过点(-2,1),则b 的值是( ) A 、3 B 、-3 C 、5 D 、-57、若直线y=k 1x(k 1≠0)和双曲线xk y 2=(k 2≠0)在同一坐标系内的图象无交点,则k 1、k 2的关系是( )A 、k 1与k 2异号B 、k 1与k 2同号C 、k 1与k 2互为倒数D 、k 1与k 2的值相等8、已知点A 是反比例函数图象上一点,它到原点的距离为5,到x 轴的距离为3,若点A 在第二象限内,则这个反比例函数的表达式为( )A 、x y 12=B 、x y 12-=C 、x y 121=D 、xy 121-= 9、如果点P 为反比例函数x y 6=的图像上的一点,PQ 垂直于x 轴,垂足为Q ,那么 △POQ 的面积为( )A 、12B 、6C 、3D 、1.510、已知反比例函数xk y =(k≠0),当x >0时,y 随x 的增大而增大,那么一次函数y=kx-k 的图象经过( )A 、第一、第二、三象限B 、第一、二、三象限C 、第一、三、四象限D 、第二、三、四象限三、解答题(本题6个小题,共40分)1、(6分)已知矩形的面积为6,求它的长y 与宽x 之间的函数关系式,并在直角坐标系中作出这个函数的图象.2、(6分)一定质量的氧气,它的密度ρ(kg/m 3)是它的体积v (m 3)的反比例函数,当v =10m 3时,ρ=1.43kg/m 3. (1)求ρ与v 的函数关系式;(2)求当v =2m 3时,氧气的密度ρ.3、(7分)某蓄水池的排水管每时排水8m 3,6小时(h )可将满水池全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每时的排水量达到Q (m 3),那么将满池水排空所需的时间t(h)将如何变化?(3)写出t 与Q之间的关系式(4)如果准备在5h 内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?4、(7分)某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x (元)与日销售量y (个)之间有如下关系:(2)猜测并确定y 与x 之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为W元,求出W与x 之间的函数关系式.若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?5、(7分)如图3,点A是双曲线x k y =与直线y=-x-(k+1)在第二象限内的交点, AB⊥x 轴于B ,且S△ABO =23. (1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC 的面积.图 36、(7分)已知反比例函数xk y 2=和一次函数y=2x-1,其中一次函数的图象经过(a,b ),(a+1,b+k )两点.(1)求反比例函数的解析式;(2)如图4,已知点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.图 42010~2011学年度上期目标检测题九年级 数学第六章 频率与概率班级 姓名 学号 成绩一、选择题(每小题4分,共40分)下列每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、一个事件发生的概率不可能是( )A 、0B 、1C 、21D 、23 2、下列说法正确的是( ) A 、投掷一枚图钉,钉尖朝上、朝下的概率一样 B 、统一发票有“中奖”和“不中奖”两种情形,所以中奖的概率是21 C 、投掷一枚均匀的硬币,正面朝上的概率是21 D 、投掷一枚均匀的骰子,每一种点数出现的概率都是61,所以每投6次,一定会出现一次“1点”.3、关于频率和概率的关系,下列说法正确的是( )A 、频率等于概率B 、当实验次数很大时,频率稳定在概率附近C 、当实验次数很大时,概率稳定在频率附近D 、实验得到的频率与概率不可能相等4、小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的概率是( )A 、38%B 、60%C 、约63%D 、无法确定5、随机掷一枚均匀的硬币两次,两次都是正面的概率是( )A 、21B 、31C 、41 D 、无法确定 6、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球.由此估计口袋中大约有多少个白球( )A 、10个B 、20个C 、30个D 、无法确定7、某商场举办有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得.每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是( )A 、100001B 、1000050C 、10000100D 、10000151 8、柜子里有2双鞋,随机取出两只刚好配成一双鞋的概率是( ) A 、21 B 、31 C 、41 D 、61 9、某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )A 、至少有两名学生生日相同B 、不可能有两名学生生日相同C 、可能有两名学生生日相同,但可能性不大D 、可能有两名学生生日相同,且可能性很大10、某城市有10000辆自行车,其牌照编号为00001到10000,则某人偶然遇到一辆自行车,其牌照编号大于9000的概率是( )A 、101 B 、109 C 、1001 D 、1009 二、填空题(每小题3分,共24分) 1、在装有6个红球、4个白球的袋中摸出一个球,是红球的概率是 .2、某电视台综艺节目组接到热线电话3000个.现要从中抽取“幸运观众”10名,张华同学打通了一次热线电话,那么他成为“幸运观众”的概率是 .3、袋中装有一个红球和一个黄球,它们除了颜色外都相同.随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是 .4、小明和小华在玩纸牌游戏,有两组牌,每组各有2张,分别都是1、2,每人每次从每组牌中抽出一张,两张牌的和为3的概率为 .5、一个口袋中有15个黑球和若干个白球,从口袋中一次摸出10个球,求出黑球数与10的比值,不断重复上述过程,总共摸了10次,黑球数与10的比值的平均数为1/5,因此可估计口袋中大约有 个白球.6、转盘甲被分成完全相等的三个扇形,颜色分别是红、蓝、绿,转盘乙被分成完全相等的两个扇形,颜色分别是红、蓝,任意转动这两个转盘,一个转盘转出蓝色,一个转盘转出红色(即配成紫色)的概率是 .7、一个密码锁的密码由四个数字组成,每个数字都是0~9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开.小亮忘了密码的前面两个数字,他随意按下前两个数字,则他一次就能打开锁的概率是 .8、某市民政部门今年元宵节期间举行了“即开式社会福利彩票”销售活动,设置彩票3000是 .三、解答题(本题有5个小题,共36分)1、(7分)有30张牌,牌面朝下,每次抽出一张记下花色再放回,洗牌后再抽,抽到红桃、黑桃、梅花、方块的频率依次为20%、32%、45%、3%,试估计四种花色的牌各有多少张?2、(7分)一则广告称:本次抽奖活动的中奖率为50%,其中一等奖的中奖率为10%,小明看到这则广告后,想:“50%=21,那么我抽二张就会有一张中奖,抽10张就会有1张中一等奖”.你认为小明的想法对吗?请说明理由.3、(7分)桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K,则红方胜,否则蓝方胜.你愿意充当红方还是蓝方?请说明理由.4、(7分)为了估计鱼塘中有多少条鱼,先从鱼塘捕捞100条鱼做上标记,然后放回鱼塘,经过一段时间,待有标记的鱼完全混合于鱼群后,又捕捞了两次,第一次捕捞了200条鱼,其中有24条有标记,第二次捕捞了220条,其中有18条有标记.请问你能否估计出鱼塘中鱼的数量?若能,鱼塘中大约有多少条鱼?若不能,请说明理由.5、(8分)小红计划到外婆家度暑假,为此她准备了一件粉色衬衣,一件白色衬衣,又买了三条不同款式的裙子:一步裙、太阳裙和牛仔裙.(1)她一共有多少种搭配方法?(2)如果在30天中她每天都变换一种搭配,她有几天穿白衬衣?几天穿牛仔裙?有几天白衬衣配牛仔裙?2010~2011学年度上期目标检测题九年级 数学第一章 证明(Ⅱ)参考答案一、判断题 1 √,2 ×,3 ×,4 ×,5 ×二、选择题 1、C 2、C 3、B 4、D 5、C 6、D 7、D 8、D 9、A 10、B三、填空题 1、三;2、∠ACB=∠DFE ,AB ∥DE ;3、4cm 2 ;4、90°;5、如果两个内角是锐角,那么另一个内角是钝角;6、三角形有两个内角是钝角; 7、cm 52;8、4cm ;9、15°.四、作图题 (略)五、解答题:设旗杆的高度为x 米 列方程 ()22251+=+x x 解 12=x六、证明题: 1、证明(略)2、连结AC 先证△ABC ≌△ADC 再证△AEC ≌△DFC3、先证△AED ≌△AFD 得AE=AF ∠EAD=∠FAD 由等腰三角形三线合一得 AD ⊥EF(或 证AE=AF DE=DF 得A 点在EF 的中垂线上,D 点在EF 的中垂线上 )。

【精品】北师大版九年级数学上册(1-2)单元过关试卷(含答案)

【精品】北师大版九年级数学上册(1-2)单元过关试卷(含答案)

北师大版九年级数学上册(1-2)单元试卷(含答案)第一章精选试卷(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.菱形的对称轴的条数为( )A .1B .2C .3D .42.下列说法中,正确的是( )A .相等的角一定是对顶角B .四个角都相等的四边形一定是正方形C .平行四边形的对角线互相平分D .矩形的对角线一定垂直3.平面直角坐标系中,四边形ABCD 的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD 是( )A .矩形B .菱形C .正方形D .平行四边形4.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形5.如图,矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CE 的长为( )A .6 cmB .4 cmC .2 cmD .1 cm6如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A.245B.125 C .5 D .4错误! ,第6题图) ,第7题图)7.如图,每个小正方形的边长为1,A ,B ,C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°8.已知四边形ABCD 的两条对角线AC 与BD 互相垂直,则下列结论正确的是( )A .当AC =BD 时,四边形ABCD 是矩形B .当AB =AD ,CB =CD 时,四边形ABCD 是菱形C .当AB =AD =BC 时,四边形ABCD 是菱形D .当AC =BD ,AD =AB 时,四边形ABCD 是正方形9.如图,矩形ABCD 中,AD =2,AB =3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( ) A. 5 B.136 C .1 D.56,第9题图) ,第10题图)10.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( )A .①②B .②③C .①③D .①④二、填空题(每小题3分,共18分)11.已知菱形的两条对角线长分别为2 cm ,3 cm ,则它的面积是____cm 2.12.如图,已知点P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 的度数是____度.13.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件____,使四边形ABCD 为矩形.,第12题图),第13题图),第14题图),第15题图)14.已知矩形ABCD,AB=3 cm,AD=4 cm,过对角线BD的中点O作BD的垂直平分线EF,分别交AD,BC于点E,F,则AE的长为____cm.15.如图,菱形ABCD的边长为4,过点A,C作对角线AC的垂线,分别交CB和AD的延长线于点E,F,AE=3,则四边形AECF的周长为____.16.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,则点E的坐标为__ __.三、解答题(共72分)17.(10分)如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm,对角线长是13 cm,那么矩形的周长是多少?18.(10分)如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.19.(10分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.20.(10分)如图,已知在▱ABCD中,点E,F分别是边AB,CD的中点,BD是对角线,AG∥BD交CB的延长线于点G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你的结论.21.(10分)如图,已知菱形ABCD,AB=AC,点E,F分别是BC,AD的中点,连接AE,CF.(1)求证:四边形AECF是矩形;(2)若AB=8,求菱形的面积.22.(10分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至G,使OG=OD,连接EG,FG,判断四边形DEGF是否是菱形,并说明理由.23.(12分)如图,在矩形ABCD中,点M,N分别是AD,BC的中点,点P,Q分别是BM,DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么特殊四边形?请说明理由.答 案一、选择题(每小题3分,共30分)1-5 BCBCC 6-10ACCDD二、填空题(每小题3分,共18分)11.已知菱形的两条对角线长分别为2 cm ,3 cm ,则它的面积是__3__cm 2.12.如图,已知点P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 的度数是__22.5__度.13.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件__∠B =90°或∠BAC +∠BCA =90°__,使四边形ABCD 为矩形.,第12题图) ,第13题图) ,第14题图) ,第15题图)14.已知矩形ABCD ,AB =3 cm ,AD =4 cm ,过对角线BD 的中点O 作BD 的垂直平分线EF ,分别交AD ,BC 于点E ,F ,则AE的长为__78__cm. 15.如图,菱形ABCD 的边长为4,过点A ,C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E ,F ,AE =3,则四边形AECF 的周长为__22__.16.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,则点E 的坐标为__(3,43)__. 三、解答题(共72分)17.(10分)如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm,对角线长是13 cm,那么矩形的周长是多少?∵△AOB,△BOC,△COD和△AOD四个小三角形的周长和为86 cm,且AC=BD=13 cm,∴AB+BC+CD+DA=86-2(AC +BD)=86-4×13=34(cm),即矩形ABCD的周长是34 cm18.(10分)如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.(1)∵AB=AC,∴∠B=∠ACB,又∵四边形ABDE是平行四边形,∴AB∥DE,AB=DE,∴∠ABD=∠EDC,AC=DE,∴∠EDC =∠ACD,又DC=CD,∴△ADC≌△ECD(2)若BD=CD,又∵AB =AC,∴AD⊥BC.又∵四边形ABDE是平行四边形,∴AE綊BD,∴AE綊DC,∴四边形ADCE是平行四边形,∵AD⊥DC,∴▱ADCE 是矩形19.(10分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.(1)∵四边形ABCD是菱形,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD =EC(2)∠BAO=40°20.(10分)如图,已知在▱ABCD中,点E,F分别是边AB,CD的中点,BD是对角线,AG∥BD交CB的延长线于点G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你的结论.(1)∵四边形ABCD是平行四边形,∴AD綊BC,∠A=∠C,CD=AB,又∵点E,F为AB,DC的中点,∴CF=AE,∴△ADE ≌△CBF(2)四边形AGBD是矩形.连接EF,∵▱BEDF是菱形,∴BD⊥EF,又DF綊AE,∴四边形ADFE是平行四边形,∴EF∥AD,∴∠ADB=90°,又∵AD∥BC,DB∥AG,∴四边形AGBD 是平行四边形,∴▱AGBD是矩形21.(10分)如图,已知菱形ABCD,AB=AC,点E,F分别是BC,AD的中点,连接AE,CF.(1)求证:四边形AECF是矩形;(2)若AB=8,求菱形的面积.(1)∵四边形ABCD是菱形,∴AB=BC.又∵AB=AC, ∴△ABC 是等边三角形.∵点E是BC的中点,∴AE⊥BC,∴∠AEC=90°.∵点E,F分别是BC,AD的中点,∴AF=12AD,EC=12BC.∵四边形ABCD为菱形,∴AD綊BC,∴AF綊EC,∴四边形AECF是平行四边形.又∵∠AEC=90°,∴四边形AECF是矩形(2)在Rt △ABE 中,AE =82-42=43,∴S 菱形ABCD =8×43=32322.(10分)如图,在正方形ABCD 中,点E ,F 分别在边AB ,BC 上,∠ADE =∠CDF.(1)求证:AE =CF ;(2)连接DB 交EF 于点O ,延长OB 至G ,使OG =OD ,连接EG ,FG ,判断四边形DEGF 是否是菱形,并说明理由.(1)在正方形ABCD 中,AD =CD ,∠A =∠C =90°,在△ADE 和△CDF 中,⎩⎪⎨⎪⎧∠ADE =∠CDF ,AD =CD ,∠A =∠C =90°,∴△ADE ≌△CDF (ASA ),∴AE =CF (2)四边形DEGF 是菱形.理由如下:在正方形ABCD 中,AB =BC ,∵AE =CF ,∴AB -AE =BC -CF ,即BE =BF ,∵△ADE ≌△CDF ,∴DE =DF ,∴BD 垂直平分EF ,∴EO =FO.又∵OG =OD ,DE =DF ,∴四边形DEGF 是菱形23.(12分)如图,在矩形ABCD 中,点M ,N 分别是AD ,BC 的中点,点P ,Q 分别是BM ,DN 的中点.(1)求证:△MBA ≌△NDC ;(2)四边形MPNQ 是什么特殊四边形?请说明理由. (1)∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠A =∠C=90°,∵在矩形ABCD 中,点M ,N 分别是AD ,BC 的中点,∴AM =12AD ,CN =12BC ,∴AM =CN.在△MBA 和△NDC 中,∵AB =CD ,∠A =∠C =90°,AM =CN ,∴△MBA ≌△NDC (SAS )(2)四边形MPNQ 是菱形,理由如下:连接AN ,易证:△ABN ≌△BAM ,∴AN =BM.∵△MAB ≌△NCD ,∴BM =DN.∵点P ,Q 分别是BM ,DN 的中点,∴PM =NQ.∵DM =BN ,DQ =BP ,∠MDQ =∠NBP ,∴△MQD ≌△NPB (SAS ).∴MQ =NP.∴四边形MPNQ 是平行四边形.∵点M 是AD 的中点,点Q 是DN 的中点,∴MQ =12AN ,∴MQ =12BM.又∵MP =12BM ,∴MP =MQ.∴四边形MPNQ 是菱形第二章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( )A .3(x +1)2=2(x +1) B.1x 2+1x -2=0C .ax 2+bx +c =0D .x 2+2x =x 2-12.方程(x -2)(x +3)=0的解是( )A .x =2B .x =-3C .x 1=-2,x 2=3D .x 1=2,x 2=-33.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( C )A .-1或4B .-1或-4C .1或-4D .1或44.用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是( B )A .(x -1)2=2B .(x -1)2=4C .(x -1)2=1D .(x -1)2=75.下列一元二次方程中,没有实数根的是( B )A .x 2+2x +1=0B .x 2+x +2=0C .x 2-1=0D .x 2-2x -1=06.解方程(x +1)(x +3)=5较为合适的方法是( C )A .直接开平方法B .配方法C .公式法或配方法D .分解因式法7.已知一元二次方程x 2-2x -1=0的两个根分别是x 1,x 2,则x 12-x 1+x 2的值为( )A .-1B .0C .2D .38.关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a 的值是( )A .-1或5B .1C .5D .-19.某县政府2015年投资0.5亿元用于保障性住房建设,计划到2017年投资保障性住房建设的资金为0.98亿元,如果从2015年到2017年投资此项目资金的年增长率相同,那么年增长率是( B )A .30%B .40%C .50%D .10%10.有一块长32 cm ,宽24 cm 的长方形纸片,在每个角上截去相同的正方形,再折起来做一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是( )A .2 cmB .3 cmC .4 cmD .5 cm二、填空题(每小题3分,共18分)11.一元二次方程2x 2+6x =9的二次项系数、一次项系数、常数项和为____.12.方程(x +2)2=x +2的解是____.13.若代数式4x 2-2x -5与2x 2+1的值互为相反数,则x 的值是____.14.写一个你喜欢的实数k 的值____,使关于x 的一元二次方程(k +1)x 2+2x -1=0有两个不相等的实数根.15.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.则这种药品的成本的年平均下降率为____.16.设m ,n 分别为一元二次方程x 2+2x -2018=0的两个实数根,则m 2+3m +n =____.三、解答题(共72分)17.(12分)解方程:(1) x 2+4x -1=0; (2)x 2+3x +2=0;(3)3x 2-7x +4=0.18.(10分)如图,已知A ,B ,C 是数轴上异于原点O 的三个点,且点O 为AB 的中点,点B 为AC 的中点.若点B 对应的数是x ,点C 对应的数是x 2-3x ,求x 的值.19.(8分)一元二次方程x 2-2x -54=0的某个根,也是一元二次方程x 2-(k +2)x +94=0的根,求k 的值.20.(10分)某种商品的标价为400元/件,经过两次降价后的要价为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3 210元.问第一次降价后至少要售出该种商品多少件?21.(10分)小林准备进行如下操作试验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2,”他的说法对吗?请说明理由.22.(10分)某市电解金属锰厂从今年元月起安装了回收净化设备(安装时间不计),这样既保护环境,又节省原料成本,据统计使用回收净化设备后1~x月的利润的月平均值W(万元)满足W=10 x+90.请问多少个月后的利润和为1620万元?23.(12分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了109a%,求a 的值.答 案一、选择题(每小题3分,共30分)1-5ADCBB 6-10CDDBC二、填空题(每小题3分,共18分)11.一元二次方程2x 2+6x =9的二次项系数、一次项系数、常数项和为__-1__.12.方程(x +2)2=x +2的解是__x 1=-2,x 2=-1__.13.若代数式4x 2-2x -5与2x 2+1的值互为相反数,则x 的值是__1或-23__. 14.写一个你喜欢的实数k 的值__0(答案不唯一,只要满足k>-2且k ≠-1都行)__,使关于x 的一元二次方程(k +1)x 2+2x -1=0有两个不相等的实数根.15.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.则这种药品的成本的年平均下降率为__10%__.16.(2016·达州)设m ,n 分别为一元二次方程x 2+2x -2018=0的两个实数根,则m 2+3m +n =__2016__.三、解答题(共72分)17.(12分)解方程:(1) x 2+4x -1=0; (2)x 2+3x +2=0;x 1=-2+5,x 2=-2-5 x 1=-1,x 2=-2(3)3x 2-7x +4=0.x 1=43,x 2=118.(10分)如图,已知A ,B ,C 是数轴上异于原点O 的三个点,且点O 为AB 的中点,点B 为AC 的中点.若点B 对应的数是x ,点C 对应的数是x 2-3x ,求x 的值.由已知,点O 是AB 的中点,点B 对应的数是x ,∴点A 对应的实数为-x.∵点B 是AC 的中点,点C 对应的数是x 2-3x ,∴(x 2-3x )-x =x -(-x ).整理,得x 2-6x =0,解得x 1=0,x 2=6.∵点B 异于原点,故x =0舍去,∴x 的值为619.(8分)一元二次方程x 2-2x -54=0的某个根,也是一元二次方程x 2-(k +2)x +94=0的根,求k 的值.当x 2-2x -54=0得(x -1)2=94,解得x 1=52,x 2=-12.当x =52时,(52)2-52(k +2)+94=0,∴k =75;当x =-12时,(-12)2+12(k +2)+94=0,∴k =-7.答:k 的值为75或-720.(10分)某种商品的标价为400元/件,经过两次降价后的要价为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3 210元.问第一次降价后至少要售出该种商品多少件?(1)10% (2)设第一次降价后售出该种商品m 件,则第二次降价后售出该种商品(100-m )件,第一次降价后的单件利润为:400×(1-10%)-300=60元/件,第二次降价后单价利润为:324-300=24元/件,依题意得:60m +24×(100-m )=36m +2400≥3210,解得m ≥22.5,即m ≥23.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该商品23件21.(10分)小林准备进行如下操作试验:把一根长为40 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm 2,”他的说法对吗?请说明理由.(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x )cm.由题意,得x 2+(10-x )2=58,解得x 1=3,x 2=7,即两个正方形的边长分别为3 cm ,7 cm.4×3=12,4×7=28,∴小林应把铁丝剪成12 cm 和28 cm 的两段 (2)假设能围成.由(1)得x 2+(10-x )2=48.化简得x 2-10x +26=0.∵Δ=b 2-4ac =(-10)2-4×1×26=-4<0,∴此方程没有实数根,∴小峰的说法是对的22.(10分)某市电解金属锰厂从今年元月起安装了回收净化设备(安装时间不计),这样既保护环境,又节省原料成本,据统计使用回收净化设备后1~x 月的利润的月平均值W(万元)满足W =10 x +90.请问多少个月后的利润和为1620万元?由题意得x (10x +90)=1620,解得x 1=9,x 2=-18(舍去),即9个月后利润和为1620万元23.(12分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了109a%,求a 的值.(1)设用于购买书桌、书架等设施的资金为x 元,则购买书籍的有(30 000-x )元,根据题意得:30 000-x ≥3x ,解得x ≤7 500.答:最多用7 500元购买书桌、书架等设施 (2)根据题意得:200(1+a%)×150(1-109a%)=20 000,整理得a 2+10a -3 000=0,解得a =50或a =-60(舍去),所以a 的值是50。

北师大 九年级数学上册第一单元 证明二 难题 提高题

北师大 九年级数学上册第一单元 证明二 难题 提高题

证明二1、你能证明它吗?(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

判定定理:有一个角是60度的等腰三角形是等边三角形。

或者三个角都相等的三角形是等边三角形。

(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。

(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。

4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。

【北师大版】九年级数学上册(1-3)单元检测试卷(含答案)

【北师大版】九年级数学上册(1-3)单元检测试卷(含答案)

北师大版九年级数学上册(1-3)单元试卷(含答案)第一章检测试卷(满分:120分,时间:90分钟)一、选择题(每题3分,共30分)1.如图,已知菱形ABCD的边长为3,∠ABC=60°,则对角线AC的长是( )A.12 B.9 C.6 D.3(第1题)(第4题)(第6题)2.下列命题为真命题的是( )A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形3.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形4.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 面积的( )A .15B .14C .13D .3105.已知四边形ABCD 是平行四边形,下列结论中错误的有( )①当AB =BC 时,它是菱形;②当AC⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形.A .1个B .2个C .3个D .4个6.如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A .8 2B .4 2C .8D .67.如图,每个小正方形的边长为1,A ,B ,C 是正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°8.如图,在菱形ABCD 中,点M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接OB.若∠DAC=28°,则∠OBC 的度数为( )A .28°B .52°C .62°D .72°(第7题)(第8题)(第9题)(第10题)9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )A.AF=AE B.△ABE≌△AGF C.EF=2 5 D.AF=EF 10.如图,在正方形ABCD中,点P是AB上一动点(点P不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )A.0个 B.1个 C.2个 D.3个二、填空题(每题3分,共24分)11.如图是一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为________时,两条对角线长度相等.12.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为________.(第11题)(第12题)(第13题)13.如图是根据四边形的不稳定性制作的边长为15 cm的可活动衣架,若墙上钉子间的距离AB=BC=15 cm,则∠1=________.14.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________.15.如图,矩形OBCD的顶点C的坐标为(1,3),则对角线BD的长等于________.(第15题)(第16题)(第17题)(第18题)16.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD 交BD于点E,则DE=________.17.如图,在矩形ABCD中,M,N分别是AD,BC的中点,E,F分别是线段BM,CM的中点.若AB=8,AD=12,则四边形ENFM的周长为________.18.如图,在边长为1的菱形 ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,…,按此规律所作的第n个菱形的边长是________.三、解答题(19,20题每题9分,21题 10分,22,23题每题12分,24题14分,共66分)19.如图,在四边形ABCD中,AD∥BC,AC的垂直平分线交AD,BC 于点E,F.求证:四边形AECF是菱形.(第19题)20.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.(第20题)21.如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.(第21题)22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.(第22题)23.如图,在菱形ABCD中,AB=4,∠BAD=120°,以点A为顶点的一个60°的角∠EAF绕点A旋转,∠EAF的两边分别交BC,CD于点E,F,且E,F不与B,C,D重合,连接EF.(1)求证:BE=CF.(2)在∠EAF绕点A旋转的过程中,四边形 AECF的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.(第23题)24.如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并说明理由.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF 是正方形?请说明理由.(3)当点O在边AC上运动时,四边形BCFE________是菱形(填“可能”或“不可能”).请说明理由.(第24题)答案一、1.D 2.A3.D点拨:首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.4.B5.A 点拨:①当AB=BC时,它是菱形,正确;②当AC⊥BD时,它是菱形,正确;③当∠ABC=90°时,它是矩形,正确;④当AC=BD时,它是矩形,因此④是错误的.6.C7.C 8.C9.D点拨:如图,由折叠得∠1=∠2.∵AD∥BC,∴∠3=∠1.∴∠2=∠3.∴AE=AF.故选项A正确.由折叠得CD=AG,∠D=∠G=90°.∵AB=CD,∴AB=AG.∵AE=AF,∠B=90°,∴Rt△ABE≌Rt△AGF(HL).故选项B正确.设DF=x,则GF=x,AF=8-x.又AG=AB=4,∴在Rt△AGF中,根据勾股定理得(8-x)2=42+x2.解得x=3.∴AF=8-x=5.则AE =AF =5, ∴BE=AE 2-AB 2=52-42=3.过点F 作FM⊥BC 于点M ,则EM =5-3=2.在Rt △EFM 中,根据勾股定理得EF =EM 2+FM 2=22+42=20=25,则选项C 正确.∵AF=5,EF =25,∴AF≠EF.故选项D 错误.(第9题)10.D 点拨:∵四边形ABCD 是正方形,∴∠PAE =∠MAE =45°. ∵PM ⊥AC ,∴∠PEA =∠MEA .又∵AE =AE ,∴根据“ASA”可得△APE ≌△AME .故①正确.由①得PE =ME ,∴PM =2PE .同理PN =2PF .又易知PF =BF ,四边形PEOF 是矩形,∴PN =2BF ,PM =2FO .∴PM +PN =2FO +2BF =2BO =BD .故②正确.在Rt△PFO 中,∵FO 2+PF 2=PO 2,而PE =FO ,∴PE 2+PF 2=PO 2.故③正确.二、11.90° 点拨:对角线相等的平行四边形是矩形.12.12 点拨:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=12×6×8=24.∵O 是菱形两条对角线的交点,∴阴影部分的面积=12×24=12. 13.120°(第14题)14.22.5° 点拨:如图,由四边形ABCD 是正方形,可知∠CAD =12∠BAD=45°. 由FE⊥AC,可知∠AEF=90°.在Rt △AEF 与Rt △ADF 中, AE =AD ,AF =AF , ∴Rt △AEF≌Rt △ADF(HL ).∴∠FAD=∠FAE=12∠CAD=12×45°=22.5°.15.10 16.2-117.20 点拨:点N 是BC 的中点,点E ,F 分别是BM ,CM 的中点,由三角形的中位线定理可证EN∥MC ,NF∥ME,EN =12MC ,FN =12MB.又易知MB =MC ,所以四边形ENFM 是菱形.由点M 是AD 的中点,AD =12得AM =6.在Rt △ABM 中,由勾股定理得BM =10.因为点E 是BM 的中点,所以EM =5.所以四边形ENFM 的周长为20.18.(3)n -1三、19.证明:∵EF 垂直平分AC , ∴∠AOE=∠COF=90°,OA =OC. ∵AD∥BC,∴∠OAE=∠OCF. ∴△AOE≌△COF(ASA ). ∴AE=CF.又∵AE∥CF,∴四边形AECF 是平行四边形. ∵EF⊥AC,∴四边形AECF 是菱形. 20.(1)证明:∵DE∥AC,CE∥BD, ∴四边形OCED 为平行四边形. ∵四边形ABCD 为矩形,∴OD=OC. ∴四边形OCED 为菱形. (2)解:∵四边形ABCD 为矩形, ∴BO=DO =12BD.∴S △OCD =S △OCB =12S △ABC =12×12×3×4=3.∴S 菱形OCED =2S △OCD =6.21.(1)证明:在△BCE 与△DCF 中, ⎩⎪⎨⎪⎧BC =DC ,∠BCE=∠DCF,CE =CF , ∴△BCE≌△DCF. (2)解:∵△BCE≌△DCF, ∴∠EBC=∠FDC=30°. ∵∠BCD=90°,∴∠BEC=60°. ∵EC=FC ,∠ECF=90°, ∴∠CEF=45°.∴∠BEF=105°.22.(1)证明:∵在矩形ABCD 中,AD∥BC,∠A=∠C=90°, ∴∠ADB=∠DBC.根据折叠的性质得∠ADB=∠BDF,∠F=∠A=90°, ∴∠DBC=∠BDF ,∠C=∠F. ∴BE=DE.在△DCE 和△BFE 中, ⎩⎪⎨⎪⎧∠DEC=∠BEF,∠C=∠F,DE =BE , ∴△DCE≌△BFE. (2)解:在Rt △BCD 中, ∵CD=2,∠ADB=∠DBC=30°, ∴BD=4.∴BC=2 3.在Rt △ECD 中,易得∠EDC=30°. ∴DE=2EC. ∴(2EC)2-EC 2=CD 2. ∵CD=2, ∴CE=233.∴BE=BC -EC =433.(第23题)23.(1)证明:如图,连接AC. ∵四边形ABCD 为菱形,∠BAD=120°,∴∠ABE=∠ACF=60°,∠1+∠2=60°.∵∠3+∠2=∠EAF=60°,∴∠1=∠3.∵∠ABC=60°,AB=BC,∴△ABC为等边三角形.∴AC=AB.∴△ABE≌△ACF.∴BE=CF.(2)解:四边形AECF的面积不变.由(1)知△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC. 如图,过A作AM⊥BC于点M,则BM=MC=2,∴AM=AB2-BM2=42-22=2 3.∴S△ABC=12BC·AM=12×4×23=4 3.故S四边形AECF=4 3.24.解:(1)OE=OF.理由如下:∵CE是∠ACB的平分线,∴∠ACE=∠BCE.又∵MN∥BC,∴∠NEC=∠BCE.∴∠NEC=∠ACE.∴OE=OC.∵CF是∠ACD的平分线,∴∠OCF=∠FCD.又∵MN∥BC,∴∠OFC=∠FCD.∴∠OFC=∠OCF.∴OF=OC.∴OE=OF.(2)当点O运动到AC的中点,且△ABC满足∠ACB为直角时,四边形AECF是正方形.理由如下:∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形.∵FO=CO,∴AO=CO=EO=FO.∴AO+CO=EO+FO,即AC=EF.∴四边形AECF是矩形.已知MN∥BC,当∠ACB=90°时,∠AOE =90°,∴AC⊥EF.∴四边形AECF是正方形.(3)不可能理由如下:连接BF,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=12∠ACB+12∠ACD=12(∠ACB+∠ACD)=90°.若四边形BCFE是菱形,则BF⊥EC.但在一个三角形中,不可能存在两个角为90°,故四边形BCFE不可能为菱形.第二章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列方程一定是一元二次方程的是( )A .3x 2+2x-1=0 B .5x 2-6y -3=0 C .ax 2-x +2=0 D .3x 2-2x -1=02.一元二次方程5x 2-x =-3,其中二次项系数、一次项系数、常数项分别是( )A .5,-x ,3B .5,-1,-3C .5,-1,3D .5x 2,-1,33.由下表估算一元二次方程x 2+12x =15的一个根的范围,正确的是( )A .1.0<x<1.1B .1.1<x<1.2C .1.2<x<1.3D .14.41<x<15.844.设α,β是一元二次方程x 2+2x -1=0的两个根,则αβ的值是( )A .2B .1C .-2D .-15.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( )A .289(1-x)2=256B .256(1-x)2=289C .289(1-2x)=256D .256(1-2x)=2896.下列方程,适合用因式分解法解的是( )A.x2-42x+1=0 B.2x2=x-3C.(x-2)2=3x-6 D.x2-10x-9=07.关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是( )A.-1或5 B.1 C.5 D.-18.一个三角形的两边长分别为3和6,第三边的长是方程(x-2)(x -4)=0的根,则这个三角形的周长是( )A.11 B.11或13 C.13 D.以上选项都不正确9.若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过第( )象限.A.四B.三C.二D.一(第10题)10.如图,将边长为2 cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1 cm2,则它移动的距离AA′等于( )A.0.5 cm B.1 cmC.1.5 cm D.2 cm二、填空题(每题3分,共24分)11.若将方程x2-8x=7化为(x-m)2=n,则m=________.12.如果关于x的方程ax2+2x+1=0有两个不相等的实数根,那么实数a的取值范围是______________.13.已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k=________.14.某市准备加大对雾霾的治理力度,2015年第一季度投入资金100万元,第二季度和第三季度共投入资金260万元,求这两个季度投入资金的平均增长率.设这两个季度投入资金的平均增长率为x,根据题意可列方程为________________________.15.关于x的两个方程x2-4x+3=0与1x-1=2x+a有一个解相同,则a=________.16.小明的妈妈周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,她周三买了________瓶酸奶.17.对于实数a,b,定义运算“*”a* b=22(),(), a ab a b ab b a b ⎧-≥⎪⎨-⎪⎩<例如:4*2,因为4>2,所以4*2=42-4×2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1*x2=________.(第18题)18.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC 边上的高,动点P从点A出发,沿A→D方向以 2 cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t s(0<t<8),则t=________时,S1=2S2.三、解答题(19题12分,20~23题每题8分,24题10分,25题12分,共66分)19.用适当的方法解下列方程.(1)x2-x-1=0; (2)x2-2x=2x+1;(3)x(x-2)-3x2=-1; (4)(x+3)2=(1-2x)2.20.已知关于x的一元二次方程(m+1)x2-x+m2-3m-3=0有一个根是1,求m的值及另一个根.21.晓东在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得[(x+2)-2][(x+2)+2]=6.(x+2)2-22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得x1=-2+10,x2=-2-10.我们称这种解法为“平均数法”.(1)下面是晓东用“平均数法”解方程(x+2)(x+6)=5时写的解题过程.解:原方程可变形,得[(x+□)-○][(x+□)+○]=5.(x+□)2-○2=5,(x+□)2=5+○2.直接开平方并整理,得x1=☆,x2=¤.上述过程中的“□”,“○”,“☆”,“¤”表示的数分别为________,________,________,________.(2)请用“平均数法”解方程:(x-3)(x+1)=5.22.已知x1,x2是关于x的一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a 的值;若不存在,请说明理由.(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.23.楚天汽车销售公司5月份销售某种型号汽车.当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30辆.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润为25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价-进价)24.如图,A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P ,Q 分别从点A ,C 同时出发,点P 以3 cm /s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm /s 的速度向D 移动.(1)P ,Q 两点从出发开始到几秒时,四边形PBCQ 的面积为33 cm 2? (2)P ,Q 两点从出发开始到几秒时,点P 和点Q 之间的距离是10cm?(第24题)25.杭州湾跨海大桥通车后,A 地到宁波港的路程比原来缩短了120 km .已知运输车速度不变时,行驶时间将从原来的103h 缩短到2 h .(1)求A地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8 320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:1车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?答案一、1.D 2.C 3.B 4.D5.A点拨:第一次降价后的价格为289×(1-x)元,第二次降价后的价格为289×(1-x)×(1-x)元,则列出的方程是289(1-x)2=256.6.C7.D8.C9.D10.B点拨:设AC交A′B′于H.∵∠A=45°,∠AA′H=90°,∴△AA′H是等腰直角三角形.设AA′=x cm,则A′H=x cm,A′D=(2-x)cm.∴x(2-x)=1,解得x1=x2=1.即AA′=1 cm.故选B.二、11.412.a<1且a≠013.2 点拨:∵x2-6x+k=0的两根分别为x1,x2,∴x1+x2=6,x1x2=k.∴1x1+1x2=x1+x2x1x2=6k=3.解得k=2.经检验,k=2满足题意.14.100(1+x)+100(1+x)2=260点拨:根据题意知:第二季度投入资金100(1+x)万元,第三季度投入资金100(1+x)2万元,∴100(1+x)+100(1+x)2=260.15.1 点拨:由方程x2-4x+3=0,得(x -1)(x -3)=0, ∴x-1=0或x -3=0. 解得x 1=1,x 2=3; 当x =1时,分式方程1x -1=2x +a 无意义;当x =3时,13-1=23+a, 解得a =1,经检验,a =1是方程13-1=23+a的解.16.4 点拨:设她周三买了x 瓶酸奶,根据题意得(x +2)·⎝ ⎛⎭⎪⎫10x -0.5=10+2,化简得x 2+6x -40=0,解得x 1=4,x 2=-10.经检验.x 1=4,x 2=-10都是分式方程的根,但x =-10不符合题意,故x =4.17.3或-3 点拨:x 2-5x +6=0的两个根为x 1=2,x 2=3或x 1=3,x 2=2.当x 1=2,x 2=3时,x 1*x 2=2×3-32=-3; 当x 1=3,x 2=2时,x 1*x 2=32-2×3=3.18.6 点拨:∵在Rt △ABC 中,∠BAC=90°,AB =AC =16 cm ,AD 为BC 边上的高,∴AD=BD =CD =8 2 cm .又∵AP=2t cm ,∴S 1=12AP·BD=12×2t×82=8t(cm 2),PD =(82-2t)cm .易知PE =AP =2t cm ,∴S 2=PD·PE=(82-2t)·2t cm 2.∵S 1=2S 2,∴8t=2(82-2t)·2t.解得t 1=0(舍去),t 2=6. 三、19.解:(1)(公式法)a =1,b =-1,c =-1, 所以b 2-4ac =(-1)2-4×1×(-1)=5. 所以x =-b ±b 2-4ac 2a =1±52,即原方程的根为x 1=1+52, x 2=1-52.(2)(配方法)原方程可化为x 2-4x =1, 配方,得x 2-4x +4=1+4,(x -2)2=5. 两边开平方,得x -2=±5, 所以x 1=2+5,x 2=2- 5.(3)(公式法 )原方程可化为2x 2+2x -1=0,a =2,b =2,c =-1,b 2-4ac =22-4×2×(-1)=12. 所以x =-2±122×2=-1±32,即原方程的根为x 1=-1+32,x 2=-1-32.(4)(因式分解法)移项,得(x +3)2-(1-2x)2=0, 因式分解,得(3x +2)(-x +4)=0, 解得x 1=-23,x 2=4.20.解:∵(m+1)x 2-x +m 2-3m -3=0有一个根是1, ∴(m+1)·12-1+m 2-3m -3=0.整理,得m 2-2m -3=0,∴(m-3)(m +1)=0.又∵方程(m +1)x 2-x +m 2-3m -3=0为一元二次方程, ∴m+1≠0,∴m-3=0.∴m=3. ∴原方程为4x 2-x -3=0, 解得x 1=1,x 2=-34.∴原方程的另一个根为-34.21.解:(1)4;2;-1;-7(最后两空可交换顺序); (2)(x -3)(x +1)=5, 原方程可变形,得[(x -1)-2][(x -1)+2]=5, 整理,得(x -1)2-22=5, (x -1)2=5+22,即(x -1)2=9, 直接开平方并整理,得x 1=4,x 2=-2. 22.解:(1)存在.Δ=4a 2-4a(a -6)=24a , ∵一元二次方程有两个实数根, ∴Δ≥0,即a≥0.又∵a-6≠0,∴a≠6.∴a≥0且a≠6.由题可知x 1+x 2=2a 6-a ,x 1x 2=aa -6.∵-x 1+x 1x 2=4+x 2,即x 1x 2=4+x 1+x 2,∴a a -6=4+2a6-a .解得a =24,经检验,符合题意.∴存在实数a ,a 的值为24.(2)(x 1+1)(x 2+1)=x 1+x 2+x 1x 2+1=2a 6-a +a a -6+1=-6a -6.∵-6a -6为负整数, ∴实数a 的整数值应取7,8,9,12. 23.解:(1)当x≤5时,y =30.当5<x≤30时,y =30-(x -5)×0.1=-0.1x +30.5. ∴y=⎩⎪⎨⎪⎧30(x≤5,且x 为正整数),-0.1x +30.5(5<x≤30,且x 为正整数).(2)当x≤5时,(32-30)×5=10<25,不合题意. 当5<x≤30时,(32+0.1x -30.5)x =25, ∴x 2+15x -250=0.解得x 1=-25(舍去),x 2=10. ∴该月需售出10辆汽车.(第24题)24.解:(1)设P ,Q 两点从出发开始到x s 时,四边形PBCQ 的面积为33 cm 2,则AP =3x cm ,CQ =2x cm ,所以PB =(16-3x)cm .因为(PB +CQ)×BC×12=33,所以(16-3x +2x)×6×12=33.解得x=5,所以P ,Q 两点从出发开始到5 s 时,四边形PBCQ 的面积为33 cm 2.(2)设P ,Q 两点从出发开始到a s 时,点P 和点Q 之间的距离是10 cm .如图,过点Q 作QE⊥AB 于E ,易得EB =QC ,EQ =BC =6 cm , 所以PE =|PB -BE|=|PB -QC|=|16-3a -2a|=|16-5a|(cm ). 在Rt △PEQ 中,PE 2+EQ 2=PQ 2,所以(16-5a)2+62=102,即25a 2-160a +192=0,解得a 1=85,a 2=245,所以P ,Q 两点从出发开始到85 s 或245s 时,点P 和点Q 之间的距离是10 cm . 25.解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x km ,由题意得x +120103=x2,解得x =180.∴A 地经杭州湾跨海大桥到宁波港的路程为180 km . (2)1.8×180+28×2=380(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是380元.(3)设这批货物有y 车,由题意得y[800-20×(y-1)]+380y =8 320,整理得y 2-60y +416=0,解得y 1=8,y 2=52(不合题意,舍去),∴这批货物有8车.第三章达标检测卷 (120分,90分钟)一、选择题(每题3分,共30分)1.小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张恰好能被4整除的概率是( )A .110B .25C .15D .3102.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是( )A .盖面朝下的频数是55B .盖面朝下的频率是0.55C .盖面朝下的概率不一定是0.55D .同样的试验做200次,落地后盖面朝下的有110次3.两道单选题都含A ,B ,C ,D 四个选项,瞎猜这两道题,恰好全部猜对的概率是( )A .12B .14C .18D .1164.事件A :打开电视,它正在播广告;事件B :抛掷一枚均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A),P(B),P(C),则P(A),P(B),P(C)的大小关系正确的是( )A .P(C)<P(A)=P(B)B .P(C)<P(A)<P(B)C .P(C)<P(B)<P(A)D .P(A)<P(B)<P(C)(第5题)5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开.小明从入口1进入并从出口A 离开的概率是( )A .12B .13C .14D .166.王阿姨在网上看中了一款防雾霾口罩,付款时需要输入11位的支付密码,她只记得密码的前8位,后3位由1,7,9这3个数字组成,但具体顺序忘记了,她第一次就输入正确密码的概率是( )A .12B .14C .16D .187.同时抛掷A ,B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两个小立方体朝上的数字分别为x ,y ,并以此确定点P(x ,y),那么点P 落在函数y =-2x +9的图象上的概率为( )A .118B .112C .19D .168.在一个不透明的盒子里装有只颜色不同的黑、白两种球共40个.小亮做摸球试验,他将盒子内的球搅匀后从中随机摸出一个球,记下颜色后放回,不断重复上述过程,对试验结果进行统计后,小亮得到下表中的数据:则下列结论中正确的是( )A .n 越大,摸到白球的概率越接近0.6B .当n =2 000时,摸到白球的次数m =1 200C .当n 很大时,摸到白球的频率将会稳定在0.6附近D .这个盒子中约有28个白球9.让图中的两个转盘分别自由转动一次(两个转盘均被分成4等份),当转盘停止转动时,两个指针分别落在某两个数所表示的区域内,则这两个数的和是5的倍数或3的倍数的概率等于( )A .316B .38C .916D .131610.如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为( )A .14B .25C .23D .59(第9题)(第10题)(第14题)(第18题)二、填空题(每题3分,共24分)11.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面朝上的概率是________.12.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n=________.13.从8,12,18,32中随机抽取一个根式,化简后与2的被开方数相同的二次根式的概率是________.14.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可以使小灯泡发光,任意闭合其中两个开关,使小灯泡发光的概率为________.15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他第一次就能走出迷宫的概率是________.16.某市举办“体彩杯”中学生篮球赛,初中男子组有市区学校的A ,B ,C 三个队和县区学校的D ,E ,F ,G ,H 五个队.如果从A ,B ,D ,E 四个队与C ,F ,G ,H 四个队中各抽取一个队进行首场比赛,那么参加首场比赛的两个队都来自县区学校的概率是________.17.在一个暗盒中放有若干个白色球和2个黑色球(这些球除颜色外无其他区别),若从中随机取出1个球是白色球的概率是35,则在暗盒中随机取出2个球都是白色球的概率是________.18.如图,一个质地均匀的正四面体的四个面上依次标有数-2,0,1,2,连续抛掷两次,朝下一面的数分别是a ,b ,将其作为点M 的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是________.三、解答题(19题8分,20题10分,其余每题12分,共66分)19.如图,小明做了A ,B ,C ,D 四张同样规格的硬纸片,它们的背面完全相同,正面分别画有等腰三角形、圆、平行四边形、正方形.小明将它们背面朝上洗匀后,随机抽取两张.请你用列表或画树状图的方法,求小明抽到的两张硬纸片上的图形既是轴对称图形又是中心对称图形的概率.(第19题)20.一个瓶中装有一些幸运星,小王为了估计这个瓶中幸运星的颗数,他是这样做的:先从瓶中取出20颗幸运星做上记号,然后把这些幸运星放回瓶中,充分摇匀,再从瓶中取出30颗幸运星,发现有6颗幸运星带有记号,请你帮小王估算出原来瓶中幸运星的颗数.21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.求:(1)取出纸币的总额是30元的概率;(2)取出纸币的总额可购买一件51元的商品的概率.22.学校实施新课程改革以来,学生的学习能力有了很大的提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图①②).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.(第22题)23.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级 (1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.端午节吃粽子是中华民族的传统习俗,今年某商场销售甲厂家的高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种.(1)写出所有选购方案(利用树状图或表格求选购方案).(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少?(3)现某中学准备购买两个品种的粽子共32盒(价格如下表)发给学校的“留守儿童”,让他们过一个愉快的端午节,其中指定购买了甲厂家的高档粽子,再从乙厂家购买一个品种.若恰好用了1 200元,请问:购买了多少盒甲厂家的高档粽子?答案一、1.C 2.D 3.D 4.B 5.C6.C点拨:因为后3位由1,7,9这3个数字组成,所以后3位可能的结果有:179,197,719,791,917,971.所以她第一次就输入正确密码的概率是16.故选C . 7.B 点拨:列表如下:∴有36种等可能情况,点P(x ,y)落在y =-2x +9的图象上的有(2,5)(3,3)(4,1)共3种情况,故其概率为336=112. 8.C9.C 点拨:列表如下:所有等可能的情况有16种,其中两个数的和是5的倍数或3的倍数的情况有9种,则P =916,故选C .(第10题)10.B 点拨:如图,正六边形中连接任意两点可得15条线段,其中AC ,AE ,BD ,BF ,CE ,DF 这6条线段的长度为3,∴所求概率为615=25. 二、11.34点拨:随机掷一枚质地均匀的硬币两次,可能出现的结果有(正,正)、(正,反)、(反,正)、(反,反)4种,且每种结果出现的可能性相同,至少有一次正面朝上的结果有3种,故所求概率是34. 12.10 13.34 14.12 15.1816.38点拨:列表如下:由表格可知共有16种等可能情况,参加首场比赛的两个队都来自县区学校的有6种情况,所以概率为616=38.17.31018.716点拨:列表如下:(第18题)由表格知共有16种等可能的结果,而落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的点有(-2,0),(0,0),(1,0),(2,0),(0,1),(1,1),(0,2),共7种,如图,所以点M落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是716 .三、19.解:列表如下:由表格可看出,所有可能出现的结果共有12种,每种结果出现的可能性都相同,其中抽到的两张硬纸片上的图形既是轴对称图形又是中心对称图形的结果共有2种,故所求概率P =212=16.20.解:设原来瓶中幸运星大约有x 颗,则有20x =630.解得x =100.经检验,符合题意.∴原来瓶中幸运星大约有100颗.21.解:某人从钱包内随机取出2张纸币,可能出现的结果有3种,即10元与20元,10元与50元,20元与50元,并且它们出现的可能性相等.(1)取出纸币的总额是30元(记为事件A)的结果有1种,即10元与20元,所以P(A)=13.(2)取出纸币的总额可购买一件51元的商品(记为事件B)的结果有2种,即10元与50元,20元与50元,所以P(B)=23.22.解:(1)20 (2)补图如图所示.(第22题)(3)列表如下,A 类学生中的两名男生分别记为男A 1和男A 2,共有6种等可能的结果,其中,一男一女的有3种,所以恰好选中一名男生和一名女生的概率为36=12.23.解:(1)所求概率P =36=12.(2)游戏公平. 理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.24.解:(1)画树状图如图所示:(第24题)或列表如下:共有6种选购方案:(高档,精装)、(高档,简装)、(中档,精装)、(中档,简装)、(低档,精装)、(低档,简装).(2)因为选中甲厂家的高档粽子的方案有2种,即(高档,精装)、(高档,简装),所以甲厂家的高档粽子被选中的概率为26=13.(3)由(2)可知,当选用方案(高档,精装)时,设分别购买高档粽子、精装粽子x 1盒、y 1盒,根据题意,得⎩⎪⎨⎪⎧x 1+y 1=32,60x 1+50y 1=1 200. 解得⎩⎪⎨⎪⎧x 1=-40,y 1=72.经检验,不符合题意,舍去.当选用方案(高档,简装)时,设分别购买高档粽子、简装粽子。

九年级(上)第一章证明(二)单元测试卷(2)(北师大版)-.docx

九年级(上)第一章证明(二)单元测试卷(2)(北师大版)-.docx

(时间90分钟 满分100分)一、选择题:(每小题3分,共30分) 1、两个直角三角形全等的条件是()A 、一锐角对应相等;B 、两锐如对应相等;C 、一条边对应相等;D 、两条边对应相等 2、如图,由Z1=Z2, BC=DC, AC=EC,得AABC 竺AEDC 的根据是( )A 、 SASB 、 ASAC 、 AASD 、 SSS3、等腰三角形底边长为7, 一腰上的中线把其周长分成两部分的差为3,则腰长是( )A 、4B 、10C 、4或10D 、以上答案都不对4、 如图,EA 丄AB, BC 丄AB, EA=AB=2BC, D 为AB 中点,有以下结论: (1)DE=AC ; (2)DE 丄AC ; (3) ZCAB=30° ; (4) ZEAF 二ZADE 。

其中结论正确的是( ) A 、(1), (3) B 、(2), (3) C 、(3), (4) D 、(1), (2), (4) 6、设M 表示直角三角形,N 表示等腰三角形,P 表示等边三角形,Q 表示等腰直角三角形, 则下列四个图中,能表示他们Z 间关系的是()九年级(±)第一章证明(二)单元测试卷⑵5、如图,A ABC 中,ZACB=90° ,BA 的垂直平分线交CB 边于D,若AB 二10, AO5, 则图中等于60°的角的个数为()A 、2B 、3C 、4D 、57、如图,A ABC 中,ZC=90° , AC=BC, 且AB 二6cm ,则ZkDEB 的周长为(AD 平分ZCAB 交BC 于点D, DE 丄AB,垂足为E, 4cm B> 6cm)A 、 C 、 8 cm D 、 10cm(第2题)E(第4题)AB(第8题)8、如图,△ ABC中,AB=AC,点D在AC边上,A、30°B、36°C、45°且BD二BOAD,则ZA的度数为( D、70°9、 如图,已知AC 平分ZPAQ,点B, B'分别在边AP, AQ 上,如果添加一个条件,即可推 出AB 二AB',那么该条件可以是()A 、BB'丄ACB 、BOB'C C 、ZACB=ZACB ,D 、ZABC=ZAB ZC10、 如图,ZiABC 中,AD 丄BC 于D, BE 丄AC 于E, AD 与BE 相交于F,若BF 二AC,贝I 」ABC 的大小是( )A 、 40°B 、 45° C、 50° D、 60°二、填空题:(每小题3分,共24分)11、 如果等腰三角形的一个底角是80° ,那么顶角是 ________ 度.12、 如图,点F 、C 在线段BE 上,且Z1二Z2, BC 二EF,若要使△ ABC^ADEF,则述须补充 一个条件 ___________ .13、 如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点0,且AD=AE, AB 二AC 。

(完整word)北师大版九年级数学上期期末复习试题

(完整word)北师大版九年级数学上期期末复习试题

九年级上册第一章《证明二》期末复习练习题一、选择题1. 如图1, 在Rt ΔABC 中, ∠ACB =90°BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E, 则CE 的长为( )A. B. C. D. 2图1 图2 图3 2. (2009年广西钦州)如图2, AC =AD, BC =BD, 则有( )A. AB 垂直平分CDB. CD 垂直平分ABC. AB 与CD 互相垂直平分D. CD 平分∠ACB3.(2009年济宁市)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图3, 是一“赵爽弦图”飞镖板, 其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是A. B. C. D.5.(2009恩施市)如图4, 长方体的长为15, 宽为10, 高为20, 点 离点 的距离为5, 一只蚂蚁如果要沿着长方体的表面从点 爬到点 , 需要爬行的最短距离是( )A. B. 25 C. D.6. (2009年宁波市)等腰直角三角形的一个底角的度数是( )A. 30°B. 45°C. 60°D. 90°7. (2009重庆綦江)如图5, 点A 的坐标是(2,2), 若点P 在x 轴上, 且△APO 是等腰三角形,则点P 的坐标不可能是( )A .(4, 0)B .(1.0)C .(-2 , 0)D .(2, 0) 图7图5图88. (2009威海)如图6, AB =AC,BD =BC, 若∠A =40°, 则∠ABD 的度数是( )A. B. C. D.9.(2009年温州)如图7, △ABC 中, AB =AC =6, BC =8, AE 平分∠BAC 交BC 于点E, 点D为AB 的中点, 连结DE, 则△BDE 的周长是( )A. 7+B. 10C. 4+2D. 1210.(2009年云南省)如图11, 等腰△ABC 的周长为21, 底边BC = 5, AB 的垂直平分线DE 交AB 于点D, 交AC 于点E, 则△BEC 的周长为( )A. 13B. 14C. 15D. 1611.(2009呼和浩特)在等腰 中, , 一边上的中线 将这个三角形的周长分为15和12两个部分, 则这个等腰三角形的底边长为( )A. 7B. 11C. 7或11D. 7或10ADB E C12.已知在 中, , 则 的值为( )A. B. C. D.13.观察下列图形, 则第 个图形中三角形的个数是( )A. B. C. D. 二、填空题1. (2009年重庆市江津区)等腰三角形一腰上的高与另一腰的夹角为30º,腰长为4 cm, 则其腰上的高为 cm.2. (2009年滨州)某楼梯的侧面视图如图2所示, 其中 米, , , 因某种活动要求铺设红色地毯, 则在AB 段楼梯所铺地毯的长度应为 .3. (2009年漳州)如图, 在菱形 中, , 、 分别是 、 的中点, 若 , 则菱形 的边长是_____________.4.如图, OP 平分 , , , 垂足分别为A, B .下列结论中不一定成立的是( )A. B. 平分 C. D. 垂直平分5. (2009年广州市)已知命题“如果一个平行四边形的两条对角线互相垂直, 那么这个平行四边形是菱形”, 写出它的逆命题: ________________________________三、解答题1. (2009年崇左)如图, 在等腰梯形ABCD 中, 已知AD//BC, AB =DC,AD =2,BC =4, 延长BC 到E, 使CE =AD.(1)证明: ΔBAD ≌ΔDCE ;(2)如果AC ⊥BD, 求等腰梯形ABCD 的高DF 的值.2. (2009年浙江省绍兴市)如图, 在 中, , 分别以 为边作两个等腰直角三角形 和 , 使.(1)求DBC 的度数;……第1个第2个 第3个 D AB EC F(2)求证: .3. 如图, 已知△ABC 为等边三角形, 点D.E 分别在BC.AC 边上, 且AE=CD,AD 与BE 相交于点F.(1)求证: ≌△CAD ;(2)求∠BFD 的度数.4.(2009年衡阳市)如图, △ABC 中, AB =AC, AD.AE 分别是∠BAC 和∠BAC 和外角的平分线, BE ⊥AE. (1)求证: DA ⊥AE ;(2)试判断AB 与DE 是否相等?并证明你的结论.5. 在△ABC 中, AB=AC, D 是BC 的中点, 连结AD, 在AD 的延长线上取一点E, 连结BE, CE.(1)求证: △ABE ≌△ACE(2)当AE 与AD 满足什么数量关系时, 四边形ABEC 是菱形? 并说明理由.A BC D E F。

北师大版九年级数学上册 第一章 证明二 单元测试题

北师大版九年级数学上册 第一章 证明二 单元测试题

北师大版数学九年级上册第一章证明二单元复习讲解与测试 讲解(一)选择题:1. 设M 表示直角三角形,N 表示等腰三角形,P 表示等边三角形,Q 表示等腰直角三角形,则下列四个图中,能表示他们之间关系的是()答案:A2. 具有下列条件的两个等腰三角形,不能判断它们全等的是() A. 顶角、一腰对应相等B. 底边、一腰对应相等 C. 两腰对应相等D. 一底角、底边对应相等 答案:C3. △ABC 中,∠A :∠B :∠C=1:2:3,CD ⊥AB 于点D ,若BC=a ,则AD 等于()A aB aC aD a....1232323答案:C4. 下列命题的逆命题是真命题的是() A. 对顶角相等B. 若a=b ,则|a|=|b|C. 末位是零的整数能被5整除D. 直角三角形的两个锐角互余 答案:D5. 如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为()A. 30°B. 36°C. 45°D. 70° 答案:B6. 下列说法错误的是()A. 任何命题都有逆命题B. 定理都有逆定理C. 命题的逆命题不一定是正确的D. 定理的逆定理一定是正确的 答案:B(二)填空题:1. 如果等腰三角形的一个角是80°,那么另外两个角是____________度。

答案:50°,50°或80°,20°2. 等腰三角形底角15°,则等腰三角形的顶角、腰上的高与底边的夹角分别是__________。

答案:150°,75°3. 在△ABC 和△ADC 中,下列论断:①AB=AD ;②∠BAC=∠DAC ;③BC=DC ,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:____________。

答案:在△ABC 和△ADC 中,如果AB=AD ,∠BAC=∠DAC ,那么BC=DC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版数学八年级下册 第一章单元复习讲解与测试 讲解(一)选择题:1. 设M 表示直角三角形,N 表示等腰三角形,P 表示等边三角形,Q 表示等腰直角三角形,则下列四个图中,能表示他们之间关系的是( )答案:A2. 具有下列条件的两个等腰三角形,不能判断它们全等的是( ) A. 顶角、一腰对应相等 B. 底边、一腰对应相等 C. 两腰对应相等 D. 一底角、底边对应相等 答案:C3. △ABC 中,∠A :∠B :∠C=1:2:3,CD ⊥AB 于点D ,若BC=a ,则AD 等于( )A aB aC aD a....1232323答案:C4. 下列命题的逆命题是真命题的是( )A. 对顶角相等B. 若a=b ,则|a|=|b|C. 末位是零的整数能被5整除D. 直角三角形的两个锐角互余 答案:D 5. 如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( )A. 30°B. 36°C. 45°D. 70° 答案:B6. 下列说法错误的是( )A. 任何命题都有逆命题B. 定理都有逆定理C. 命题的逆命题不一定是正确的D. 定理的逆定理一定是正确的 答案:B (二)填空题:1. 如果等腰三角形的一个角是80°,那么另外两个角是____________度。

答案:50°,50°或80°,20°2. 等腰三角形底角15°,则等腰三角形的顶角、腰上的高与底边的夹角分别是__________。

答案:150°,75°3. 在△ABC 和△ADC 中,下列论断:①AB=AD ;②∠BAC=∠DAC ;③BC=DC ,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:____________。

答案:在△ABC 和△ADC 中,如果AB=AD ,∠BAC=∠DAC ,那么BC=DC 。

4. 如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知:AB=8cm ,BC=10cm ,则△EFC 的周长=____________cm 。

答案:12cm (三)作图题:已知:如图,△ABC 中,AB=AC 。

(1)按照下列要求画出图形:①作∠BAC 的平分线交BC 于点D ; ②过D 作DE ⊥AB ,垂足为点E ; ③过D 作DF ⊥AC ,垂足为点F 。

(2)根据上面所画的图形,求证:EB=FC 。

答:①②③略 (2)证:AB ACAD BAC BAD DACDE AB DE DF DF ACB C BED DFC=⎫⎬⎭⇒=⇒===平分∠∠∠⊥⊥∠∠∠∠⇒⇒=△≌△EBD FCD EB FC(四)阅读下题及其证明过程:已知:如图,D 是△ABC 中BC 边上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE 。

证明:在△AEB 和△AEC 中,EB EC ABE ACE AE AE ===⎧⎨⎪⎩⎪∠∠∴△AEB ≌△AEC (第一步) ∴∠BAE=∠CAE (第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪?答:错 无SSA (五)解答题:1. 已知,如图,O 是△ABC 的∠ABC 、∠ACB 的角平分线的交点,OD ∥AB 交BC 于D,OE∥AC交BC于E,若BC=10cm,求△ODE的周长;解:△DOE的周长为10cm,提示:证OD=BD,OE=EC2. 如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E。

(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD。

解:(1)先证DE=EB,再求,∴DB cm AC cm==+42442()(2)证△ACD≌△AED,即得AC=AE,∴AB=AC+CD3. 已知:如图,D是等腰△ABC底边BC上一点,它到两腰AB、AC的距离分别为DE、DF。

(1)当D点在什么位置时,DE=DF?并加以证明。

(2)探索DE、DF与等腰△ABC的高的关系。

解:(1)D为BC中点时,DE=DF,证明略。

(2)DE+EF=等腰△ABC腰上的高4. 如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高。

求证:AD垂直平分EF。

证:先证△≌△再证为的垂直平分线ADE ADF AE AFDE DF AD EF⇒==⎫⎬⎭⇒5. 如图1,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MB交于点F。

图1 图2(1)求证:AN=BM;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立。

(不要求证明)解:(1)证△ACN≌△BCM(2)证△≌△∠°等边△CEN CBF EC CFECF CEF⇒==⎫⎬⎭⇒60(3)(1)成立;(2)不成立【模拟试题】(答题时间:60分钟)一、选择题(每小题3分,共30分) 1. 下列判断正确的是( )A. 有两边和其中一边的对角对应相等的两个三角形全等B. 有两边对应相等,且有一角为30°的两个等腰三角形全等C. 有一角和一边对应相等的两个直角三角形全等D. 有两角和一边对应相等的两个三角形全等2. 具有下列条件的两个等腰三角形,不能判断它们全等的是( ) A. 顶角、一腰对应相等 B. 底边、一腰对应相等 C. 两腰对应相等 D. 一底角、底边对应相等3. 在平面直角坐标系xoy 中,已知A (2,-2),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( ) A. 2个 B. 3个 C. 4个 D. 5个4. 到△ABC 的三个顶点距离相等的点是△ABC 的( ) A. 三边中线的交点 B. 三条角平分线的交点 C. 三边上高的交点 D. 三边中垂线的交点5. 角平分线的尺规作图,其根据是构造两个全等三角形,由作图可知:判断所构造的两个三角形全等的依据是( )A. SSSB. ASAC. SASD. AAS6. 一架长2.5m 的梯子,斜立在一竖直的墙上,这时梯子底端距墙底端0.7m ,如果梯子的顶端沿墙下滑0.4m ,那么梯子底端将滑动( )A. 0.9mB. 1.5mC. 0.5mD. 0.8m 7. △ABC 中,∠A :∠B :∠C=1:2:3,CD ⊥AB 于点D ,若BC=a ,则AD 等于( )A. 12aB. 32aC. 32aD.3a8. 如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( ) A. 30° B. 36° C. 45° D. 70°9. 如图,等边△ABC 中,BD=CE ,AD 与BE 相交于点P ,则∠APE 的度数是( ) A. 45° B. 55° C. 60° D. 75° 二、填空题:(每小题3分,共30分)10. 如图,已知AC=DB ,要使△ABC ≌△DCB ,只需增加的一个条件是________或________。

11. 如图,△ABC 中,∠ACB=90°,以△ABC 的各边为边在△ABC 外作三个正方形,S S S 123、、分别表示这三个正方形的面积,S S 1381225==,,则S 2=________。

12. 等腰三角形的腰长为2cm,面积等于1平方cm,则它的顶角的度数为________。

13. 已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC=10cm,则△ODE的周长________。

14. 如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB相交于D点,则∠BCD的度数是________。

15. 如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为________。

16. 等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是________。

17. 如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠∠DBC DAB12;④△ABC是正三角形。

请写出正确结论的序号________(把你认为正确结论的序号都填上)。

三、(每小题6分,共12分)18. 已知:如图,D是等腰△ABC底边BC上一点,它到两腰AB、AC的距离分别为DE、DF。

当D点在什么位置时,DE=DF?并加以证明。

19. 如图是第七届国际数学教育大会的会徽。

它的主题图案是由一连串如图所示的直角三角形演化而成的。

设其中的第一个直角三角形OA1A2是等腰三角形,且OA A A A A A A A A 1122334891======……,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积。

OA1OA2OA3OA4OA5OA6OA7OA8四、(每小题8分,共18分)20. 如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC。

请用其中三个作为条件,余下一个作为结论,编出一道题。

21. 如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°,求AD、CD的长。

22. 如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c。

图(2)是以c为直角边的等腰直角三角形。

请你开动脑筋,将它们拼成一个能证明勾股定理的图形。

(1)画出拼成的这个图形的示意图,指出它是什么图形。

(2)用这个图形证明勾股定理。

(3)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?在图(3)中画出拼后的示意图(无需证明)。

【试题答案】一、选择题:1. D2. C3. A4. D5. A6. D7. C8. B9. C二、填空:10. ∠ACB=∠CBD ,AB=CD 11. 14412. 30°或150° 13. 10cm 14. 10° 15. 216. 32a17. ①三、18. D 在BC 中点时,DE=DF ,连结AD 利用角平分线上的点到角两边距离相等。

相关文档
最新文档