三视图中高难度的练习
小学数学 三视图练习题

小学数学三视图练习题三视图是指物体在正投影面上的三个视图分别为正视图、左视图和顶视图。
它是学习立体几何的基础,并且在工程制图中也有广泛的应用。
下面是一些小学数学的三视图练习题,帮助大家巩固相关知识。
题目一:根据下图的正视图、左视图和顶视图,确定物体的形状。
(插入图片,显示正视图、左视图和顶视图)要求:根据正视图、左视图和顶视图确定物体的形状,然后用文字描述出这个物体的形状。
注意描述要准确,并包括物体的名称和各个面的特征。
解答:根据正视图,我们可以看到物体是一个长方体形状的容器,其中有两个相对的长方形面。
根据左视图,我们可以看到物体的侧面有两个边相等的正方形面。
根据顶视图,我们可以看到物体的上面是一个定位的长方形,而下面则无法确定。
综合以上三个视图,我们可以确定这个物体是一个长方体形状的容器,上面和下面都是长方形面,两侧是正方形面。
题目二:根据下图的正视图、左视图和顶视图,求这个物体的体积,并单位是立方米。
(插入图片,显示正视图、左视图和顶视图)要求:根据三个视图计算出物体的体积,并将结果用文字描述出来,并附上计算过程。
解答:根据正视图和左视图,我们可以得出这个物体的长、宽、高分别为5米、3.5米和2米。
根据三个值,我们可以利用体积的计算公式V=长×宽×高来计算该物体的体积。
计算过程如下:V = 5米 × 3.5米 × 2米 = 35立方米。
综上所述,这个物体的体积为35立方米。
题目三:根据下图的正视图、左视图和顶视图,求这个物体的表面积,并单位是平方米。
(插入图片,显示正视图、左视图和顶视图)要求:根据三个视图计算出物体的表面积,并将结果用文字描述出来,并附上计算过程。
解答:根据正视图和左视图,我们可以得出物体的长、宽、高同题目二中一样,即5米、3.5米和2米。
根据这三个值,我们可以利用表面积的计算公式表面积=2×(长×宽+长×高+宽×高)来计算该物体的表面积。
2022年《复杂图形的三视图》专题练习(附答案)

第2课时复杂图形的三视图一、自主学习1.画三视图时,首_______和_______,俯视图反映物体的_______和_______,左视图反映物体的_______和_______.因此,画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等.看得见局部的轮廓线通常画成实线,看不见局部的轮廓线通常画成虚线.2.在以下几何体中,主视图是圆的是( )3.图29-14所示的水杯的俯视图是( )图29-144.如图29-15所示,桌面上放着一个圆柱和一个正方体.请你说出右面的三幅图的三视图.图29-14二、根底稳固5.如图29-16所示,空心圆柱体在指定方向上的视图正确的选项是( )图29-166.一只小狗正在平面镜前欣赏自己的全身像(如图29-17所示),此时它所看到的全身像是( )图29-177.小明从正面观察图29-18所示的两个物体,看到的是图中的( )图29-188.“圆柱与球的组合体〞如图29-19所示,那么它的三视图是( )图29-199.某同学把图29-20所示的几何体的三种视图画出如图29-20①②③所示(不考虑尺寸);其中错误的选项是哪个图?答:是________________________.图29-2010.图29-21是直观图的三视图,它对应的直观图是以下图中的( )图29-2111.请写出三种视图都相同的两种几何体是__________、_____________.12.画出以下图所示的三视图.13.一个物体的俯视图是圆,那么该物体的形状是( )B.圆柱C.圆锥D.以上都有可能14.一个几何体的三种视图如图29-22所示,那么这个几何体是( )图29-22B.圆锥C.长方体D.正方体15.一个物体的正视图、俯视图如图29-23所示,请你画出该物体的左视图并说出该物体形状的名称.图29-23三、能力提高16.将如图29-24所示放置的一个直角三角形ABC(∠C=90°),绕斜边AB旋转一周所得到的几何体的主视图是四个图形中的____________(只填序号).图29-2417.如图29-25所示的物体中,一样的为( )A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(3)图29-2518.桌上摆着一个由假设干个相同正方体组成的几何体,其主视图和左视图如图29-26所示,这个几何体最多可以由___________个这样的正方体组成.图29-2619.将图29-27所示的阴影局部剪下来,围成一个几何体的侧面,使AB、DC重合,那么所围成的几何体图形是( )图29-2720.如图29-28所示,说出以下四个图形各是由哪些立体图形展开得到的?图29-28四、模拟链接21.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图29-29所示.(1)请你画出这个几何体的一种左视图.(2)假设组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.图29-29参考答案一、自主学习1.画三视图时,首_______和_______,俯视图反映物体的_______和_______,左视图反映物体的_______和_______.因此,画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等.看得见局部的轮廓线通常画成实线,看不见局部的轮廓线通常画成虚线.答案:长高长宽高宽2.在以下几何体中,主视图是圆的是( )答案:D3.图29-14所示的水杯的俯视图是( )图29-14答案:D4.如图29-15所示,桌面上放着一个圆柱和一个正方体.请你说出右面的三幅图的三视图.图29-14答案:俯视图主视图左视图二、根底稳固5.如图29-16所示,空心圆柱体在指定方向上的视图正确的选项是( )图29-16答案:C 画视图时,看得见局部的轮廓线通常画成实线,看不见局部的轮廓线通常画成虚线.6.一只小狗正在平面镜前欣赏自己的全身像(如图29-17所示),此时它所看到的全身像是( )图29-17答案:A7.小明从正面观察图29-18所示的两个物体,看到的是图中的( )图29-18答案:C8.“圆柱与球的组合体〞如图29-19所示,那么它的三视图是( )图29-19答案:A9.某同学把图29-20所示的几何体的三种视图画出如图29-20①②③所示(不考虑尺寸);其中错误的选项是哪个图?答:是________________________.图29-20答案:左视图10.图29-21是直观图的三视图,它对应的直观图是以下图中的( )图29-21答案:C11.请写出三种视图都相同的两种几何体是__________、_____________.答案:略12.画出以下图所示的三视图.答案:略13.一个物体的俯视图是圆,那么该物体的形状是( )B.圆柱C.圆锥D.以上都有可能答案:D14.一个几何体的三种视图如图29-22所示,那么这个几何体是( )图29-22B.圆锥C.长方体D.正方体答案:A15.一个物体的正视图、俯视图如图29-23所示,请你画出该物体的左视图并说出该物体形状的名称.图29-23答案:略三、能力提高16.将如图29-24所示放置的一个直角三角形ABC(∠C=90°),绕斜边AB旋转一周所得到的几何体的主视图是四个图形中的____________(只填序号).图29-24答案:(2)17.如图29-25所示的物体中,一样的为( )A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(3)图29-25答案:A18.桌上摆着一个由假设干个相同正方体组成的几何体,其主视图和左视图如图29-26所示,这个几何体最多可以由___________个这样的正方体组成.图29-26答案:1319.将图29-27所示的阴影局部剪下来,围成一个几何体的侧面,使AB、DC重合,那么所围成的几何体图形是( )图29-27答案:D20.如图29-28所示,说出以下四个图形各是由哪些立体图形展开得到的?图29-28答案:(1)正方体(2)圆柱(3)三棱柱(4)四棱锥四、模拟链接 :// czsx21.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图29-29所示.(1)请你画出这个几何体的一种左视图.(2)假设组成这个几何体的小正方体的块数为n ,请你写出n 的所有可能值.图29-29答案:(1)左视图有以下5种情形,如图D29-6所示(只要画对一种即可)图D29-6(2)n=8,9,10,11.第2课时 比例的性质一、填空题 1.a :b :c=2:3:5,那么cb b a -- =________. 2.〔a-b 〕:b=2:3,那么a :b=_______ 3.实数x ,y ,z 满足x+y+z=0,3x-y+2z=0,那么x :y :z=________.4.设实数x ,y ,z 使│x -2y│+ 〔3x-z 〕2=0成立,求x :y :z 的值________. 5、3)(4)2(y x y x -=+,那么=y x : ,=+xy x 6、543z y x ==,那么=++xz y x ,=+-++z y x z y x 53232 7、如果3:1:1::=c b a ,那么=+--+cb ac b a 3532 二、选择题8、dc b a =,那么以下等式中不成立的是〔 〕 A.cd a b = B. d d c b b a -=- C. d c c b a a +=+ D. b a c b d a =++ 9、53=y x ,那么在①41=+-y x y x ②5353=++y x ③1332=+y x x ④38=+x y x 这四个式子中正确的个数是〔 〕A. 1个B. 2个C. 3个D. 4个三、解答题10、7532=b a ,求ba b a 3423+的值。
复杂三视图练习题

复杂三视图练习题三视图是工程设计和制图中常用的表达方式,通过在正视图、俯视图和侧视图上绘制物体的形状和尺寸,可以全面地展示物体的几何特征。
对于学习者而言,掌握三视图的绘制技巧和理解能力是重要的。
为了提高自己的三视图绘制水平,下面将分享一些复杂的三视图练习题。
首先,我们来看一道汽车三视图练习题。
图纸上绘制的是一辆SUV 车型的三视图,要求学习者根据图纸上的尺寸和比例关系,绘制出准确的正视图、侧视图和俯视图。
这道题相对简单,但考察了学生对汽车外形和车身尺寸的理解,以及对三视图投影方法的掌握。
通过完成这道题目,学生可以提高他们的几何感知能力和绘图技巧。
接下来,我们来看一道建筑物三视图练习题。
在这道题中,题目要求学生根据给出的图纸,绘制一座现代建筑的三视图。
这座建筑物拥有复杂的形状和结构,其中包括了楼层、梯形的外观、玻璃幕墙等细节。
通过这道练习题,学生需要运用他们的想象力和空间认知能力,将三维形状转化为二维投影,同时注意细节的精确性和比例尺的准确性。
这道题目能够锻炼学生的绘图技巧和几何思维能力,培养他们对建筑物结构的观察和理解。
除了汽车和建筑物,三视图的应用范围还包括了各种物体或机械设备。
比如,一个机械零件的三视图练习题,要求学生绘制出该零件的正视图、侧视图和俯视图,并标注出各个部分的尺寸和关系。
这样的练习题重点考察学生对物体结构和机械原理的理解,以及他们绘图技巧的熟练程度。
通过这样的练习,学生可以加深对机械设备的认识,并提高自己的绘图能力。
总的来说,复杂三视图练习题能够帮助学生提高他们的几何感知能力、空间认知能力和绘图技巧。
通过这些练习题,学生可以学习和运用三视图的投影方法,同时也能够加深对不同物体形状和结构的认识。
此外,完成这些练习题还需要学生具备一定的耐心和细致的工作态度,因为绘制准确的三视图需要仔细观察和细心推敲。
练习三视图是一个独特而有趣的过程,通过不断练习和挑战自己,学生可以逐渐提高他们的绘图能力和理解能力,为将来的工程设计和制图奠定坚实基础。
(word完整版)三视图中高难度的练习及答案

绝密★启用前2018年11月02日高中数学的高中数学组卷立体几何三视图练习中难度考试范围:xxx;考试时间:100分钟;命题人:xxx题号一总分得分注意事项:1 •答题前填写好自己的姓名、班级、考号等信息2 •请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分•选择题(共15小题)1•一个几何体的三视图如图所示,贝U该几何体的体积为(2•某几何体的三视图如图所示,贝U该几何体的体积为(om也B.116 C. 2 D.6A. B. 16 C. 8 D. 243.已知几何体的三视图如图所示,贝U该几何体是(A.体积为2的三棱锥B.体积为2的四棱锥C.体积为6的三棱锥D.体积为6的四棱锥4.如图,网格纸上小正方形的边长为2,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=( )A. 40 nB. 41 nC. 42 nD. 48 n5.—个几何体的三视图如图所示,贝U该几何体的体积为(A. 26 .某几何体的三视图如图所示,其中俯视图为扇形,贝U该几何体的体积为题答内线订装在要不请O OABCD- A 1B 1C 1D 1 中,点 M , N , 0, P, R , S 分别为棱 AB, D 1A 1, A 1A 的中点,则六边形 MNOPRS 在正方体各个面上9.已知某几何体的三视图如图所示,贝U 该几何体的体积是( z :J16兀 B. 4吒 c 唇 D. ieK 3 3 g 9 A . 6 6 N B. C. 0 ni Nd D . [ / A . 8.某几何体的三视图如图所示,其中俯视图和左视图中正方形的边长均为 3, 主视图和俯视图中三角形均为等腰直角三角形,则该几何体的体积为 \ 0 A . 16 ( ) B •普 7.如图,在正方体 BC, CC , C i D i , 的投影可能为( C. 8 D . 12O O10.某四棱锥的三视图如图所示(单位: cm ),则该四棱锥的体积(单位:cm 3 )是(11.某几何体的三视图如图所示,贝U 该几何体的侧面积为(A. ; :一B. ; 'I ; . c m+L D . I . ■:13.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图, 则该几何体的体积为( )A . 48 B. 36 C . 24 D . 16A .B ・一C . 4D . 8A . 4+2 :: B. 2+4.: C. 2+2 f 12.如图是一个几何体的三视图,图中每个小正方形边长均为 D . 4+4.:丄,则该几何体的表面积是( i L > X J h h i h i L 」 k1 k Hl 」LF ----------- 亠 / / \ --------/ / \IF亠/ / \ F 1 / / \IF■M■-------- 亠 、■■ ■ 、 ■■------- ■ W ---------■ i F 1r 1 r 1 r i r i f 1 ! 1 F 、 F 1 ■Fr题 答 内 线 订 装 在 要 不 请fl (£j tUE14.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为((单位:cm)如图所示,且此多面体的体积V=6cm3,A.-B.…33C-1- D.4C. 41 nD. 31 nB. 3C. 6D. 415.若某多面体的三视图请点击修改第第U卷(非选择题)n卷的文字说明题答内线订装在要不请O OO O 线线O O 订号考订O 级班O 名姓装校学装O O 外内O O2018年11月02日高中数学的高中数学组卷参考答案与试题解析.选择题(共15小题)1•一个几何体的三视图如图所示,贝U 该几何体的体积为(【分析】画出几何体的直观图,根据柱体和椎体的体积公式计算即可.【解答】解:由三视图知几何体的直观图如图所示:个三棱柱去掉一个三棱锥的几何体,v=v 三棱柱—V三棱锥丄一 1*一一【点评】本题考查了由三视图求几何体的体积,解答此类问题关键是判断几何体的形状及数据所对应的几何量.2.某几何体的三视B •—C. 2 D •—图如图所示,贝U该几何体的体积为()】再C. 8D. 24【分析】根据三视图知几何体是三棱锥为棱长为4, 2 2「泊勺长方体的一部分,画出直观图,由三视图求出几何元素的长度,由锥体的体积公式求出几何体的体积.【解答】解:根据三视图知几何体是:三棱锥D- ABC,如图所示,C分别是长方体的底面棱长的中点,三棱锥为棱长为4,2. 2.泊勺长方体的一部分,所以几何体的体积V二:二「- . - -:=8【点评】本题考查由三视图求几何体的条件,在三视图与直观图转化过程中,以一个长方体为载体是很好的方式,使得作图更直观,考查空间想象能力.3.已知几何体的三视图如图所示,贝U该几何体是()【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积即可. 【解答】解:几何体的直观图如图:由题意可得几何体的底面积为:亠-■ =3,2 体积为:V 吉xsx 2=2. 故选:B.【点评】本题考查三视图判断几何体的形状,以及几何体的体积的求法,考 查计算能力.4. 如图,网格纸上小正方形的边长为2,粗实线画出的是某多面体的三视图, 则该多面体的外接球的表面积S=(【分析】判断三视图复原的几何体的形状,通过已知的三视图的数据,求出 该多面体的外接球的表面积.【解答】解析:该多面体如图示,外接球的半径为 AG,A .体积为2的三棱锥 C.体积为6的三棱锥B. 体积为2的四棱锥 D.体积为6的四棱锥B. 41 nC. 42 n D . 48 nHA ABC 外接圆的半径,HG=2 HA 丄,2 故R =AG=4+H *=^^,•••该多面体的外接球的表面积 S=4冗R =41 n 【点评】本题考查多面体的外接球的表面积的求法, 考查空间几何体三视图、 多面体的外接球等基础知识,考查空间想象能力、运算求解能力,考查函 数与方程思想,是中档题.5•—个几何体的三视图如图所示,贝U 该几何体的体积为(【分析】由已知的三视图可得:该几何体是一个以正视图为底面的四棱锥, 计算出底面面积和高,代入锥体体积公式,可得答案.【解答】解:由已知的三视图可得:该几何体是一个以正视图为底面的四棱 锥, 棱锥的底面面积S=2X 2=4, 棱锥的高h=1故棱锥的体积V 丄“.二, 故选:D .A . 2B.二 C . 4故选:B .【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是 得到该几何体的形状.6•某几何体的三视图如图所示,其中俯视图为扇形,贝U 该几何体的体积为A.冒B. 4耳C ,M^D .冒33g9【分析】根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的 数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底 面圆的半径为2,把数据代入圆锥的体积公式计算.【解答】解:由三视图知几何体是圆锥的一部分,由俯视图与左视图可得:底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,故选:D.•••几何体的体积v=1X 丄 X nX 22x 4=—冗・( )【点评】本题考查了由三视图求几何体的体积,解答的关键是判断几何体的 形状及三视图的数据所对应的几何量.7•如图,在正方体ABC — A i B i C i D i 中,点M , N , O , P , R , S 分别为棱AB,BC, CC , C 1D 1, D 1A 1, A i A 的中点,则六边形 MNOPRS 在正方体各个面上 的投影可能为()【分析】根据题意分别画出六边形 MNOPRS 六个面上的投影即可. 【解答】解:正方体ABCD- A i B i C i D i 中,六边形MNOPRS 前后两个面上的投C .影如图i 所示;在左右两个面上的投影如图在上下两个面上的投影如图3所示; 圜 故选:D.【点评】本题考查了空间几何体三视图的应用问题,是基础题.8.某几何体的三视图如图所示,其中俯视图和左视图中正方形的边长均为 3,主视图和俯视图中三角形均为等腰直角三角形,则该几何体的体积为【分析】画出几何体的直观图,利用三视图的数据求解几何体的体积即可. 【解答】解:由题意可知几何体的直观图如图:右侧是放倒的三棱柱,左侧 是四棱锥,俯视图和左视图中正方形的边长均为 3,主视图和俯视图中三角形均为等腰A . 16( )B 」C. 8 D . 12直角三角形,则该几何体的体积为:=--2 yX3X3X X3X 3X 3故选:B.【点评】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键,考查计算能力.9 •已知某几何体的三视图如图所示,贝U该几何体的体积是()A. 48B. 36C. 24D. 16【分析】由已知中的三视图,判断该几何体是一个四棱锥,四棱锥的底面是一个以4和3为边长的长方形,棱柱的高为4,分别求出棱柱和棱锥的体积,进而可得答案.【解答】解:由已知中的该几何体是一个四棱锥的几何体,四棱锥的底面为边长为4和3的长方形,高为4,故V四棱锥—X 4X 3X 4=16.3【点评】本题考查的知识点是由三视图求体积,其中根据三视图判断出几何体的形状,并找出棱长、高等关键的数据是解答本题的关键.10.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积(单位:cm3)是(【分析】首先还原几何体,根据图中数据计算几何体体积. 【解答】解:由三视图得到几何体如图:正方体的棱长为 2, 该四棱锥P -ABCD 的体积(单位:cm 3)是 【点评】本题考查了几何体的三视图;要求对应的几何体的体积或者表面积, 关键是正确还原几何体.11.某几何体的三视图如图所示,贝U 该几何体的侧面积为(【分析】首先还原几何体,根据图中数据计算几何体的侧面积.【解答】解:由三视图得到几何体如图:正方体的棱长为 2, 该四棱锥P -ABCD 的侧面积(单位:cm 2)是 yX2X2+-^X2X "心血号 XgX?血=4+4迈; 故选:D.A-1C. 4 D .8A. 4+2 :■:B. 2+4 ■:C. 2+2 :■:D. 4+4*体积为苧2X 2XBa «■(卸個C【点评】本题考查了几何体的三视图;要求对应的几何体的体积或者表面积, 关键是正确还原几何体.12 •如图是一个几何体的三视图,图中每个小正方形边长均为丄,则该几何【分析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可. 【解答】解:几何体的三视图可知几何体的直观图如图:卩从底面ABC,P0=2, AB=BC=2 ABCD是正方形,AB丄AC, 则PB=PA= PCD的高为:2 ■:.则该几何体的表面积是-X2X2+2-b2X2-H|-xV5X故选:B.【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.32B.… D.333【分析】几何体为从正方体中切出来的一个三棱锥.作出直观图代入数值计算即可.【解答】解:由三视图可知几何体为边长为6的正方体中切出的三棱锥P-ABC作出直观图如图所示:正方体的棱长为4, 其中A, B, P分别是正方体棱的中点,则棱锥的底面积S丄XQX 2=42棱锥的高h=4所以棱锥的体积V丄:-•.一 ^一.3 3故选:B.13.如图,网格纸上小正方形的边长为则该几何体的体积为()1,粗线画出的是某几何体的三视图,【点评】本题考查了不规则放置的几何体的三视图和体积计算,以正方体为模型作出直观图是解题关键.14.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为()A.竽B•警C. 41 n D. 31 n【分析】根据三视图得出空间几何体是镶嵌在正方体中的四棱锥0 - ABCD, 正方体的棱长为4, A, D为棱的中点,利用球的几何性质求解即可.【解答】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥0- ABCD正方体的棱长为4, A,D为棱的中点,根据几何体可以判断:球心应该在过A,D的平行于底面的中截面上,设球心到截面BCO的距离为x,则到AD的距离为:4-x,••• R2=x2+ (2:-:)2, F2=22+ (4-x)2,解得出:x丄,R= 丁 ,该多面体外接球的表面积为:4nR=41n故选:C.【点评】本题综合考查了空间几何体的性质,学生的空间思维能力,构造思 想,关键是镶嵌在常见的几何体中解决.15. 若某多面体的三视图(单位:cm )如图所示,且此多面体的体积 V=6cm 3, 则 a=() 【分析】由三视图可知,几何体为三棱锥,根据公式求解即可.【解答】解:由三视图可知,几何体为三棱锥,高为 2,底边长为a ,底面 高为2, 顶点在底面上的射影是等腰三角形的顶点, 所以 V 丄x a x^x 2X 2=6,解得 a=9.3 2故选:A .【点评】本题考查学生的空间想象能力,由三视图求体积,是基础题.A . 9 B. 3 C. 6 D . 4㈣规图。
三视图习题50道(含答案)

三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是()(A)2(B)1(C)23(D)132、一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360 (C)292 (D)2803、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm3(B)3203cm3 (C)2243cm3(D)1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为:()5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )AB.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+B. 4π+C. 2π+D. 4π11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .B .C .D .9π10π11π12π第7题侧(左)视图正(主)视图俯视图俯视图正(主)视图侧(左)视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ()(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
三视图通关100题(含答案)

㐸 ,其正视图和侧视图都是边长为 ,th
的正方形,俯视图是
的体积是
72. 一个多面体从前面、后面、左侧、右侧、上方看到的图形分别如图所示(其中每个正方形边长 都为 ),则该多面体的表面积为 .
73. 已知正三棱锥 面积为 .
th 的正视图、俯视图如图所示,则该三棱锥的体积为
,侧视图的
74. 图中的三个直角三角形是一个体积为 㐸 cm 的几何体的三视图,该几何体的外接球表面积 为
36. 某几何体的三视图如图所示,则它的表面积为
,体积为
.
37. 某几何体的三视图(单位: cm)如图所示,则此几何体的所有棱长之和为 为 cm .
cm ,体积
38. 某几何体的三视图如图所示(单位: :),且该几何体的体积是 是 cm,该几何体的表面积是 cm .
cm ,则正视图中的
的值
39. 某几何体的三图所示,则某几何体的体积为
m .
14. 一个几何体的三视图如图所示(单位:cm),则该几何体的体积为
cm .
第 4页(共 42 页)来自高中数学解题研究会
QQ 群 339444963 欢迎关注微信公众号
欢迎关注微信公众号(QQ 群):兰老师高中数学研究会 557619246
15. 某几何体的三视图如图所示,则此几何体的体积是
.
9. 一个正三棱柱的侧棱长和底面边长相等,体积为 是一个矩形,则这个矩形的面积是 .
,它的三视图中的俯视图如图所示,左视图
10. 一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为
.
11. 设某几何体的三视图如下(尺寸的长度单位为 m),则该几何体的体积为
第 3页(共 42 页)来自高中数学解题研究会
三视图习题(含答案)较难

三视图习题(含答案)较难⼏何体的三视图练习题1309131、若某空间⼏何体的三视图如图所⽰,则该⼏何体的体积是()(A )2(B )1(C )23(D )132、⼀个⼏何体的三视图如图,该⼏何体的表⾯积是()(A )372 (B )360 (C )292 (D )2803、若某⼏何体的三视图(单位:cm )如图所⽰,则此⼏何体的体积是(A )3523cm 3 (B )3203cm 3 (C )2243cm 3 (D )1603cm 34、⼀个长⽅体去掉⼀个⼩长⽅体,所得⼏何体的正(主)视图与侧(左)视图分别如右图所⽰,则该⼏何体的俯视图为:()5、若⼀个底⾯是正三⾓形的三棱柱的正视图如图所⽰,则其侧⾯积...等于 ( ) AB .2 C..66、图2中的三个直⾓三⾓形是⼀个体积为20cm 2的⼏何体的三视图,则h= cm7、⼀个⼏何体的三视图如图所⽰,则这个⼏何体的体积为。
8、如图,⽹格纸的⼩正⽅形的边长是1,在其上⽤粗线画出了某多⾯体的三视图,则这个多⾯体最长的⼀条棱的长为______.第2题第5题9、如图1,△ ABC 为正三⾓形,AA '//BB ' //CC ' , CC ' ⊥平⾯ABC 且3AA '=32BB '=CC '=AB,则多⾯体△ABC -A B C '''的正视图(也称主视图)是()10、⼀空间⼏何体的三视图如图所⽰,的体积为( ).A.2π+B. 4π+C.2π+ D. 4π+11、上图是⼀个⼏何体的三视图,根据图中数据,可得该⼏何体的表⾯积是()A .9πB .10πC .11πD .12π12、⼀个棱锥的三视图如图,则该棱锥的全⾯积(单位:c 2m )为()(A )(B )(C )(D ) 13、若某⼏何体的三视图(单位:cm )如图所⽰,则此⼏何体的体积是 3 cm .第7题侧(左)视图正(主)视俯视图俯视图正(主)视图侧(左)视图第14题14、设某⼏何体的三视图如上图所⽰。
三视图练习题

三视图练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三视图练习题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三视图练习题的全部内容。
29.2 三视图一、选择题(共15小题;共75分)1. 下列物体的主视图、俯视图和左视图不全是圆的是()A。
橄榄球B。
兵乓球C。
篮球D。
排球2. 如图,几何体的俯视图是A。
B。
C. D.3。
长方体的主视图与左视图如图所示(单位:),则其俯视图的面积是A。
B。
C. D.4. 如图所示,几何体的俯视图是A. B.C. D.5。
如图是有几个相同的小正方体组成的一个几何体.它的左视图是A. B.C。
D.6。
如图是由八个相同小正方体组成的几何体,则其主视图是A. B。
C。
D。
7. 桌面上放着个长方体和个圆柱体,按下图所示的方式摆放在一起,其左视图是A。
B。
与原题图不一样C. D.8. 下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是( )A. B.C。
D。
9. 图中三视图所对应的直观图是A。
B.C。
D。
10. 如图是常用的一种圆顶螺杆,它的俯视图正确的是A。
B。
C。
D. 11. 如图的几何体的三视图是A。
B.C. D。
12。
如图是由一些相同的小正方体搭成的几何体的三视图,则构成这个几何体的小正方体的个数为A. 个B. 个C. 个D。
个13. 一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是A。
B。
C. D.14。
一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为.A. B. C. D.15. 如图所示是某几何体的三视图,根据图中数据,求得该几何体的体积为A. B. C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为( )
A. B. C.41πD.31π
15.若某多面体的三视图(单位:cm)如图所示,且此多面体的体积V=6cm3,则a=( )
A.9B.3C.6D.4
第Ⅱ卷(非选择题)
3.已知几何体的三视图如图所示,则该几何体是( )
A.体积为2的三棱锥B.体积为2的四棱锥
C.体积为6的三棱锥D.体积为6的四棱锥
【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积即可.
【解答】解:几何体的直观图如图:由题意可得几何体的底面积为: =3,体积为:V= .
故选:B.
【点评】本题考查三视图判断几何体的形状,以及几何体的体积的求法,考查计算能力.
请点击修改第Ⅱ卷的文字说明
2018年11月02日高中数学的高中数学组卷
参考答案与试题解析
一.选择题(共15小题)
1.一个几何体的三视图如图所示,则该几何体的体积为( )
A. B. C.2D.
【分析】画出几何体的直观图,根据柱体和椎体的体积公式计算即可.
【解答】解:由三视图知几何体的直观图如图所示:
一个三棱柱去掉一个三棱锥的几何体,
【分析】由已知的三视图可得:该几何体是一个以正视图为底面的四棱锥,计算出底面面积和高,代入锥体体积公式,可得答案.
【解答】解:由已知的三视图可得:该几何体是一个以正视图为底面的四棱锥,
棱锥的底面面积S=2×2=4,
棱锥的高h=1
故棱锥的体积V= = ,
故选:D.
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
6.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )
A. B. C. D.
【分析】根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,把数据代入圆锥的体积公式计算.
【解答】解:由三视图知几何体是圆锥的一部分,由俯视图与左视图可得:
【解答】解:根据三视图知几何体是:三棱锥D﹣ABC,
如图所示,
C分别是长方体的底面棱长的中点,
三棱锥为棱长为4,2 ,2 的长方体的一部分,
所以几何体的条件,在三视图与直观图转化过程中,以一个长方体为载体是很好的方式,使得作图更直观,考查空间想象能力.
A.40πB.41πC.42πD.48π
5.一个几何体的三视图如图所示,则该几何体的体积为( )
A.2B. C.4D.
6.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )
A. B. C. D.
7.如图,在正方体ABCD﹣A1B1C1D1中,点M,N,O,P,R,S分别为棱AB,BC,CC1,C1D1,D1A1,A1A的中点,则六边形MNOPRS在正方体各个面上的投影可能为( )
1.一个几何体的三视图如图所示,则该几何体的体积为( )
A. B. C.2D.
2.某几何体的三视图如图所示,则该几何体的体积为( )
A. B.16C.8D.24
3.已知几何体的三视图如图所示,则该几何体是( )
A.体积为2的三棱锥B.体积为2的四棱锥
C.体积为6的三棱锥D.体积为6的四棱锥
4.如图,网格纸上小正方形的边长为2,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=( )
底面扇形的圆心角为120°,
又由侧视图知几何体的高为4,底面圆的半径为2,
∴几何体的体积V= × ×π×22×4= π.
故选:D.
【点评】本题考查了由三视图求几何体的体积,解答的关键是判断几何体的形状及三视图的数据所对应的几何量.
故R=AG= = ,
∴该多面体的外接球的表面积S=4πR2=41π.
故选:B.
【点评】本题考查多面体的外接球的表面积的求法,考查空间几何体三视图、多面体的外接球等基础知识,考查空间想象能力、运算求解能力,考查函数与方程思想,是中档题.
5.一个几何体的三视图如图所示,则该几何体的体积为( )
A.2B. C.4D.
4.如图,网格纸上小正方形的边长为2,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=( )
A.40πB.41πC.42πD.48π
【分析】判断三视图复原的几何体的形状,通过已知的三视图的数据,求出该多面体的外接球的表面积.
【解答】解析:该多面体如图示,外接球的半径为AG,
HA为△ABC外接圆的半径,HG=2,HA= ,
V=V三棱柱﹣V三棱锥= = ,
故选:B.
【点评】本题考查了由三视图求几何体的体积,解答此类问题关键是判断几何体的形状及数据所对应的几何量.
2.某几何体的三视图如图所示,则该几何体的体积为( )
A. B.16C.8D.24
【分析】根据三视图知几何体是三棱锥为棱长为4,2 ,2 的长方体的一部分,画出直观图,由三视图求出几何元素的长度,由锥体的体积公式求出几何体的体积.
A. B. C. D.
8.某几何体的三视图如图所示,其中俯视图和左视图中正方形的边长均为3,主视图和俯视图中三角形均为等腰直角三角形,则该几何体的体积为( )
A. B. C.8D.12
9.已知某几何体的三视图如图所示,则该几何体的体积是( )
A.48B.36C.24D.16
10.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积(单位:cm3)是( )
A. B. C.4D.8
11.某几何体的三视图如图所示,则该几何体的侧面积为( )
A.4+2 B.2+4 C.2+2 D.4+4
12.如图是一个几何体的三视图,图中每个小正方形边长均为 ,则该几何体的表面积是( )
A. B. C. D.
13.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )
绝密★启用前
2018年11月02日高中数学的高中数学组卷
立体几何三视图练习中难度
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号
一
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一.选择题(共15小题)