2014年高考高三文科第三章三角函数三角恒等变换解三角形131

合集下载

2014高考数学文硬手笔(真题篇)常考问题三角恒等变换与解三角形

2014高考数学文硬手笔(真题篇)常考问题三角恒等变换与解三角形

解总解((12结题))利利(:的1用用)求由突面 余解c破积弦o此s口A和定类,=理c问o11如s求32A题,求解求且,A.解B一0<;A要AC<注π,,意需得从要s问i求n题A出=的bc不,断1由-转三11化23角中2形=寻1的53求.面
(所积应2((又12)以由及该))S第第第第A(△→c结1AoB二三一一)B知s合·CA步步→步步A=C第b,::12::c==b(可1c由求求列bs1)ci问求5nc面方s6AoiAn,中出sB积程=AA又的sA=公组3,inC0结c1式,,oA5s论6,所求A×.=以二b11c2311要b,=23c,=注14c14意-5.6b求,=解1 本题第(2)问时,

船乙仍留在 B 处执行任务,渔政船甲航行 30 km 到达 D 处时,收到新 的指令另有重要任务必须执行,于是立即通知在 B 处执行任务的渔政船
流 程
乙前去救援渔船丙(渔政船乙沿直线 BC 航行前去救援渔船丙),此时 B,
D 两处相距 42 km,渔政船乙要航行多少距离才能到达渔船丙所在的位置 解
√进(5行) ×边(与6)角×之(7)间√ 的(8相) ×互
(8)正弦定理可以实现边角互化,但余 转化是解决问题的关键。
弦定理不可以.
()
正、余弦定理的应用
题型突破 探究方法 构建模板
【示例 1】.△ABC 的面积是 30,内角 A,B,C 的对边分别为 a,b,c, cos A=1123. (1)求A→B·A→C;(2)若 c-b=1,求 a 的值.
的渔政船甲和在 B 处执行任务的渔政船乙,
同时收到同一片海域上一艘渔船丙的求救
信号,此时渔船丙在渔政船甲的南偏东 40°
方向距渔政船甲 70 km 的 C 处,渔政船乙在

三角函数三角恒等变换及解三角形

三角函数三角恒等变换及解三角形

三角函数、三角恒等变换及解三角形第一节 任意角、弧度制及任意角的三角函数考纲要求:1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化.3理解任意角的三角函数(正弦、余弦、正切)的定义.[基础真题体验]考查角度[任意角的三角函数]1.(2014·大纲全国卷)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35 D .-45【解析】 因为角α的终边经过点(-4,3),所以x =-4,y =3,r =5,所以cos α=x r =-45. 【答案】 D2.(2012·江西高考)下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xx C .y =x e x D .y =sin xx【解析】 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中,x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0},故选D.【答案】 D3.(2011·课标全国卷)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35 D.45【解析】 取终边上一点(a,2a ),a ≠0,由任意角的三角函数定义得,cos θ=±55,∴cos 2θ=2cos 2θ-1=-35.【答案】 B4.(2011·江西高考)已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.【解析】 由三角函数的定义,sin θ=y 16+y2,又sin θ=-255<0, ∴y <0且y16+y 2=-255,解得y =-8. 【答案】 -8[命题规律预测]考向一 角的集合表示及象限角的判定[典例剖析]【例1】 (1)给出下列四个命题: ①-3π4是第二象限角; ②4π3是第三象限角; ③-400°是第四象限角;④-315°是第一象限角.其中正确的命题个数有( ) A .1个 B .2个 C .3个 D .4个(2)已知角α的终边落在阴影所表示的范围内(包括边界),则角α的集合为________. 【思路点拨】 (1)先用终边相同角的表示方法分解角,再判断所在象限. (2)先确定边界,再用集合方式表示即可.【解析】 (1)①中,-3π4是第三象限角,故①错误.②中,4π3=π+π3,从而4π3是第三象限角,故②正确.③中,-400°=-360°-40°,为第四象限角,故③正确.④中,-315°=-360°+45°,为第一象限角,故④正确.(2)如图,设S 1={α|90°+k ·360°≤α≤135°+k ·360°,k ∈Z},S 2={α|270°+k ·360°≤α≤315°+k ·360°,k ∈Z},∴阴影所表示的范围S =S 1∪S 2={α|90+n ·180°≤α≤135°+n ·180°,n ∈Z}.【答案】 (1)C (2){α|90+n ·180°≤α≤135°+n ·180°,n ∈Z}1.若要确定一个绝对值较大的角所在的象限,一般是先将角化为2k π+α(0≤α<2π)(k ∈Z)的形式,然后再根据α所在的象限予以判断.2.表示区间角的三个步骤(1)先按逆时针方向找到区域的起始和终止边界.(2)按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间. (3)起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合. [对点练习](1)若α=k ·180°+45°(k ∈Z),则α在( ) A .第一或第三象限 B .第一或第二象限 C .第二或第四象限D .第三或第四象限(2)终边在直线y =3x 上的角的集合为________. 【解析】 (1)当k =2n (n ∈Z)时,α=n ·360°+45°, 所以α在第一象限.当k =2n +1(n ∈Z)时,α=n ·360°+225°, 所以α在第三象限.综上可知,α在第一或第三象限.(2)当角的终边在第一象限时,角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2k π+π3,k ∈Z ,当角的终边在第三象限时,角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪ α=2k π+43π,k ∈Z ,故所求角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪ α=2k π+π3,k ∈Z ∪⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2k π+43π,k ∈Z=⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k π+π3,k ∈Z . 【答案】 (1)A (2)⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k π+π3,k ∈Z考向二【例2】 (1)已知扇形周长为10,面积为4,则扇形的圆心角为________.(2)已知扇形周长为40,则当它的半径r =________,圆心角θ=________时,扇形的面积最大. 【思路点拨】 (1)建立关于圆心角和半径的方程组求解.(2)由题设得出面积关于圆心角(或半径)的函数关系式,利用函数求最值. 【解析】 (1)设圆心角是θ,半径是r ,则⎩⎪⎨⎪⎧2r +rθ=10,12θ·r 2=4,解得⎩⎨⎧r =1,θ=8(舍去)或⎩⎪⎨⎪⎧r =4,θ=12,∴扇形的圆心角为12.(2)设圆心角是θ,半径是r ,则2r +rθ=40.又S =12θr 2=12r (40-2r )=r (20-r )=-(r -10)2+100≤100. 当且仅当r =10时,S max =100,此时2×10+10θ=40,θ=2. ∴当r =10,θ=2时,扇形的面积最大. 【答案】 (1)12 (2)10 2弧度制应用的关注点:(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题,常常转化为二次函数的最值问题,利用配方法使问题得到解决. (3)在解决弧长问题和扇形面积问题时,要注意合理地利用圆心角所在的三角形.已知半径为10的圆O 中,弦AB 的长为10, (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形弧长l 及弧所在的弓形的面积S . 【解】 (1)在△AOB 中,AB =OA =OB =10, ∴△AOB 为等边三角形. 因此弦AB 所对的圆心角α=π3. (2)由扇形的弧长与扇形面积公式,得 l =α·R =π3×10=103π, S 扇形=12R ·l =12α·R 2=50π3. 又S △AOB =12·OA ·OB ·sin π3=25 3.∴弓形的面积S =S 扇形-S △AOB =50⎝ ⎛⎭⎪⎫π3-32.考向三 三角函数的定义[典例剖析]【例3】 (1)已知角α终边上一点P (3,1),则2sin 2α-3tan α=( ) A .-1-3 3 B .1-3 3 C .-2 3D .0(2)在平面直角坐标系xOy 中,将点A (3,1)绕原点O 逆时针旋转90°到点B ,那么点B 坐标为________,若直线OB 的倾斜角为α,则tan 2α的值为________.【思路点拨】 (1)先由三角函数的定义求出角α,再进行计算. (2)由三角函数定义及题设确定B 点坐标,再计算tan 2α的值.【解析】 (1)由已知得|OP |=2,由三角函数定义可知sin α=12,cos α=32,即α=2k π+π6(k ∈Z). 所以2sin 2α-3tan α=2sin ⎝⎛⎭⎪⎫4k π+π3-3tan ⎝⎛⎭⎪⎫2k π+π6=2sin π3-3tan π6=2×32-3×33=0.(2)设点A (3,1)为角θ终边上一点,如图所示,|OA |=2,由三角函数的定义可知sin θ=12,cos θ=32,则θ=2k π+π6(k ∈Z),点A (2cos θ,2sin θ).设点B (x ,y ),由已知得 x =2cos ⎝ ⎛⎭⎪⎫θ+π2=2cos ⎝ ⎛⎭⎪⎫2k π+2π3=-1,y =2sin ⎝ ⎛⎭⎪⎫θ+π2=2sin ⎝ ⎛⎭⎪⎫2k π+23π=3,所以点B (-1,3),且tan α=-3,所以tan 2α=2tan α1-tan 2α= 3. 【答案】 (1)D (2)(-1,3) 3用三角函数概念求三角函数值的方法:(1)已知角α终边上一点P 的坐标,可先求出点P 到原点的距离r ,然后用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题,若直线的倾斜角为特殊角,也可直接写出角α的值,进而得到三角函数值.[对点练习](1)已知角α的终边与单位圆的交点P ⎝⎛⎭⎪⎫x ,32,则tan α=( )A.3 B .±3 C.33 D .±33(2)点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,12【解析】 (1)由|OP |2=x 2+34=1,得x =±12, ∴tan α=±3,B 正确.(2)由三角函数定义可知Q (x ,y )满足: x =cos 2π3=-12,y =sin 2π3=32, 故A 正确.【答案】 (1)B (2)A误区分析8 误认为“|t |=t ”致三角函数定义求值中漏解[典例剖析]【典例】 已知角α的终边在直线3x +4y =0上,则sin α+cos α+45tan α=________.【解析】 因为角α的终边在直线3x +4y =0上,所以在α的终边上任取一点P (4t ,-3t )(t ≠0),则r =(4t )2+(-3t )2=5|t |.误区:此处求解时,常认为r =5t ,不对t 进行分类讨论而导致漏解. 当t >0时,r =5t ,sin α=-3t 5t =-35, cos α=4t 5t =45,tan α=-3t 4t =-34,所以sin α+cos α+45tan α=-35+45+45×⎝⎛⎭⎪⎫-34=-25;当t <0时,r =-5t ,sin α=-3t -5t =35,cos α=4t -5t =-45,tan α=-3t 4t =-34.所以sin α+cos α+45tan α=35-45+45×⎝⎛⎭⎪⎫-34=-45.综上,所求值为-25或-45. 【答案】 -25或-45【防范措施】 1.对于a 2=|a |,在去掉绝对值号后,应分a ≥0和a <0两种情况讨论. 2.已知角α终边上任意一点P (x ,y ),求三角函数值时,应用sin α=y x 2+y2,cos α=x x 2+y2,tanα=yx 求解.[对点练习]已知角θ的终边上一点P (3a,4a )(a ≠0),则sin θ=________. 【解析】 ∵x =3a ,y =4a , ∴r =(3a )2+(4a )2=5|a |.(1)当a >0时,r =5a ,∴sin θ=y r =45. (2)当a <0时,r =-5a ,∴sin θ=y r =-45, 综上,sin θ=±45. 【答案】 ±451.下列与9π4的终边相同的角的表达式中正确的是( ) A .2k π+45°(k ∈Z) B .k ·360°+9π4(k ∈Z) C .k ·360°-315°(k ∈Z)D .k π+5π4(k ∈Z)【解析】 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z),但角度制与弧度制不能混用,故只有C 正确.【答案】 C2.若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角【解析】 由sin α<0,得α在第三、四象限或y 轴非正半轴上,又tan α>0,∴α在第三象限.【答案】 C3.已知角α的终边过点P (-1,2),则sin α=( ) A.55 B.255 C .-55 D .-255【解析】 sin α=2(-1)2+22=255.【答案】 B4.已知扇形的面积为2,扇形的圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6 D .8 【解析】 设扇形的半径为R ,则12|α|R 2=2,∴R =1. ∴周长为2R +|α|·R =2+4=6. 【答案】 C课时提升练(十七) 任意角、弧度制及任意角的三角函数(见学生用书第263页)一、选择题1.已知2弧度的圆心角所对的弦长为2,则这个圆心角所对的弧长是( ) A .2 B .sin 2 C.2sin 1 D .2sin 1【解析】 由题设,圆弧的半径r =1sin 1, ∴圆心角所对的弧长l =2r =2sin 1. 【答案】 C2.若α是第三象限角,则下列各式中不成立的是( )A .sin α+cos α<0B .tan α-sin α<0C .cos α-tan α<0D .tan αsin α<0【解析】 在第三象限,sin α<0,cos α<0,tan α>0,则可排除A 、C 、D ,故选B. 【答案】 B3.若α=k ·360°+θ,β=m ·360°-θ(k ,m ∈Z),则角α与β的终边的位置关系是( ) A .重合 B .关于原点对称 C .关于x 轴对称 D .关于y 轴对称【解析】 由题意知角α与角θ的终边相同,角β与角-θ的终边相同,又角θ与角-θ的终边关于x 轴对称,故选C.【答案】 C 4.有下列命题:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点则cos α=-x x 2+y 2.其中正确的命题的个数是( )A .1B .2C .3D .4 【解析】 ①正确,②不正确,∵sin π3=sin 2π3,而π3与2π3角的终边不相同.③不正确,sin α>0,α的终边也可能在y 轴的非负半轴上. ④不正确,在三角函数的定义中,cos α=xr =x x 2+y2,不论角α在平面直角坐标系的任何位置,结论都成立.【答案】 A5.集合⎩⎨⎧⎭⎬⎫α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角的终边所在的范围(阴影部分)是()【解析】 当k =2n 时,2n π+π4≤α≤2n π+π2;当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,应选C.【答案】 C6.已知角α的终边过点P (x ,x 2+1)(x >0),则tan α的最小值为( ) A .1 B .2 C.12 D. 2 【解析】 tan α=x 2+1x =x +1x ≥2x ·1x =2,当且仅当x =1x ,即x =1时,取“=”.【答案】 B7.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3) D .[-2,3] 【解析】∵cos α≤0,sin α>0,∴角α的终边在第二象限或y 轴的正半轴上,∴⎩⎨⎧3a -9≤0,a +2>0,∴-2<a ≤3.【答案】 A8.已知点P ⎝ ⎛⎭⎪⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π4 B.3π4 C.5π4 D.7π4【解析】 由sin 3π4>0,cos 3π4<0知角θ是第四象限角,∵tan θ=cos 3π4sin 3π4=-1,θ∈[0,2π),∴θ=7π4.9.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A .-12 B.12 C .-32 D.32 【解析】 ∵r =64m 2+9.∴cos α=-8m64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,即m =12. 【答案】 B10.设π4<α<π2,sin α=a ,cos α=b ,tan α=c ,则a ,b ,c 的大小关系为( ) A .a <b <c B .b >a >c C .a >b >c D .b <a <c【解析】 在单位圆中作出角α的正弦线、余弦线、正切线,如图,sin α=|MP |,cos α=|OM |,tan α=|AT |,∵|OM |<|MP |<|AT |,∴b <a <c .【答案】 D11.函数y =|tan x |tan x +sin x |sin x |+|cos x |cos x ⎝ ⎛⎭⎪⎫x ≠k π2,k ∈Z 的值域是( )A .{y |-1≤y ≤3}B .{-3,-1,1,3}C .{y |-3≤y ≤3}D .{-1,3}【解析】 当x 是第一象限角时,tan x ,sin x ,cos x 都是正的,故y =1+1+1=3;当x 是第二象限角时,tan x <0,sin x >0,cos x <0,∴y =-1+1-1=-1;同理可得,x 是第三、四象限角时,y =-1.12.已知θ是第四象限角,则sin(sin θ)( ) A .大于0 B .大于等于0 C .小于0 D .小于等于0 【解析】 ∵θ是第四象限角, ∴sin θ∈(-1,0).令sin θ=α, 又当-1<α<0时,sin α<0. 故sin(sin θ)<0. 【答案】 C 二、填空题13.若角120°的终边上有一点(-4,a ),则a 的值是________. 【解析】 由题意知-a 4=tan 120°,∴-a 4=-3, ∴a =4 3. 【答案】 4 314.在与2 010°终边相同的角中,绝对值最小角的弧度数为________.【解析】 2 010°=67π6=12π-5π6,∴与2 010°终边相同的角中绝对值最小的角的弧度数为5π6. 【答案】 5π615.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限. 【解析】 由已知tan α<0,cos α<0,∴α在第二象限. 【答案】 二 16.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中不正确...的命题是________. 【解析】 由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确. 【答案】 ①②④⑤第二节 同角三角函数的基本关系及诱导公式考纲要求:1.理解同角三角函数的基本关系:sin 2α+cos 2α=1,sin αcos α=tan α.2.利用同角三角函数的基本关系求三角函数值.3.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.[基础真题体验]考查角度[同角三角函数的基本关系] 1.(2014·课标全国卷Ⅰ)若tan α>0,则( ) A .sin 2α>0 B .cos α>0 C .sin α>0D .cos 2α>0【解析】 ∵tan α>0,∴α∈⎝ ⎛⎭⎪⎫k π,k π+π2(k ∈Z)是第一、三象限角.∴sin α,cos α都可正、可负,排除B ,C. 而2α∈(2k π,2k π+π)(k ∈Z), 结合正、余弦函数图象可知,A 正确.取α=π4,则tan α=1>0,而cos 2a =0,故D 不正确. 【答案】 A2.(2012·大纲全国卷)已知α为第二象限角,sin α=35,则sin 2α=( ) A .-2425 B .-1225 C.1225 D.2425 【解析】 ∵α为第二象限角且sin α=35, ∴cos α=-1-sin 2α=-45,∴sin 2α=2sin α·cos α=2×35×⎝ ⎛⎭⎪⎫-45=-2425. 【答案】 A3.(2012·辽宁高考)已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22 C.22 D .1【解析】 因为sin α-cos α=2,所以1-2sin αcos α=2, 即sin 2α=-1,所以α=3π4,tan α=-1. 【答案】 A 考查角度[诱导公式]4.(2013·广东高考)已知sin ⎝⎛⎭⎪⎫5π2+α=15,那么cos α=( )A .-25B .-15 C.15 D.25【解析】 sin ⎝ ⎛⎭⎪⎫5π2+α=cos α,故cos α=15,故选C.【答案】 C [命题规律预测]考向一 同角三角函数的基本关系的应用[典例剖析]【例1】 (1)已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值是( )A.25 B .-25 C .-2 D .2(2)(2014·嘉兴模拟)已知α∈⎝⎛⎭⎪⎫π,3π2,tan α=2,则cos α=________. 【思路点拨】 (1)先根据已知条件求得tan α,再把所求式变为用tan α表示的式子求解. (2)切化弦,结合sin 2α+cos 2α=1求解.【解析】 (1)由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,即tan α=2.所以sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=25.(2)依题意得⎩⎪⎨⎪⎧tan α=sin αcos α=2,sin 2α+cos 2α=1,由此解得cos 2α=15;又α∈⎝ ⎛⎭⎪⎫π,3π2,因此cos α=-55.【答案】 (1)A (2)-55同角三角函数基本关系应用题目的破题技巧:(1)在sin α、cos α与tan α三者中知一求二的题目常利用平方关系和商数关系构造方程组求解. (2)知tan α的值求关于sin α与cos α的n 次齐次分式的值时,一般分子分母同除以cos n α,转化为关于tan α的式子求解.(3)含有sin 2α,cos 2α及sin αcos α的式子求值时,可将式子的分母看作“1”,利用平方关系代换后转化为“切”再求解.[对点练习](1)若tan α=2,则2sin α-cos αsin α+2cos α的值为( )A .0 B.34 C .1 D.54(2)若α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=45,则tan α=________. 【解析】 (1)∵tan α=2,∴2sin α-cos αsin α+2cos α=2tan α-1tan α+2=2×2-12+2=34. (2)∵α∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,∴cos α=-1-sin 2α=-35,∴tan α=sin αcos α=-43.【答案】 (1)B (2)-43考向二 诱导公式的应用[典例剖析]【例2】 (1)sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°)=________. (2)已知cos ⎝ ⎛⎭⎪⎫π6-α=33,则cos ⎝ ⎛⎭⎪⎫5π6+α-sin 2⎝ ⎛⎭⎪⎫α-π6的值为________.【思路点拨】 (1)利用诱导公式将给定的任意角转化为⎣⎢⎡⎦⎥⎤0,π2内的角再求值. (2)注意到⎝ ⎛⎭⎪⎫π6-α+⎝ ⎛⎭⎪⎫5π6+α=π和α-π6=-⎝ ⎛⎭⎪⎫π6-α,对待求式中的角进行转化即可. 【解析】 (1)原式=-sin1 200°cos1 290°-cos 1 020°sin 1 050°=-sin(3×360°+120°)cos(3×360°+210°)-cos(2×360°+300°)sin(2×360°+330°)=-sin 120°cos 210°-cos 300°sin 330°=-sin(180°-60°)cos(180°+30°)-cos(360°-60°)sin(360°-30°) =sin 60°cos 30°+cos 60°sin 30°=32×32+12×12=1.(2)∵cos ⎝ ⎛⎭⎪⎫5π6+α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α =-cos ⎝ ⎛⎭⎪⎫π6-α=-33,sin 2⎝ ⎛⎭⎪⎫α-π6=sin 2⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫π6-α=sin 2⎝ ⎛⎭⎪⎫π6-α =1-cos 2⎝ ⎛⎭⎪⎫π6-α=1-⎝ ⎛⎭⎪⎫332=23,∴cos ⎝ ⎛⎭⎪⎫5π6+α-sin 2⎝ ⎛⎭⎪⎫α-π6=-33-23=-2+33.【答案】 (1)1 (2)-2+331.使用诱导公式解题的技巧诱导公式的基本作用在于将任意角的三角函数转化为⎣⎢⎡⎦⎥⎤0,π2内的角的三角函数,其解题思路是化负角为正角,化复杂角为简单角.利用诱导公式时要正确分析角的结构特点,然后确定要使用哪个诱导公式,应用时注意函数名是否要改变,符号是否要改变.2.给值求值问题的求解须知在对给定的式子进行化简或求值时,要注意给定的角之间存在的特定关系,充分利用给定的关系结合诱导公式来将角进化转化.特别要注意每一个角所在的象限,防止符号及三角函数名称搞错. [对点练习](1)sin 600°+tan 240°的值等于( )A .-32 B.32 C.3-12 D.3+12(2)若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫π3+α等于( )A .-79B .-13 C.13 D.79【解析】 (1)sin 600°+tan 240°=sin(360°+240°)+tan(180°+60°) =sin(180°+60°)+tan 60°=-sin 60°+tan 60°=-32+3=32.(2)cos ⎝ ⎛⎭⎪⎫π3+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-α=sin ⎝ ⎛⎭⎪⎫π6-α=13. 【答案】 (1)B (2)C考向三 in α±cos α与sin α·cos α的关系[典例剖析]【例3】 已知在△ABC 中,sin A +cos A =15. (1)求sin A cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形; (3)求tan A 的值.【思路点拨】 由sin A +cos A =15及sin 2A +cos 2A =1可求得. 【解】 (1)∵sin A +cos A =15,① ∴两边平方得1+2sin A cos A =125, ∴sin A cos A =-1225.(2)由sin A cos A =-1225<0,且0<A <π,可知cos A <0,∴A 为钝角,∴△ABC 是钝角三角形. (3)∵(sin A -cos A )2=1-2sin A cos A =1+2425=4925,又sin A >0,cos A <0,∴sin A -cos A >0, ∴sin A -cos A =75.②∴由①②可得sin A =45,cos A =-35,∴tan A =sin A cos A =45-35=-43.方程组思想的运用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,已知其中一个式子的值,其余二式的值可求.转化的公式为(sin α±cos α)2=1±2sin αcos α.体现了方程组思想的运用.[对点练习]已知sin α-cos α=2,α∈(0,π),则tan α=________. 【解析】 由sin α-cos α=2,得1-2sin αcos α=2, ∴2sin αcos α=-1,∴(sin α+cos α)2=1+2sin αcos α=0,∴sin α+cos α=0,∴sin α=22,cos α=-22,∴tan α=-1.【答案】 -1误区分析9 未提取“角的范围”这一隐含信息致三角函数求值增根[典例剖析]【典例】 (2015·佛山模拟)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( ) A .-32 B.32 C .-34 D.34 【解析】 ∵5π4<α<3π2,∴cos_α<0,sin_α<0,且|cos_α|<|sin_α|,误区:审题时,“5π4<α<3π2”即α为第三象限角,故cos α<0,sin α<0,而|cos α|<|sin α|这一关键问题未审出,而导致cos α-sin α的符号不确定.∴cos α-sin α>0,又(cos α-sin α)2=1-2sin αcos α=1-2×18=34.∴cos α-sin α=32. 【答案】 B【防范措施】 利用平方关系求三角函数值,开方时应注意三角函数值符号的判断,以防产生增根.一般地判断角范围的条件很隐蔽,需要认真分析、挖掘.如本例中的“5π4<α<3π2”应理解为第三象限后半区的角.[对点练习]已知sin(π-α)-cos(π+α)=23⎝ ⎛⎭⎪⎫π2<α<π,则sin α-cos α=________.【解析】 由sin(π-α)-cos(π+α)=23. 得sin α+cos α=23,①将①两边平方得1+2sin αcos α=29, 故2sin αcos α=-79.∴(sin α-cos α)2=1-2sin αcos α=1-⎝ ⎛⎭⎪⎫-79=169.又∵π2<α<π,∴sin α>0,cos α<0. ∴sin α-cos α=43. 【答案】 431.cos 600°的值为( )A.32B.12 C .-32 D .-12 【解析】 cos 600°=cos(360°+240°)=cos 240° =cos(180°+60°)=-cos 60°=-12. 【答案】 D2.已知cos(α-π)=-513,且α是第四象限角,则sin α=( ) A .-1213 B.1213 C.512 D .±1213 【解析】 ∵cos(α-π)=cos(π-α)=-cos α=-513, ∴cos α=513,又α是第四象限角, ∴sin α<0,则sin α=-1-cos 2α=-1213.【答案】 A3.已知tan θ=2,则sin θcos θ=________. 【解析】 sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θtan 2θ+1=25. 【答案】 254.若θ∈⎝ ⎛⎭⎪⎫π4,π2 ,sin 2θ=116,则cos θ-sin θ=________. 【解析】 (cos θ-sin θ)2=1-sin 2θ=1516,∵π4<θ<π2,∴cos θ<sin θ,∴cos θ-sin θ=-154. 【答案】 -154课时提升练(十八) 同角三角函数的基本关系及诱导公式一、选择题1.tan 300°+sin 450°的值为( ) A .1+3 B .1- 3 C .-1- 3 D .-1+ 3【解析】 tan 300°+sin 450°=-tan 60°+sin 90°=1- 3. 【答案】 B2.已知α是第二象限角,sin α=513,则cos α=( ) A .-1213 B .-513 C.513 D.1213 【解析】 因为α为第二象限角,所以cos α=-1-sin 2α=-1213.【答案】 A3.在△ABC 中,若tan A =-2,则cos A =( ) A.55 B .-55 C.255 D .-255【解析】 ∵在△ABC 中,tan A =-2,∴A ∈⎝ ⎛⎭⎪⎫π2,π,∴cos A =-11+tan 2A=-55. 【答案】 B4.若sin θcos θ=12,则tan θ+cos θsin θ的值是( )A .-2B .2C .±2 D.12【解析】 tan θ+cos θsin θ=sin θcos θ+cos θsin θ=1cos θsin θ=2. 【答案】 B5.已知sin(π-α)=log 814,且α∈⎝ ⎛⎭⎪⎫-π2,0,则tan(2π-α)的值为( ) A .-255 B.255 C .±255 D.52【解析】 sin(π-α)=sin α=log 814=-23,又α∈⎝ ⎛⎭⎪⎫-π2,0,得cos α=1-sin 2α=53,tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255.【答案】 B6.若θ∈⎝ ⎛⎭⎪⎫π2,π,则 1-2sin (π+θ)sin ⎝ ⎛⎭⎪⎫3π2-θ=( ) A .sin θ-cos θ B .cos θ-sin θ C .±(sin θ-cos θ) D .sin θ+cos θ 【解析】 ∵1-2sin (π+θ)sin ⎝ ⎛⎭⎪⎫3π2-θ=1-2sin θcos θ=|sin θ-cos θ|,又θ∈⎝ ⎛⎭⎪⎫π2,π,∴sin θ-cos θ>0,∴原式=sin θ-cos θ.【答案】 A7.已知sin(π-2)=a ,则sin ⎝⎛⎭⎪⎫π2-2的值为( )A .-1-a 2B .-a C.1-a 2 D .a【解析】 ∵sin(π-2)=a ,∴sin 2=a . ∴cos 2=-1-a 2.∴sin ⎝ ⎛⎭⎪⎫π2-2=cos 2=-1-a 2.【答案】 A8.已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( ) A.355 B.377 C.31010 D.13【解析】 由已知得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tan α=3,故sin α=31010. 【答案】 C9.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 015)的值为( ) A .-1 B .1 C .3 D .-3【解析】 ∵f (4)=a sin(4π+α)+b cos(4π+β)=a sin α+b cos β=3.∴f (2 015)=a sin(2 015π+α)+b cos(2 015π+β)=a sin(π+α)+b cos(π+β)=-a sin α-b cos β=-(a sin α+b cos β)=-3.【答案】 D10.当0<x <π4时,函数f (x )=cos 2xcos x sin x -sin 2x 的最小值是( )A.14B.12 C .2 D .4【解析】 当0<x <π4时,0<tan x <1, f (x )=cos 2x cos x sin x -sin 2x =1tan x -tan 2x , 设t =tan x ,则0<t <1,y =1t -t 2=1t (1-t )≥4. 当且仅当t =1-t ,即t =12时等号成立. 【答案】 D11.已知sin θ=m -3m +5,cos θ=4-2mm +5,则tan(k π+θ)(k ∈Z)的值为( )A.4-2m m -3 B .±m -34-2m C .-512 D .-34或-512 【解析】由⎝ ⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1,得m =8或m =0. ∴sin θ=513,cos θ=-1213或sin θ=-35,cos θ=45. ∴tan(k π+θ)=tan θ=-512或-34. 【答案】 D 二、填空题12.已知cos(75°+α)=13,-180°<α<-90°,则tan(15°-α)=________. 【解析】 由-180°<α<-90°得,-105°<α+75°<-15°, ∴sin(75°+α)=-1-cos 2(75°+α)=-223,又cos(15°-α)=cos [90°-(75°+α)]=sin(75°+α),sin(15°-α)=sin [90°-(75°+α)]=cos(75°+α),∴tan(15°-α)=-24. 【答案】 -2413.已知tan α=2,则7sin 2α+3cos 2α=________.【解析】 7sin 2α+3cos 2α=7sin 2α+3cos 2αsin 2α+cos 2α=7tan 2α+3tan 2α+1=7×22+322+1=315. 【答案】 31514.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于________. 【解析】 ∵α与β的终边关于直线y =x 对称,∴α+β= 2k π+π2(k ∈Z),又β=-π3,∴α=2k π+5π6(k ∈Z),故sin α=12. 【答案】 1215.已知cos ⎝ ⎛⎭⎪⎫π6-θ=a (|a |≤1),则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=________. 【解析】 cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ =-cos ⎝ ⎛⎭⎪⎫π6-θ=-a . sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎝ ⎛⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a , ∴cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0. 【答案】 016.若sin θ+cos θsin θ-cos θ=2,则sin(θ-5π)sin ⎝ ⎛⎭⎪⎫3π2-θ=______. 【解析】 由sin θ+cos θsin θ-cos θ=2得,sin θ+cos θ=2(sin θ-cos θ),平方得:1+2sin θcos θ=4(1-2sin θcosθ),故sin θcos θ=310,∴sin(θ-5π)sin ⎝ ⎛⎭⎪⎫3π2-θ=sin θcos θ=310. 【答案】 310第三节 三角函数的图象与性质考纲要求:1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性. [基础真题体验]考查角度[三角函数的图象]1.(2013·课标全国卷Ⅰ)函数f (x )=(1-cos x )sin x 在[-π,π]上的图象大致为( )【解析】 在[-π,π]上,∵f (-x )=[1-cos(-x )]·sin(-x )=(1-cos x )(-sin x )=-(1-cos x )sin x =-f (x ),∴f (x )是奇函数,∴f (x )的图象关于原点对称,排除B.取x =π2,则f ⎝ ⎛⎭⎪⎫π2=⎝ ⎛⎭⎪⎫1-cos π2sin π2=1>0,排除A. ∵f (x )=(1-cos x )sin x ,∴f ′(x )=sin x ·sin x +(1-cos x )cos x=1-cos 2x +cos x -cos 2x =-2cos 2x +cos x +1. 令f ′(x )=0,则cos x =1或cos x =-12.结合x∈[-π,π],求得f(x)在(0,π]上的极大值点为23π,靠近π,选C. 【答案】 C考查角度[三角函数的性质]2.(2014·课标全国卷Ⅰ)在函数①y =cos|2x |,②y =|cos x |,③y =cos2x +π6,④y =tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( )A .②④B .①③④C .①②③D .①③ 【解析】 ①y =cos|2x |=cos 2x ,T =π. ②由图象知,函数的周期T =π. ③T =π. ④T =π2.综上可知,最小正周期为π的所有函数为①②③. 【答案】 C3.(2012·课标全国卷)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54 B.⎣⎢⎡⎦⎥⎤12,34 C.⎝ ⎛⎦⎥⎤0,12 D .(0,2]【解析】 取ω=54,f (x )=sin ⎝ ⎛⎭⎪⎫54x +π4,其减区间为⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⊆⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,排除B 、C.取ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,其减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k∈Z ,排除D.【答案】 A4.(2014·北京高考)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________. 【解析】 ∵f (x )在⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,∴T 2≥π2-π6,∴T ≥2π3. ∵f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3,∴f (x )的一条对称轴为x =π2+2π32=7π12. 又∵f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,∴f (x )的一个对称中心的横坐标为π2+π62=π3. ∴14T =7π12-π3=π4,∴T =π. 【答案】 π [命题规律预测]考向一 三角函数的定义域与值域[典例剖析]【例1】 (1)(2013·天津高考)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-1B .-22 C.22 D .0 (2)函数y =2sin x -1的定义域为________.【思路点拨】 (1)先确定2x -π4的范围,再用数形结合法求最值. (2)由2sin x -1≥0求解.【解析】 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴-π4≤2x -π4≤3π4,∴当2x -π4=-π4时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4有最小值-22. (2)由2sin x -1≥0得sin x ≥12,∴2k π+π6≤x ≤2k π+5π6,k ∈Z ,即函数的定义域为⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z).【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z)求三角函数的定义域、值域(最值)的方法:(1)求三角函数的定义域实际上是解三角不等式,常借助三角函数线或三角函数的图象来求解. (2)三角函数值域的常见求法①化一法:化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域.②换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题.[对点练习](1)函数y =sin x -cos x 的定义域为________.(2)当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最大值是________.【解析】 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]内y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .(2)∵x ∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin x ∈⎣⎢⎡⎦⎥⎤-12,1,又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2⎝ ⎛⎭⎪⎫sin x -142+78,∴当sin x =-12或sin x =1时,y max =2.【答案】 (1)⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π4≤2k π+5π4,k ∈Z (2)2考向二 三角函数的单调性[典例剖析]【例2】 (1)(2014·辽宁高考)将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数( )A .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递减B .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增C .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递减D .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增(2)函数y =|tan x |的单调减区间为________.【思路点拨】 (1)先进行图象变换,再用代换法求单调区间.(2)由y =tan x 的图象得到y =|tan x |的图象,观察图象写出其单调减区间即可.【解析】 (1)y =3 sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度得到y =3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π2+π3=3sin ⎝ ⎛⎭⎪⎫2x -23π.令2k π-π2≤2x -23π≤2k π+π2得k π+π12≤x ≤k π+712π,k ∈Z ,则y =3sin ⎝ ⎛⎭⎪⎫2x -23π的增区间为⎣⎢⎡⎦⎥⎤k π+π12,k π+712π,k ∈Z.令k =0得其中一个增区间为⎣⎢⎡⎦⎥⎤π12,712π,故B 正确.画出y =3sin ⎝ ⎛⎭⎪⎫2x -23π在⎣⎢⎡⎦⎥⎤-π6,π3上的简图,如图,可知y =3sin ⎝ ⎛⎭⎪⎫2x -23π在⎣⎢⎡⎦⎥⎤-π6,π3上不具有单调性,故C ,D 错误.(2)y =|tan x |的图象如图所示:观察图象可知,减区间是⎝ ⎛⎦⎥⎤k π-π2,k π,k ∈Z.【答案】 (1)B (2)⎝ ⎛⎦⎥⎤k π-π2,k π,k ∈Z三角函数的单调区间的求法:(1)代换法所谓代换法,就是将比较复杂的三角函数整理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间.(2)图象法函数的单调性表现在图象上是:从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.[对点练习]函数y =sin ⎝⎛⎭⎪⎫π3-2x 在[-π,0]上的单调递减区间为________.【解析】 令2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z.所以x ∈R 时,y =sin ⎝ ⎛⎭⎪⎫π3-2x 的减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z.取k =-1,0可得函数在[-π,0]上的单调递减区间为⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,0.【答案】 ⎣⎢⎡⎦⎥⎤-π,-7π12和⎣⎢⎡⎦⎥⎤-π12,0考向三三角函数的奇偶性、周期性和对称性【命题视角】 三角函数的奇偶性、周期性与对称性是三角函数的重要性质,是高考的命题热点,通常以选择题、填空题或解答题某一问的形式呈现,常考查对称轴与对称中心的求解,周期的求解与奇偶性的判断等问题.角度一:判断对称轴与对称中心【例3-1】 (2014·福建高考)将函数y =sin x 的图象向左平移π2个单位,得到函数y =f (x )的图象,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图象关于直线x =π2对称D .y =f (x )的图象关于点⎝ ⎛⎭⎪⎫-π2,0对称 【思路点拨】【解析】 由题意知,f (x )=cos x ,所以它是偶函数,A 错;它的周期为2π,B 错;它的对称轴是直线x =k π,k ∈Z ,C 错;它的对称中心是点⎝ ⎛⎭⎪⎫k π+π2,0,k ∈Z ,D 对.【答案】 D利用函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点,对称中心一定是函数图象与x 轴的交点这一性质求解或通过检验函数值进行判断角度二:求三角函数的周期【例3-2】 (2014·天津高考)已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R.在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3 C .π D .2π【思路点拨】 利用辅助角公式把函数f (x )表示为正弦型函数,解出交点横坐标,由距离求出ω,得到周期T .【解析】 f (x )=3sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0).由2sin ⎝ ⎛⎭⎪⎫ωx +π6=1得sin ⎝ ⎛⎭⎪⎫ωx +π6=12, ∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z). 令k =0,得ωx 1+π6=π6,ωx 2+π6=56π, ∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2. 故f (x )的最小正周期T =2π2=π. 【答案】 C(1)利用周期定义;(2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|;(3)利用图象.角度三:三角函数的奇偶性及应用【例3-3】 已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( ) A.π6 B.π3 C .-π6 D .-π3【思路点拨】 化f (x )为A sin(ωx +φ)的形式,再结合诱导公式求解φ值.【解析】 f (x )=2⎣⎢⎡⎦⎥⎤12cos (3x +φ)-32sin (3x +φ)=2cos ⎣⎢⎡⎦⎥⎤(3x +φ)+π3=2cos ⎣⎢⎡⎦⎥⎤3x +⎝ ⎛⎭⎪⎫φ+π3,由f (x )为偶函数,知φ+π3=k π(k ∈Z),即φ=k π-π3(k ∈Z),由所给选项知只有D 适合.【答案】 D若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值. 若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.思想方法7 研究三角函数性质的一大“法宝”——整体思想所谓整体思想就是研究问题时从整体出发,对问题的整体形式、结构特征进行综合分析,整体处理的思想方法.在三角函数学习中,运用“整体思想”可以解决以下几类问题: (1)三角函数的化简求值.(2)研究三角函数的有关性质,(如求单调区间、值域、对称轴、对称中心等). (3)解三角不等式或求含参变量的取值范围问题.[典例剖析]【典例】 (2014·四川高考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4. (1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝ ⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值. 【解】 (1)因为函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z , 由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z , 得-π4+2k π3≤x ≤π12+2k π3,k ∈Z. 所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π4+2k π3,π12+2k π3,k ∈Z. (2)由已知,有sin ⎝ ⎛⎭⎪⎫α+π4=45cos ⎝ ⎛⎭⎪⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝ ⎛⎭⎪⎫cos αcos π4-sin αsin π4·(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角,知α=3π4+2k π,k ∈Z. 此时,cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54.由α是第二象限角,知cos α-sin α<0, 此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.[对点练习]已知函数f (x )=2sin ⎝⎛⎭⎪⎫ωx -π6(ω>0)的最小正周期为π,则f (x )的单调递增区间为( )A.⎣⎢⎡⎦⎥⎤k π+π3,k π+5π6(k ∈Z)B.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π3(k ∈Z) C.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z) D.⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z) 【解析】 由已知得2πω=π,∴ω=2.由不等式2k π-π2≤2x -π6≤2k π+π2,(k ∈Z),解得k π-π6≤x ≤k π+π3(k ∈Z),故f (x )的单调增区间是⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z). 【答案】 D课堂达标训练1.函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π4的图象的一条对称轴是( )A .x =π4 B .x =π2 C .x =-π4D .x =-π2【解析】 ∵正弦函数的图象的对称轴过图象的最高点或最低点,∴令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z ,取k =-1,则x =-π4.【答案】 C2.函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +5π2是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为2π的非奇非偶函数 D .最小正周期为π的偶函数【解析】 f (x )=2cos ⎝⎛⎭⎪⎫x +52π=2cos ⎝⎛⎭⎪⎫x +π2=-2sin x ,故f (x )是最小正周期为2π的奇函数. 【答案】 A3.函数y =1tan x -1的定义域为________.【解析】要使函数有意义,需满足⎩⎪⎨⎪⎧tan x -1≠0,x ≠k π+π2,k ∈Z ,∴x ≠k π+π4且x ≠k π+π2,k ∈Z.【答案】 ⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≠k π+π4且x ≠k π+π2,k ∈Z4.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤0,π2上的值域为________. 【解析】 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,∴3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即f (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域为⎣⎢⎡⎦⎥⎤-32,3. 【答案】 ⎣⎢⎡⎦⎥⎤-32,3补上一课(二) 三角函数最值(值域)的求法三角函数的最值问题是三角函数中的基本内容,历年高考题中均重点考查,对于这类问题如果找到恰当的方法,掌握其规律,可以简捷求解.前面考向一中我们已稍作介绍,在此再总结以下类型以供参考.1 y =a sin 2x +b sin x +c 型函数的最值(值域)【例1】 设x ∈⎣⎢⎡⎦⎥⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的值域为________.【思路点拨】令t =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π6,2π3→t ∈⎣⎢⎡⎦⎥⎤-12,1—求得y =4t 2-12t -1的 最值,得原函数的值域【解析】 令t =sin x ,由于x ∈⎣⎢⎡⎦⎥⎤-π6,2π3,故t ∈⎣⎢⎡⎦⎥⎤-12,1. y =4t 2-12t -1=4⎝ ⎛⎭⎪⎫t -322-10,因为t ∈⎣⎢⎡⎦⎥⎤-12,1时,函数单调递减, 所以当t =-12,即x =-π6时,y max =6; 当t =1,即x =π2时,y min =-9. ∴y ∈[-9,6]. 【答案】 [-9,6]【名师点津】 形如y =a sin 2x +b sin x +c 型函数的值域问题转化为二次函数的值域问题,要注意换元前后变量的取值范围要保持不变.2 y =a sin x +b cos x +c 型函数的最值(值域)【例2】 函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6的值域为( ) A .[-2,2] B .[-3,3]C .[-1,1]D.⎣⎢⎡⎦⎥⎤-32,32【思路点拨】 转化为y =a 2+b 2sin(x +φ)+c 的值域求解.【解析】 ∵f (x )=sin x -32cos x +12sin x =3⎝ ⎛⎭⎪⎫32sin x -12cos x =3sin ⎝ ⎛⎭⎪⎫x -π6,∴函数f (x )的值域为[-3,3]. 【答案】 B【名师点津】 形如y =a sin x +b cos x +c 的函数最值应用辅助角公式转化为y =a 2+b 2sin(x +φ)+c 的最值.。

2014年高考高三理科第三章三角函数、三角恒等变换、解三角形3.3

2014年高考高三理科第三章三角函数、三角恒等变换、解三角形3.3

5.函数 y=cosx(sinx+cosx)的最小正周期为( π π A.4 B.2 C.π D.2π
)
解析:∵y=cosx(sinx+cosx)=cosxsinx+cos2x 1+cos2x 1 =2sin2x+ 2 π 1 2 = + sin2x+4. 2 2 2π ∴最小正周期 T= 2 =π,故选 C. 答案:C
4cos 2

θ -cos2· cosθ = . θ |cos2| θ π θ 因为 0<θ<π,所以 0< < ,所以 cos >0, 2 2 2 所以原式=-cosθ.
点评:①本题从变角入手,异角化同角.②根式形式的三 角函数式的化简,常以去根号为目标,为此常使被开方的式子 配成完全平方式,化简时,要注意角的范围对符号的影响.
sinα+cosα-1sinα-cosα+1 变式探究 1 化简: . sin2α 解析:方法一:原式 α α α α 2α 2α 2sin cos -2sin 2sin cos +2sin 2 2 2 2 2 2 = α α 4sin2cos2cosα
答 案 : ① sinαcosβ± cosαsinβ ② cosαcosβ ∓ sinαsinβ ③ tanα± tanβ ④ tan(α + β)(1 - tanαtanβ) ⑤ tan(α - β)(1 + 1∓tanαtanβ tanα+tanβ tanαtanβ) ⑥ 1 - ⑦ 2sinαcosα ⑧ cos2α - sin2α tanα+β 1-cos2α 2tanα 2 2 ⑨ 2cos α - 1 ⑩ 1 - 2sin α ⑪ ⑫ ⑬ 2 1-tan2α 1+cos2α ⑭ a2+b2sin(α+φ) ⑮ a2+b2cos(α-φ) 2
2 2 ∴sin2α=- 1-cos 2α=- , 3 4 2 于是 sin4α=2sin2αcos2α=- 9 .

2014届高考数学总复习(考点引领+技巧点拨)第三章三角函数、三角恒等变换及解三角形第3课时三角函数的图象

2014届高考数学总复习(考点引领+技巧点拨)第三章三角函数、三角恒等变换及解三角形第3课时三角函数的图象

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第三章 三角函数、三角恒等变换及解三角形第3课时 三角函数的图象和性质1. (必修4P 25练习2改编)函数f(x)=3sin ⎝ ⎛⎭⎪⎫x 2-π4,x ∈R 的最小正周期为________. 答案:4π解析:函数f(x)=3sin ⎝ ⎛⎭⎪⎫x 2-π4的最小正周期为T =2π12=4π. 2. (必修4P 39第2题改编)将函数y =sinx 的图象上所有的点向右平行移动 π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是____________________.答案:y =sin ⎝ ⎛⎭⎪⎫12x -π10 解析:∵ 向右平移π10个单位,∴ 用x -π10代替y =sinx 中的x ;∵ 各点横坐标伸长到原来的2倍,∴ 用12x 代替y =sin ⎝ ⎛⎭⎪⎫x -π10中的x ,∴ y =sin ⎝ ⎛⎭⎪⎫12x -π10.3. (必修4P 45第9题改编)如图,它表示电流I =Asin(ωt +φ)(A>0,ω>0)在一个周期内的图象,则I =Asin(ωt +φ)的解析式为________________.答案:I =3sin ⎝⎛⎭⎪⎫100π3t +π3解析:由图可知A =3,ω=100π3.代入⎝ ⎛⎭⎪⎫150,0和⎝ ⎛⎭⎪⎫120,0,解得φ=π3,于是I =3sin ⎝⎛⎭⎪⎫100π3t +π3.4. (必修4P 32练习6改编)函数y =cos ⎝ ⎛⎭⎪⎫2x -π4的单调递增区间是________.答案:⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k∈Z )解析:-π+2k π≤2x -π4≤2k π,即-3π8+k π≤x ≤π8+k π(k∈Z ),所求单调递增区间是⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k∈Z ).5. (必修4P 32第5题改编)函数y =2sinx ⎝ ⎛⎭⎪⎫π6≤x ≤2π3的值域是________.答案:[1,2]解析:根据正弦函数图象,可知x =π6时,函数取到最小值1;x =π2时,函数取到最大值2.1. 周期函数的定义周期函数的概念:对于函数y =f(x),如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,f(x +T)=f(x)都成立,则称y =f(x)为周期函数;函数y =Asin(ωx +φ)和y =Acos(ωx +φ)的周期均为T =2π|ω|;函数y =Atan(ωx +φ)的周期为T =π|ω|.2. 三角函数的图象和性质“五点法”作图原理:在确定正弦函数y =sinx 在[0,2π]上的图象形状时,起关键作用的五个点是(0,0)、 ⎛⎭⎪⎫π2,1、(π,0)、 ⎛⎭⎪⎫3π2,-1、 (2π,0).余弦函数呢?4. 函数 y =Asin(ωx +φ)的特征 若函数y =Asin(ωx +φ) (A >0,ω>0,x ∈(-∞,+∞))表示一个振动量时,则A 叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +φ叫做相位,φ叫做初相.[备课札记]题型1 依据三角函数的图象求解析式例1 (2013·南京三模)已知函数f(x)=2sin(ωx +φ)(ω>0)的部分图象如图所示,则ω=________.答案:23解析:由图象可知函数的四分之三周期为15π8-⎝ ⎛⎭⎪⎫-3π8=34T ,T =3π,ω=2π3π=23.变式训练已知函数y =Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则ω=________.答案:3解析:由图知,A =2,将(0,2)、⎝ ⎛⎭⎪⎫π12,2代入函数,得⎩⎪⎨⎪⎧2sin ⎝ ⎛⎭⎪⎫π12w +φ=2,2sin φ=2,∴ ⎩⎪⎨⎪⎧φ=π4,ω=3.题型2 三角函数的图象变换例2 为了得到函数y =2sin ⎝ ⎛⎭⎪⎫x 3+π6(x∈R )的图象,只需把函数y =2sinx (x∈R )的图象上所有的点经过怎样的变换得到?解:y =2sinx 用6x p +代替x ,左移 6p个单位 y =2sin ⎝ ⎛⎭⎪⎫x +π6再用3p 代替x ,各点横坐标伸长到原来的3倍。

2014年全国各地高考数学试题及解答分类汇编大全(08三角函数三角恒等变换)

2014年全国各地高考数学试题及解答分类汇编大全(08三角函数三角恒等变换)

2014年全国各地高考数学试题及解答分类汇编大全(08三角函数三角恒等变换)、选择题:考点;L 函数的求值.3. (2014福建文)将函数y =s in x 的图象向左平移 一个单位,得到函数y =f x 的函数图象,则2下列说法正确的是 ( )A. y f x 是奇函数B. y = f x 的周期是二C. 3y = f x 的图象关于直线x =—对称D. y = f x 的图象关于点i - —,0对称I 2 .丿 【答案】D【解析】将函数,二血盂的團象向左平移兰牛单位,学科■馮到函数^=sin (x + -) = oo S x I 222. (2014安徽理) 设函数 f (x)(xw :R)满足 f (x + 江)=f (x) +sinx.当0兰x c23叭则f ( )—( )61 爲1A.-B. 一C.0D.--22223兀 17兀23兀 11兀 11兀 17兀f(- —)二 f ( ) +sin -f( ) +sin +sin解析: 有题意 6 66 6 6 65兀 511兀 171111-f( )+si n -+si n +si=0 +— —— +—=—6 66 6 2 2 2 22$— ~ = k n +, k € Z ,即 X ^2 + ^8, " Z ,又 $ >0,所以 需n =.时,f(x)=0.1. (2014 对称,则安徽文)若将函数 :的最小正值是( A. — B. 8-C. 4f (x ) =sin2x • cos2x 的图像向右平移 「个单位,所得图像关于 y 轴 ) 3 二D.1. C [解析]方法一: sin 2x + n 4f(x)= \.;2sin 2x + 4的图像向右平移 0个单位,得到y=J 2± 1,即 sin 2 $ - — = ± ,-2©的图像,由所得图像关于y 轴对称,可知sin 才-2因为y- cos(-^)= 0- y = /1 X I的医:关于点f-y f1?' J对称* 选D4. (2014辽宁文、理)将函数y =3sin (2 x • ^)的图象向右平移 ?个单位长度,所得图象对应的 函数( )5. (2014全国大纲文)已知角的终边经过点(-4,3),则COS 〉=()43 34 A. - B. - C .D .5 555【答案】D 【解析】r 4试题分折;由题意可知v=3・” 一 • WiUAuos 4=—二-—故选r 5育网6. (2014 全国大纲理)设 a =sin33 ,b =cos55 ,c=tan35 ,贝U ( ) A . a b cB . b c aC . c b aD . cab【答案】c.【解析】T a - sin 33; b - cos 55°=™35^c = ten l - ^flJ ~ > sin35°..\ 0 a> 扛故选 C. cos 35° 【肴点】1 ■三角函数基本关系式(商关系 Z 二角函数的匸调性.7.(2014全国新课标I 文)若tan 一「:• 0, A. sinx 、0 B . cosx 、0【答案】:C正确的结论只有sin 2- 0.圆O 的半径为1,A 是圆上的定点, ,过点P 作直线OA 的垂线,垂足为 距离表示为x 的函数f (x ),则y= f (x )在[0,二]上的图像大致为A .在区间[12 .Ji]上单调递减 B .在区间 C .在区间[-,]上单调递减6 3 【答案】B 【解析】n扌巴 y = 3s in( 2x+ —) = 3sin 2(x+3n n n n nD .在区间 [一,上单调递增12 12[-…「]上单调递增6 3n 的周期T = 人2第选B冗一个增区间为卜4-彳 --n ];右移丿后,4 62C. sin 2一:八 0D. cos2x【解析】:由ta n - 0可得:k —: k—(k Z),故2^ 22 k 二二(k Z),28. (2014全国新课标I 理)如图, 边为射线OA ,终边为射线OPP 是圆上的动点,角 M ,将点M 到直线 x 的始 OP 的.I H=cos : =sin I - 丿 12位 71Q 31.,即2,选B2 2【解析】:由y =cosx 是偶函数可知y 二cos 2x = cos2x ,最小正周期为二,即①正确; 】最小正周期为二,即③正6JI11. (2014陕西文)函数f (x )二COS (2x •)的最小正周期是( )4A. B.二 C.2二D.42【答案】 B2 n 2 n【解析】;T= 二 =n ,.••选B2 | 2Rt. QMP 中, =cosxs in x1=—sin 2x , 21f (x) =— sin 2x2/Ty> A /p0』9. (2014全国新课标I 理)设圧三R nA 32【答案】:E【解析】:••• tan :■1 亠 sin(0,?) —(0--),且 七…占,则2 2 2sin" = “引“卩 sin a cos P = cosa + cosa sin PCOS J cos :'H A JI兀,_—::::• —— :::—,0 ::: — - :■ 10.(2014全国新课标I 文 —兀③ y = cos (2x),④ y 6 A.①②③ B.①③④【答案】:A)在函数① y = cos 12x |,② y =| cos x |JI-tan (2x-)中,最小正周期为 二的所有函数为4 C.②④D.①③y =| cosx |的最小正周期也是■:,即②也正确;y=cosl2x •—确;y 七怙-―)的最小正周期为^-,即④不正确.4即正确答案为①②③,【解析】:如图:OM 字M MD= =OP 过 M 作 MD 丄OP 于D ,贝y PM= sinx , OM=COSX , cosx 対in x1D在12. (2014陕西理)函数f(X)=COS(2x —)的最小正周期是()6A. —B.二C.2 二D.4':2【答案】B【解析】;T = 2 n= 2 n= n,A选B|s I 213、(2014四川文)为了得到函数y二si n(x,1)的图象,只需把函数y二si nx的图象上所有的点()A、向左平行移动1个单位长度B、向右平行移动1个单位长度C、向左平行移动二个单位长度D、向右平行移动二个单位长度3、解:•••由y=sinx到y=sin (x+1 ),只是横坐标由x变为x+1 ,•••要得到函数y=sin (x+1)的图象,只需把函数y=sinx的图象上所有的点向左平行移动1个单位长度.故选:A14. (2014四川理)为了得到函数y=sin(2x 7)的图象,只需把函数y=sin 2x的图象上所有的占八、、1 1A•向左平行移动1个单位长度B.向右平行移动'个单位长度2 2C.向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A1【解析】因为y =sin(2x 1^sin[2(x •)],故可由函数y二sin 2x的图象上所有的点向左平2行移动1个单位长度得到215. (2014天津文)已知函数f(x) = 3 sin ■ x cos x^ 0), R.在曲线y=f(x)与直线y =1的交点中,若相邻交点距离的最小值为",则f (x)的最小正周期为()3兀2兀A. B. C.二D. 2■:2 3【答案】C【解析】T f (x )= 2sin +— | = 1 ,• sin x +—| = 一,• co x1+ —= 一+ 2k^ , e Z 或I 6丿I 6丿2 6 6兀5兀2兀•冬:一——:2k/:,k^ Z,则• ■ X2 -为 2 k2 -心二,又•••相邻交点距离的最小值6 6 3为,•• - 2, T 二二.316. (2014浙江文、理)为了得到函数y二sin 3x • cos3x的图象,可以将函数y - 2sin3x的图象()。

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。

2014高考数学理硬手笔(真题篇)常考问题三角恒等变换与解三角形

2014高考数学理硬手笔(真题篇)常考问题三角恒等变换与解三角形

(2)四边形 ABCD 的面积 S=12(AB·AD+CB·CD)·sin A=12[x(5-x)+
x(9-x)] 1-cos2A.
=x(7-x)
1-2x2= x2-47-x2
= x2-4x2-14x+49.
记 g(x)=(x2-4)(x2-14x+49),x∈(2,5).
• 常考问题6 三角恒等变换与解三角形
[真题感悟] [考题分析]
1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=1ta∓ntaαn±αttaannββ.
热点二 正、余弦定理的应用 【例 2】 (2013·苏锡常镇模拟)△ABC 的面积是 30,内角 A,B,C
的对边分别为 a,b,c,cos A=1123.
(1)求A→B·A→C;
(2)若 c-b=1,求 a 的值.
解 (1)由 cos A=1123,且 0<A<π, 得 sin A= 1-11232=153. 又 S△ABC=12bcsin A=30, 所以 bc=156,
(2)tan α=tan[(α-β)+β]=1t-antaαn-αβ-+βttaannββ =1+12-12×17 17=13, tan(2α-β)=tan[α+(α-β)]=1t-antαan+αttaannαα--ββ=1-13+13×12 12=1. ∵tanα=13>0,∴0<α<2π,∴0<2α<π.
2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α. (2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α. (3)tan 2α=1-2tatnanα2α.

高中数学第三章三角恒等变换3

高中数学第三章三角恒等变换3
差角余弦公式
3.三角恒等变换知识框架图
简单三角恒等变换
31/32
不要对一切人都以不信任眼光对待,但要慎
重而坚定。
——德谟克里特
32/32
所以周期T = 2π,最大值为2,最小值为- 2.
9/32
经过三角恒等变换, 我们把形如 y a sin x函 b数cos x
转化为形如
y 函A数sin,(从x而使)问题得到简化.
10/32
【变式练习】
已知函数 f(x)=2sin2ωx+2 3sinωxsin(π2-ωx)(ω>0)的 最小正周期为 π. (1)求 ω 的值; (2)求函数 f(x)在区间[0,23π]上的值域.
1 A.2
2 B. 2
C.2
3 D. 2
解析:
3-sin70° 2-cos210°

3-cos20° 2-cos210°

3-(22-cocso2s1201° 0°-1)=42--2ccooss221100°°=2.
27/32
5、(2014·山东高考)函数 y
3 2
sin
2x
cos2
x

最小正周期为 .
32
2
63
66
由0 , 得 2 5 .
36
66
所以当2+ = ,即= 时,
62
6
S最大 =
1 3
3 6
3. 6
因此,当= 时,矩形ABCD的面积最大,最大面积为 3 .
6
6
20/32
【变式练习】
已知半径为1半圆,PQRM是半圆内接矩形,如 图,P点在什么位置时,矩形面积最大,并求最大 面积值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析:∵θ 是第二象限角, ∴π2+2kπ<θ<π+2kπ,k∈Z, ∴π4+kπ<2θ<π2+kπ,k∈Z, ∴2θ是第一或第三象限的角. (如图阴影部分),结合单位圆上的三角函数线可得:
答案:C
方法二:将坐标系每象限三等分,再自 x 轴正向逆时针依 次标上Ⅰ、Ⅱ、Ⅲ、Ⅳ(如图所示).α3所在区域如图中阴影部分(标 有Ⅲ的部分).
故α3在第一或第三或第四象限.
题型六 三角函数线的应用 例 6 在单位圆中画出适合下列条件的角 α 的终边的范围, 并由此写出角 α 的集合:(1)sinα≥ 23;(2)cosα≤-12.
3.1 任意角和弧度制 及任意角的三角函数
说基础
课前预习读教材
说考点拓展延ຫໍສະໝຸດ 串知识解析:如图,∠AOB=2 弧度,过 O 点作 OC⊥AB 于 C, 并延长 OC 交 AB于 D.∠AOD=∠BOD=1 弧度,且 AC=12AB =1,在 Rt△AOC 中,AO=sin∠ACAOC=si1n1,从而弧 AB 的长 为 l=|α|·R=sin2 1.故选 C.
相关文档
最新文档