天线计算(GSM)
基站天线 公式

基站天线公式
基站天线可以使用不同类型的天线,例如全向天线、定向天线(如扇形天线、扇形反射器天线、定向Yagi天线)等。
每种
天线类型具体的公式可能不同。
以下是基站天线的两个常见公式:
1. 高效率天线增益(dBi)的计算公式:
G(dBi) = 10 × log₁₀ (Eₛ / Eᵣ)
其中,Eₛ是天线在某个方向上的辐射功率(以瓦特为单位),Eᵣ是参考天线在同一方向上的辐射功率。
这个公式用于计算
天线的增益,即天线辐射功率相对于参考天线的倍数。
2. 全向天线的馈电功率(以dBm为单位)与距离(以米为单位)之间的衰减公式:
P(dBm) = P₀(dBm) - 10 × n × log₁₀ (d)
其中,P₀是基站天线到达距离为1米时的馈电功率(以dBm
为单位),n是自由空间衰减系数,通常在2到4之间,d是
距离。
这个公式表示在距离为d的位置收到的馈电功率与距离的关系。
请注意,这些公式只是基站天线的一些常见计算公式,实际应用中可能还有其他因素和公式需要考虑。
GSM天线基础知识001

中兴通讯
谢瑞华
内容提要
基站天线基本技术参数及含义 基站天线种类及流行发展趋式
第2页
一、天线基本参数 天线基本参数(Technical Data) 天线基本参数
Blah blah blah bl ah
第3页
电性能参数( 电性能参数(Electrical properties) )
第 44 页
风载 (Wind Load )
Eg: 83N at 160 km/h
第 45 页
迎风面积 (Flat Plate Area) ) 越小越好
第 46 页
接头型式 (Connector Type) ) 7/16”DIN,N,SMA female
第 47 页
包装尺寸 (Shipping Dimensions) ) 长×宽×高
(前向功率) 后向功率)
前向功率 typically : 25dB
第 27 页
旁瓣抑制与零点填充 (Elevation Upper Side lobes & Null Fill) )
第 28 页
旁瓣( 旁瓣(Sidelobes) )
上副瓣抑制 (dB)
下副瓣抑制 (dB)
第 29 页
第 30 页
尺寸( 尺寸(Dimensions) )
长×宽×高 长:与垂直波瓣、增益有关 宽:与水平波瓣有关 高:与所采用的天线技术有关
第 37 页
重量( 重量(Weight) ) 影响运输、施工
第 38 页
天线罩材料( 天线罩材料( Radome Material) ) PVC, ABS, fiberglass等 防晒、防冻,防盐雾,阻燃,抗老化等
GSM基站天线知识和调整方法

Peak - 10dB
方向图旁瓣显示
上旁瓣抑制
下旁瓣抑制
全向天线增益与垂直波瓣宽度
9dBd全向天线
板状天线增益与水平波瓣宽度
半波振子
半功率波瓣宽度
360
以半波振子 为参考的增益
0dBd
带反射板的半波振子 180
3dBd
带反射板的两个半波振子 90 理论辐射图
6dBd
天线增3益.9与天方线向增图益半与功方率向波图瓣的宽关度系的关系
2 机械下倾与电下倾的效果比较
HTDBS096515 在不同机械下倾角时的水平面波束宽度
及前后比实测数据
2000年12月29日
序号
电下 倾角
机械 倾角
总倾角
水平面 波束宽度
前后比 (dB)
最大值 (dB)
相对值 (dB)
1
0o
0o
0o
64.8o
34
-30.886
0
2
0o
2o
2o
68.1o
27.5
-31.571
6 天线的下倾 为使波束指向朝向地面, 需要天线下倾
无下倾
电下倾
机械下倾
天线波束下倾的演示
6 电波绕射传播
电波在传播途径上遇到障碍物时,总是力图绕过障碍物, 再向前传播。这种现象叫做电波的绕射。超短波的绕射能力较弱, 在高大建筑物后面会形成所谓的“阴影区”。信号质量受到影响 的程度不仅和接收天线距建筑物的距离及建筑物的高度有关,还 和频率有关。例如一个建筑物的高度为10米,在距建筑物200米处接收的信号质量几
GSM基站天线知 识和调整方法
一 基站天线的原理
1. 天线辐射电磁波的基本原理 2. 电波的多径传播 3. 天线的功能: 控制辐射能量的去向 4. 前后比 5. 波束宽度 6. 天线的下倾
gsm天线测试标准

gsm天线测试标准GSM天线测试标准。
GSM(Global System for Mobile Communications)是一种全球性的移动通信标准,它为全球范围内的移动通信提供了统一的技术规范。
在GSM系统中,天线是至关重要的组成部分,它直接影响着移动通信系统的性能和覆盖范围。
因此,对GSM天线进行测试是非常必要的,而且需要遵循一定的测试标准。
首先,对于GSM天线的测试,我们需要明确测试的内容和目的。
GSM天线测试的主要内容包括天线增益、辐射图、频率响应、驻波比、极化特性等。
测试的目的是为了验证天线是否符合设计要求,以及在实际使用中是否能够满足通信系统的需求。
其次,GSM天线测试需要遵循一定的标准和规范。
国际电信联盟(ITU)和欧洲电信标准化协会(ETSI)发布了一系列关于移动通信系统的标准文件,其中包括了GSM天线测试的相关规定。
在进行测试时,需要严格按照这些标准进行操作,以确保测试结果的准确性和可靠性。
在实际测试中,需要使用专业的测试设备和工具,如天线测试仪、信号发生器、频谱分析仪等。
通过这些设备,可以对天线的各项性能进行全面的测试和评估。
同时,测试过程中需要注意环境的影响,尽量选择在开阔的场地进行测试,以减少外界干扰对测试结果的影响。
除了对天线本身的性能进行测试外,还需要对天线与通信系统的配合情况进行测试。
这包括了天线的安装调试、与基站设备的连接以及与移动终端的通信测试等。
只有在真实的工作环境中进行测试,才能全面评估天线的性能和稳定性。
总之,GSM天线测试是保证移动通信系统正常运行的重要环节,它需要严格遵循相关的测试标准和规范,使用专业的测试设备和工具,以确保测试结果的准确性和可靠性。
只有通过全面的测试和评估,才能保证天线在实际使用中能够稳定、高效地工作,为移动通信系统的正常运行提供可靠的支持。
通过以上内容,我们可以清晰地了解到GSM天线测试的重要性和相关的标准规范,以及在实际测试中需要注意的一些关键点。
GSM 手机外置天线的原理

GSM 手机外置天线的原理摘要: 手机在人们的生活中起着越来越重要的作用, 而手机在发送接收信号时性能的好坏, 一定程度上取决于射频电路天线部分的设计。
介绍了GSM 频段手机外置天线的原理和电气特性要求, 及依据天线工作原理工厂对手机天线的检验方法。
1GSM 手机外置天线的原理手机天线对整个手机来说是一颗机构电子料, 他的外观同工业设计有关系。
这里着重讲述手机外置(exposed)天线电气方面的原理。
当电能量加到并联谐振网络上时, 并联谐振网络就会向外发射一定频率F = 1/2π√LC 的电磁波。
当并联谐振网络处在电磁场中, 他会产生一定频率F = 1/2π√LC的电能量, 且频率F 与电磁波频率一致时, 产生电能量相对最大。
手机天线就是运用这样的电气原理, 为了更好地发送和接收电磁波, 将并联谐振回路中的电容两个板极打开, 以电感为振子。
电容性以分布容性实现, 因中国的全球通波段和欧洲一致, EGSM (低发高收880~915MHz 及925~960MHz) 加DCS (发1710~1785MHz, 收1805~1885 MHz) , 总对天线来说要求DualBand (880~960MHz, 1710~1880MHz)。
故电感为一个有两种疏密度的线圈, 以满足两波段频率发送接收的需要。
若是做三频天线, 因PCS 频段与DCS 频段接近, 只需在DCS 频段上扩展就可以。
调节手机天线电气性能时,需要一只最终定型的手机(所有其他部件不再会改变) 制作手机天线测试工具, 在其天线连接的部位引1 根钢管线出来安装SMA 头。
通过接校准过单端口S11 参数的矢量网络分析仪Aginlent8753 来显示天线在两个频段的S11特性, 应该在有用频段内小于- 10 dB, 测试时周围不应该有金属反射面, 有些厂商EGSM 频段做不到小于- 10 dB,那最低要求也要做到小于- 8 dB。
若满足不了S11 特性, 就要通过改变线圈的长度和疏密度及手机内部PCB 板匹配网络来满足S11 参数特性。
天线增益的计算公式

天线增益的计算公式
天线增益G的计算公式主要有以下几种:
1. 对于定向天线,其增益计算公式为G=10Lg(P2/P1),其中P1和P2分别为换用被测天线前后的接收功率。
2. 对于一般天线,其增益可用下式估算:G(dBi)=10Lg{32000/
(2θ3dB,E×2θ3dB,H)},式中,2θ3dB,E与2θ3dB,H分别为天线在两个
主平面上的波瓣宽度;32000 是统计出来的经验数据。
3. 对于抛物面天线,其增益可用下式近似计算:G(dBi)=10Lg{×(D/λ0)2},式中,D 为抛物面直径;λ0为中心工作波长;是统计出来的经验数据。
4. 对于直立全向天线,其增益有近似计算式 G(dBi)=10Lg{2L/λ0},式中,L 为天线长度;λ0 为中心工作波长。
5. 增益通常用分贝表示。
即:G=10lgPino/Pin,其中Pino为无耗理想点
源天线的输入功率,Pin为天线的输入功率。
6. G=η4πS/λ2=10lg(η(πD/λ)²),其中S-天线口径面积(平方米);λ-工作波长(米);D-抛物面口径(即面口直径)(米);η-天线效率。
需要注意的是,上述计算公式并不一定适用于所有情况,且公式的使用取决于天线的具体类型。
在使用公式计算天线增益时,还需要注意公式的适用范围和限制。
天线隔离度计算

0.32
0.43 0.32
40.33
1.70 0.32
2.54
0.43 0.32
40.33
1.70 0.32
11.37
0.43 0.32
180.16
1.70 0.32
说明:
本计算公 式仅适用 于两天线 平行排布 的情况, 即天线最 大辐射方 向平行情 况。
CDMA20 00 1X与
GSM900 间天线隔 离(m)要 求:
为降低两 系统间干 扰,天线 要有一定 的隔离 度,其取 决于天线 辐射方向 图和空间 距离及增 益, 通
常不考虑 电压驻波 比引入的 衰减。引 入下公 式:
垂直排 列:
水平排 列:
Lv=28+40*lg(k /λ) (dB)
Lv=22+20*lg(d /λ)-(G1+G2)(S1+S2) (dB)
CDMA20 001X (定)与 联通 GSM900 (全):
CDMA20 001X (定)与 移动 GSM900 (全):
CDMA20 001X (全)与 联通 GSM900 (定):
CDMA20 001X (全)与 移动 GSM900 (定):
CDMA20 001X (全)与 联通 GSM900 (全):
在一般的 工பைடு நூலகம்中, 我们都考 虑平行排 布情况, 90度方向 副瓣电 平,(如 图1)。 当天线非 水平排布 时,考虑 倾斜方向 的副瓣电 平,(如 图2)。
当天线背 对时,副 瓣电平最 小。 当天线正 对时,副 瓣电平最 大,即为 主瓣方向 。
在这里, 只需要修 改λ,隔 离度, G1, G2, S1,S2的 值,水平 间距和垂 直间距将 自动计算 获得。
CDMA与GSM共站址建设天线隔离分析及计算工具

2 -18
15.50
.在下拉框内选择
�
天线选择
移动GSM(890) -30.00 100.00 56.00 8.00 -104.00 0.10 -103.90 -129.33 46.34
-30.00 100.00 80.00 8.00 -104.00 0.10 -103.90 -129.33 22.34
CDMA 天线类型 天线增益(dBi)
CDMA与联通和移动的隔离度度
联通GSM(909) CDMA基站或直放站或ODU功放 输出落在GSM频带内杂散(dBm) 杂散辐射定义带宽(kHz) 限带滤波器的带外衰减(dB) 被干扰GSM基站的噪声系数(dB) 被干扰前GSM基站灵敏度(dBm) 允许的GSM灵敏度恶化量(dB) 被干扰后GSM基站灵敏度(dBm) 被干扰GSM站允许的 最大杂散干扰(dBm/200kHz) 隔离度(dB)
CDMA与联通和移动的天线间距距 定向65度
联通GSM 2.50
水平间距(m) 垂直间距(m)
联通GSM 0.19 0.23
移动GSM 2.97 0.92
说明: 只有黄橙色区域的数值可修改,其它区域的数值为计算自动获得. 天线类型.其它任何区域您无权修改!
移动GSM