29中考贵州数学复习课件综合测试二共26张PPT[可修改版ppt]
中考数学专题《二次函数》复习课件(共18张PPT)

(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
人教版数学二年级下册第五单元综合素养提升课件

一
早餐店进了8板酸奶,每板6盒,卖出了3板。
?
二
三
(答案不唯一)还剩几盒酸奶
(8-3)×6=30(盒)
四
解析:根据题意要求,提出的问题合理,答案正确即可。
第五单元综合素养提升
3.陈老师计划买6本《十万个为什么》,你认为他应该怎样购买比较划算?(10分)
一
6×7=42(元)
二
8×(7-2)=40(元)
7
得数是27,正确的结果应该是1(7 )。
8
解析:5+□×3如果先算加法,再算乘法,算式就是(5+□)×3=27,先用27
除以3,求出5+□的和是9,再减去5,即可求出□是4,然后按照先算乘法,
再算加法的计算顺序求出算式5+4×3=17。
综合素养与思维拓展训练(四)
2.一天早上,森林医生贝贝和欢欢为树里藏着几只害虫争论起来。(算式结果就
小朋友?这道题实际是求( ② )。
①12里面有多少个6
②12里面有多少个2
二
③把12平均分成2份,每份是多少
三
四
解析:有12支铅笔,每个小朋友分2支,问可以分给几个小朋友,就是求12里 面有多少个2。
期中综合素养提升
3.[江苏省盐城市射阳县期末]有53颗糖果,至少再添上( ② )颗就能刚好平均
分给8个小朋友。
三
14
12
9
10
四
(2)( 看书 )的人数最多,( 弹琴 )的人数最少。(4分)
(3)二(1)班共有( 45 )人。(2分)
(4)你还能提出什么问题并解答?(5分)
(答案不唯一)学英语的比看书的少多少人? 14-10=4(人)
解析:统计时有多种表示方法,一个“○”表示1个数量,一个“√”表示1个数量, 一个“正”字表示5个数量,据此填写表格。然后根据表格中的数据回答问题。
2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.
由二阶线性递推式求数列通项问题 课件(共26张PPT)—— 高二数学人教A版

an2 5an1 4an
4 4 1
或
5 1 4
点评:当待定系数法出现一个参数为-1时,可以采用采用累加法。
典型例题讲解
• 例2、已知数列 满足a1 1, a2 5,an2 5an1 4an n N*
, 求数列 的通项公式。
4
当
时,
1
an2 an1 4(an1 an ),
解:设an2 an1 (an1 an ),则: an2 ( )an1 an
an2 5an1 4an
4 4 1
或
5 1 4
典型例题讲解
• 例2、已知数列 满足 a1 1, a2 5,an2 5an1 4an n N*
, 求数列 的通项公式。
4
当
时,
1
an2 an1 4(an1 an ),
a2 a1 4
an1 an 4n 1
典型例题讲解
• 例2、已知数列 满足 a1 1, a2 5,an2 5an1 4an n N*
, 求数列 的通项公式。
1
当
时,
4
an2 4an1 (an1 4an ) • • • • •• a2 4a1
an1 4an 5 41 12
2
1:an
1 3
1 3
4n
n N*
。
典型例题讲解
• 例2、已知数列 满足 a1 1, a2 5,an2 5an1 4an n N*
, 求数列 的通项公式。
解法二:待定系数法、累加法。
解:设an2 an1 (an1 an ),则: an2 ( )an1 an
• 2、待定系数、累加法; • 3、特征方程法。
当x1 x2 R时,an Ax1n1 Bx2n1;
初三数学中考专题复习 一元二次方程 课件(共22张PPT)

• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,
北师大版八年级数学下册全册复习课件(共206张PPT)精选全文

第一章 | 复习
针对第8题训练
1.在直角三角形中,一条直角边长为a,另一条边长为2a,那么
它的三个内角之比为( D ) A.1∶2∶3 B.2∶2∶1 C.1∶1∶2 D.以上都不对
2.如图1-10,△ABC中,∠ACB=90°,BA的垂直平分线交
CB边于点D,若AB=10,AC=5,则图中等于60°的角的个数为
第一章 | 复习
6.直角三角形的性质及判定 性质(1):在直角三角形中,如果一个锐角等于30°,那么它 所对的直角边等于斜边的___一__半____; 性质(2):直角三角形的两个锐角互余. 判定:有两个角互余的三角形是直角三角形. 7.勾股定理及其逆定理 勾股定理:直角三角形两条直角边的平方和等于斜边的 __平__方___. 逆定理:如果三角形两边的平方和等于第三边的平方,那么 这个三角形是_直__角______三角形.
第二章 | 复习
考点攻略
►考点一 不等式的性质 例1 >
>
< <
[易错地带] 不等式两边都乘(或除以)同一个复数时,不等号的 方向要改变。
第二章 | 复习
►考点二 一元一次不等式(组)的解法 例2
第二章 | 复习 [技巧总结]
第二章 | 复习
难易度
易
1,2,3,4,5,6,7,8,11,12,13,14, 15,17,18,19,20
中
9,10,21,22
难
16,23,24
第一章 | 复习
知识与 技能
全等三角形
等腰三角形 及直角三角
形
直角三角形 和勾股定理
及逆定理
线段的垂直 平分线及角
平分线
逆命题
反证法
2,16,17,22,24 1,4,10,14,20,21,23,24
2024年贵州省中考数学真题试卷及答案解析

贵州省2024年初中学业水平考试(中考)试题卷数学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A.B.C.D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1.下列有理数中最小的数是()A.2- B.0 C.2D.42.“黔山秀水”写成下列字体,可以看作是轴对称图形的是()A. B. C. D.3.计算23a a +的结果正确的是()A.5a B.6a C.25a D.26a 4.不等式1x <的解集在数轴上的表示,正确的是()A. B.C. D.5.一元二次方程220x x -=的解是()A.13x =,21x =B.12x =,20x = C.13x =,22x =- D.12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为()A.100人 B.120人 C.150人 D.160人8.如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A .AB BC = B.AD BC = C.OA OB = D.AC BD⊥9.小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是()A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次10.如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则 AB 的长为()A.30πB.25πC.20πD.10π11.小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是()A.x y =B.2x y =C.4x y =D.5x y=12.如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是()A.二次函数图象的对称轴是直线1x =B.二次函数图象与x 轴的另一个交点的横坐标是2C.当1x <-时,y 随x 的增大而减小D.二次函数图象与y 轴的交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.计算的结果是________.14.如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16.如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17.(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅+,其中3x =.18.已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20.如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22.综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______;(2)求证:OD AB ⊥;(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25.综合与探究:如图,90AOB ∠=︒,点P 在AOB ∠的平分线上,PA OA ⊥于点A .(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度;(2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.参考答案1.【答案】A【解析】【分析】本题考查有理数的大小比较,解题的关键是掌握比较有理数大小的方法.根据有理数的大小比较选出最小的数.【详解】解:∵2024-<<<,∴最小的数是2-,故选:A .2.【答案】B【解析】【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A .不是轴对称图形,不符合题意;B .是轴对称图形,符合题意;C .不是轴对称图形,不符合题意;D .不是轴对称图形,不符合题意;故选:B .3.【答案】A【解析】【分析】本题主要考查合并同类项,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变即可得.【详解】解:235a a a +=,故选:A .【解析】【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键.【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .5.【答案】B【解析】【分析】本题考查了解一元二次方程,利用因式分解法求解即可.【详解】解∶220x x -=,∴()20x x -=,∴0x =或20x -=,∴12x =,20x =,故选∶B .6.【答案】A【解析】【分析】本题考查坐标与图形,先根据题意确定平面直角坐标系,然后确定点的位置.【详解】解:如图建立直角坐标系,则“技”在第一象限,故选A .【解析】【分析】本题考查用样本反映总体,利用样本百分比乘以总人数计算即可解题.【详解】解:20800160100⨯=(人),故选D .8.【答案】B【解析】【分析】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.【详解】解:∵ABCD 是平行四边形,∴AB CD AD BC AO OC BO OD ====,,,,故选B .9.【答案】A【解析】【分析】本题主要考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,据此求解即可.【详解】解:小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,则由概率的意义可知,小星定点投篮1次,不一定能投中,故选项A 正确,选项B 错误;小星定点投篮10次,不一定投中4次,故选项C 错误;小星定点投篮4次,不一定投中1次,故选项D 错误故选;A .10.【答案】C【解析】【分析】本题考查了弧长,根据弧长公式∶π180n r l =求解即可.【详解】解∵150AOB ∠=︒,24OA =,∴ AB 的长为150π2420π180⨯=,故选∶C .11.【答案】C【解析】【分析】本题考查等式的性质,设“▲”的质量为a ,根据题意列出等式2x y y a +=+,2x a x y +=+,然后化简代入即可解题.【详解】解:设“▲”的质量为a ,由甲图可得2x y y a +=+,即2x a =,由乙图可得2x a x y +=+,即2a y =,∴4x y =,故选C .12.【答案】D【解析】【分析】本题考查了二次函数的性质,待定系数法求二次函数解析式,利用二次函数的性质,对称性,增减性判断选项A.B.C ,利用待定系数法求出二次函数的解析式,再求出与y 轴的交点坐标即可判定选项D .【详解】解∶∵二次函数2y ax bx c =++的顶点坐标为()1,4-,∴二次函数图象的对称轴是直线=1x -,故选项A 错误;∵二次函数2y ax bx c =++的图象与x 轴的一个交点的横坐标是3-,对称轴是直线=1x -,∴二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误;∵抛物线开口向下,对称轴是直线=1x -,∴当1x <-时,y 随x 的增大而增大,故选项C 错误;设二次函数解析式为()214y a x =++,把()3,0-代入,得()20314a =-++,解得1a =-,∴()214y x =-++,当0x =时,()20143y =-++=,∴二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确,故选D .二、填空题(本大题共4题,每题4分,共16分)13.【解析】【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式,.=a ≥0,b >0)是解题关键.14.【答案】5【解析】【分析】本题考查了尺规作图,根据作一条线段等于已知线段的作法可得出AD AB =,即可求解.【详解】解∶由作图可知∶AD AB =,∵5AB =,∴5AD =,故答案为∶5.15.【答案】20【解析】【分析】本题考查了一元一次方程的应用,设快马追上慢马需要x 天,根据快马走的路程等于慢马走的总路程,列方程求解即可.【详解】解∶设快马追上慢马需要x 天,根据题意,得()24015012x x =+,解得20x =,故答案为:20.16.##2653【解析】【分析】延长BC ,AF 交于点M ,根据菱形的性质和中点性质证明ABE ADF ≌,ADF MCF ≌,过E 点作EN AF ⊥交N 点,根据三角函数求出EN ,AN ,NF ,MN ,在Rt ENM △中利用勾股定理求出EM ,根据菱形的性质即可得出答案.【详解】延长BC ,AF 交于点M,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,AB BC CD AD ∴===,BE EC CF DF ===,AD BC ,D FCM ∠=∠,B D∠=∠在ABE 和ADF △中AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ADF ≌,∴AE AF =,在ADF △和MCF △中D FCM DF CF AFD MFC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ADF MCF ≌,∴CM AD =,AF MF =,5AE = ,5AE AF MF ∴===,过E 点作EN AF ⊥于N 点,90ANE ∴∠=︒ 4sin 5EAF ∠=,5AE =,4EN ∴=,3AN =,∴2NF AF AN =-=,527MN ∴=+=,在Rt ENM △中EM ===,即12EM EC CM BC BC =+=+=AB BC CD AD ===,AB BC ∴==,.【点拨】本题考查了菱形的性质,全等三角形的判定和性质,运用三角函数解直角三角形,勾股定理等,正确添加辅助线构造直角三角形是解本题的关键.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17.【答案】(1)见解析(2)12x -,1【解析】【分析】本题考查分式的化简求值和实数的混合运算,掌握运算法则是解题的关键.(1)利用实数的混合运算的法则和运算顺序解题即可;(2)先把分式的分子、分母分解因式,然后约分化为最简分式,最后代入数值解题即可.【详解】(1)解:选择①,②,③,2022(1)+-+-421=++7=;选择①,②,④,212222+-+⨯421=++7=;选择①,③,④,()0212122+-+⨯411=++6=;选择②,③,④,()012122-+-+⨯211=++4=;(2)解:()21122x x -⋅+()()11(1)21x x x =-+⋅+12x -=;当3x =时,原式3112-==.18.【答案】(1)3y x =(2)a c b <<,理由见解析【解析】【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点()1,3代入k y x=可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A.点B 和点C 的横坐标即可比较大小.【小问1详解】解:把()1,3代入k y x=,得31k =,∴3k =,∴反比例函数的表达式为3y x =;【小问2详解】解:∵30k =>,∴函数图象位于第一、三象限,∵点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,3013-<<<,∴0a c b <<<,∴a c b <<.19.【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)2 3【解析】【分析】本题考查用树状图或列表法求概率,众数和中位数的定义,掌握列表法或树状图求概率是解题的关键.(1)利用中位数和众数的定义解题即可;(2)根据优秀等次的要求进行比较解题即可;(3)列表格得到所有可能的结果数n,找出符合要求的数量m,根据概率公式计算即可.【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38,女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26,故答案为:7.38,8.26;【小问2详解】解:∵用时越少,成绩越好,∴7.38是男生中成绩最好的,故小星的说法正确;∵女生8.3秒为优秀成绩,8.328.3,∴有一人成绩达不到优秀,故小红的说法错误;【小问3详解】列表为:甲乙丙甲甲,乙甲,丙乙乙,甲乙,丙丙丙,甲丙,乙由表格可知共有6种等可能结果,其中抽中甲的有4种,故甲被抽中的概率为4263=.20.【答案】(1)见解析(2)12【解析】【分析】本题考查矩形的判定,勾股定理,掌握矩形的判定定理是解题的关键.(1)先根据条件利用两组对边平行或一组对边平行且相等证明ABCD 是平行四边形,然后根据矩形的定义得到结论即可;(2)利用勾股定理得到BC 长,然后利用矩形的面积公式计算即可.【小问1详解】选择①,证明:∵AB CD ∥,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=︒,∴四边形ABCD 是矩形;选择②,证明:∵AD BC =,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=︒,∴四边形ABCD 是矩形;【小问2详解】解:∵90ABC ∠=︒,∴4BC ===,∴矩形ABCD 的面积为3412⨯=.21.【答案】(1)种植1亩甲作物和1亩乙作物分别需要5.6名学生(2)至少种植甲作物5亩【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a 亩,则种植乙作物()10a -亩,根据“所需学生人数不超过55人”列不等式求解即可.【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y +=⎧⎨+=⎩,解得56x y =⎧⎨=⎩,答:种植1亩甲作物和1亩乙作物分别需要5.6名学生;【小问2详解】解:设种植甲作物a 亩,则种植乙作物()10a -亩,根据题意,得:()561055a a +-≤,解得5a ≥,答:至少种植甲作物5亩.22.【答案】(1)20cm(2)3.8cm【解析】【分析】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据等腰三角形的性质计算出的值;(2)利用锐角三角函数求出DN 长,然后根据BD BN DN =-计算即可.【小问1详解】解:在Rt ABC 中,45A ∠=︒,∴45B ∠=︒,∴20cm BC AC ==,【小问2详解】解:由题可知110cm 2ON EC AC ===,∴10cm NB ON ==,又∵32DON ∠=︒,∴tan 10tan 32100.62 6.2cm DN ON DON =⋅∠=⨯︒≈⨯=,∴10 6.2 3.8cm BD BN DN =-=-=.23.【答案】(1)DCE ∠(答案不唯一)(2)163(3)163【解析】【分析】(1)利用等边对等角可得出DCE DEC ∠=∠,即可求解;(2)连接OC ,利用切线的性质可得出90DCE ACO ∠+∠=︒,利用等边对等角和对顶角的性质可得出AOE DCE ∠=∠,等量代换得出90AEO CAO ∠+∠=︒,然后利用三角形内角和定理求出90AOE ∠=︒,即可得证;(3)设2OE =,则可求2AO OF BO x ===,EF x =,22OD x =+,2DC DE x ==+,在Rt ODC △中,利用勾股定理得出()()()2222222x x x +=++,求出x 的值,利用tan OP OC D OD CD==可求出OP ,即可求解.【小问1详解】解:∵DC DE =,∴DCE DEC ∠=∠,故答案为:DCE ∠(答案不唯一);【小问2详解】证明:连接OC ,,∵PC 是切线,∴OC CD ⊥,即90DCE ACO ∠+∠=︒,∵OA OC =,∴OAC ACO ∠=∠,∵DCE DEC ∠=∠,AEO DEC ∠=∠,∴90AEO CAO ∠+∠=︒,∴90AOE ∠=︒,∴OD AB ⊥;【小问3详解】解:设OE x =,则2AO OF BO x ===,∴EF OF OE x =-=,22OD OF DF x =+=+,∴2DC DE DF EF x ==+=+,在Rt ODC △中,222OD CD OC =+,∴()()()2222222x x x +=++,解得14x =,20x =(舍去)∴10OD =,6CD =,8OC =,∵tan OP OC D OD CD ==,∴8106OP =,解得403OP =,∴163BP OP OB =-=.【点拨】本题考查了等腰三角形的性质,切线的性质,勾股定理,解直角三角形的应用等知识,灵活运用以上知识是解题的关键.24.【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w 元,根据利润=单件利润×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w 元,根据利润=单件利润×销售量-m ×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可.【小问1详解】解∶设y 与x 的函数表达式为y kx b =+,把12x =,56y =;20x =,40y =代入,得12562040k b k b +=⎧⎨+=⎩,解得280k b =-⎧⎨=⎩,∴y 与x 的函数表达式为280y x =-+;【小问2详解】解:设日销售利润为w 元,根据题意,得()10w x y=-⋅()()10280x x =--+22100800x x =-+-()2225450x =--+,∴当25x =时,w 有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;【小问3详解】解:设日销售利润为w 元,根据题意,得()10w x m y =--⋅()()10280x m x =---+()22100280080x m x m =-++--,∴当()100250222m m x ++=-=⨯-时,w 有最大值为()25050210028008022m m m m ++⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭,∵糖果日销售获得的最大利润为392元,∴()25050210028008039222m m m m ++⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,化简得2601160m m -+=解得12m =,258m =当58m =时,542b x a=-=,则每盒的利润为:5410580--<,舍去,∴m 的值为2.25.【答案】(1)画图见解析,90(2)见解析(3)23或83【解析】【分析】(1)依题意画出图形即可,证明四边形OAPC 是矩形,即可求解;(2)过P 作PC OB ⊥于C ,证明矩形OAPC 是正方形,得出OA AP PC OC ===,利用ASA 证明APM CPN △≌△,得出AM CN =,然后利用线段的和差关系以及等量代换即可得证;(3)分M 在线段AO ,线段AO 的延长线讨论,利用相似三角形的判定与性质求解即可;【小问1详解】解:如图,PC 即为所求,∵90AOB ∠=︒,PA OA ⊥,PC OB ⊥,∴四边形OAPC 是矩形,∴90APC ∠=︒,故答案为:90;【小问2详解】证明:过P 作PC OB ⊥于C ,由(1)知:四边形OAPC 是矩形,∵点P 在AOB ∠的平分线上,PA OA ⊥,PC OB ⊥,∴PA PC =,∴矩形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=︒,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =,∴APM CPN △≌△,∴AM CN =,∴OM ON OM CN OC+=++OM AM AP=++OA AP=+2AP =;【小问3详解】解:①当M 在线段AO 上时,如图,延长NM 、PA 相交于点G ,由(2)知2OM ON PA +=,设OM x =,则3ON x =,2AO PA x ==,∴AM AO OM x OM =-==,∵90AOB MAG ︒∠=∠=,AMG OMN ∠=∠,∴()ASA AMG OMN ≌,∴3AG ON x ==,∵90AOB ∠=︒,PA OA ⊥,∴AP OB ∥,∴ONF PGF ∽ ,∴33325OF ON x PF PG x x ===+,∴53PF OF =,∴53833OP OF +==;②当M 在AO 的延长线上时,如图,过P 作PC OB ⊥于C ,并延长交MN 于G由(2)知:四边形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=︒,PC AO ∥,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =,∴APM CPN △≌△,∴AM CN =,∴ON OM-OC CN OM=+-AO AM OM=+-AO AO=+2AO =,∵33ON OM x==∴AO x =,2CN AM x ==,∵PC AO ∥,∴CGN OMN ∽,∴CG CN OM ON=,即23CG x x x =,∴23CG x =,∵PC AO ∥,∴OMF PGF ∽ ,∴3253OF OM x PF PG x x ===+,∴53PF OF =,∴53233OP OF -==;综上,OP OF 的值为23或83.【点拨】本题考查了矩形的判定与性质,正方形的判定与性质,角平分线的性质,全等三角形的判断与性质,相似三角形的判断与性质等知识,明确题意,添加合适辅助线,构造全等三角形、相似三角形,合理分类讨论是解题的关键.。
人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)

8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.
胜
负
合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】