2015-2016学年安徽省含山县八年级(上)期末数学试卷

合集下载

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。

每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。

点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。

BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。

对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。

使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。

2015-2016学年八年级上学期期末考试数学试题及答案

2015-2016学年八年级上学期期末考试数学试题及答案

2015-2016学年八年级上学期期末考试数学试题2016.1.8 一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( ) A.2个 B.3个 C.4个 D.5个3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( )A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( ) A.平均数 B.众数 C.中位数 D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11.在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。

12.一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13.在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为。

八年级(上)期末数学试卷附答案解析

八年级(上)期末数学试卷附答案解析

八年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,满分30分,每小题的4个选项中,仅有一个符合题目要求,请把符合题目要求的选项序号填在题后括号内)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.2.(3分)下列运算正确的是()A.m6÷m2=m3B.3m3﹣2m2=m C.(3m2)3=27m6D.m•2m2=m2 3.(3分)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4 4.(3分)分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x≠﹣1 D.x=﹣15.(3分)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF6.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个7.(3分)下列各式可以写成完全平方式的多项式有()A.x2+xy+y2 B.x2﹣xy+ C.x2+2xy+4y2D.8.(3分)将下列多项式分解因式,结果中不含因式x+1的是()A.x2﹣1 B.x2﹣2x+1 C.x(x﹣2)+(x﹣2) D.x2+2x+19.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.810.(3分)如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M,N分别是AB,BC的中点,若PM+PN的最小值为2,则△ABC的周长是()A.2 B.2+C.4 D.4+2二、填空题(本题共5小题,每小题3分,满分15分,把答案写在题中横线上)11.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.12.(3分)使分式的值为0,这时x=.13.(3分)在Rt△ABC中,锐角∠A=35°,则另一个锐角∠B=.14.(3分)若x2+y2=10,xy=﹣3,则(x+y)2=.15.(3分)平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm 和6cm的两部分,则平行四边形ABCD的周长为cm.三、解答题(解答题有必要的文字说明,证明过程或计算步骤)16.(10分)因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)17.(9分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.18.(10分)解方程(1)(2)19.(8分)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.20.(8分)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.21.(9分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍.若甲、乙两工程队合作只需要10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是 4.5万元,乙工程队每天的工程费用是 2.5万元,请你设计一种方案,既能按时完工,又使工程费用最少.22.(9分)如图,方格纸中每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)画出△ABC关于y轴成轴对称的△A1B1C1;(其中A1、B1、C1是A、B、C的对应点,不写画法)(2)写出A1、B1、C1的坐标;(3)求出△A1B1C1的面积.23.(12分)如图所示,把纸片△A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的式子表式)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题3分,满分30分,每小题的4个选项中,仅有一个符合题目要求,请把符合题目要求的选项序号填在题后括号内)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.2.(3分)下列运算正确的是()A.m6÷m2=m3B.3m3﹣2m2=m C.(3m2)3=27m6D.m•2m2=m2【解答】解:A、m6÷m2=m4,故A错误;B、3m3﹣2m2不能合并,故B错误;C、(3m2)3=27m6,故C正确;D、m•2m2=m3,故D错误;故选:C.3.(3分)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4【解答】解:a2﹣4a=a(a﹣4),故选:A.4.(3分)分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x≠﹣1 D.x=﹣1【解答】解:根据题意可得x﹣1≠0;解得x≠1;故选:A.5.(3分)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.6.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.7.(3分)下列各式可以写成完全平方式的多项式有()A.x2+xy+y2 B.x2﹣xy+ C.x2+2xy+4y2D.【解答】解:A、应为x2+2xy+y2,原式不能写成完全平方式,故错误;B、,正确;C、应为x2+4xy+4y2,原式不能写成完全平方式,故错误;D、应为,原式不能写成完全平方式,故错误;故选:B.8.(3分)将下列多项式分解因式,结果中不含因式x+1的是()A.x2﹣1 B.x2﹣2x+1 C.x(x﹣2)+(x﹣2) D.x2+2x+1【解答】解:A、x2﹣1=(x+1)(x﹣1),故此选项不合题意;B、x2﹣2x+1=(x﹣1)2,故此选项符合题意;C、x(x﹣2)+(x﹣2)=(x+1)(x﹣2),故此选项不合题意;D、x2+2x+1=(x+1)2,故此选项不合题意;故选:B.9.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.8【解答】解:∵|a﹣4|+=0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选:A.10.(3分)如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M,N分别是AB,BC的中点,若PM+PN的最小值为2,则△ABC的周长是()A.2 B.2+C.4 D.4+2【解答】解:作M点关于AC的对称点M′,连接M'N,则与AC的交点即是P点的位置,∵M,N分别是AB,BC的中点,∴MN是△ABC的中位线,∴MN∥AC,∴,∴PM′=PN,即:当PM+PN最小时P在AC的中点,∴MN=AC∴PM=PN=1,MN=∴AC=2,AB=BC=2PM=2PN=2∴△ABC的周长为:2+2+2=4+2.故选:D.二、填空题(本题共5小题,每小题3分,满分15分,把答案写在题中横线上)11.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.12.(3分)使分式的值为0,这时x=1.【解答】解:由题意得:,解得x=1,故答案为1.13.(3分)在Rt△ABC中,锐角∠A=35°,则另一个锐角∠B=55°.【解答】解:∵在Rt△ABC中,锐角∠A=35°,∴另一个锐角∠B=90°﹣35°=55°,故答案为:55°.14.(3分)若x2+y2=10,xy=﹣3,则(x+y)2=4.【解答】解:∵x2+y2=10,xy=﹣3,∴(x+y)2=x2+2xy+y2=10﹣6=4;故答案为:4.15.(3分)平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm 和6cm的两部分,则平行四边形ABCD的周长为32或34cm.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,(1)当AE=5时,AB=5,平行四边形ABCD的周长是2×(5+5+6)=32;(2)当AE=6时,AB=6,平行四边形ABCD的周长是2×(5+6+6)=34;故答案为:32或34.三、解答题(解答题有必要的文字说明,证明过程或计算步骤)16.(10分)因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)【解答】解:(1)﹣x3+2x2y﹣xy2=﹣x(x2﹣2xy+y2)=﹣x(x﹣y)2;(2)x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x+2)(x﹣2)2.17.(9分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.【解答】解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.18.(10分)解方程(1)(2)【解答】解:(1)+1=,去分母得:4x+2(x+3)=7,去括号得:4x+2x+6=7,移项得:4x+2x=7﹣6,合并同类项得:6x=1,把系数化为1得:x=,检验:把x=代入2(x+3)≠0,∴分式方程的解为x=;(2)=﹣1,去分母得:3(5x﹣4)=4x+10﹣3(x﹣2),去括号得:15x﹣12=4x+10﹣3x+6,移项得:15x﹣4x+3x=10+6+12,合并同类项得:14x=28,系数化为1得:x=2,检验:把x=2代入3(x﹣2)=0,∴分式方程无解.19.(8分)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.【解答】解:(1)如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.20.(8分)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.【解答】(1)证明:在△AOB和△DOC中,,∴△AOB≌△DOC;(2)解:∵△AOB≌△DOC,∴OA=OD,又E是AD的中点,∴OE⊥AD,即∠AEO=90°.21.(9分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍.若甲、乙两工程队合作只需要10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是 4.5万元,乙工程队每天的工程费用是 2.5万元,请你设计一种方案,既能按时完工,又使工程费用最少.【解答】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.根据题意得:,方程两边同乘以2x,得2x=30解得:x=15经检验,x=15是原方程的解.∴当x=15时,2x=30.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)因为甲乙两工程队均能在规定的40天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:4.5×15=67.5(万元);方案二:由乙工程队单独完成.所需费用为:2.5×30=75(万元);方案三:由甲乙两队合作完成.所需费用为:(4.5+2.5)×10=70(万元).∵75>70>67.5∴应该选择甲工程队承包该项工程.22.(9分)如图,方格纸中每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)画出△ABC关于y轴成轴对称的△A1B1C1;(其中A1、B1、C1是A、B、C的对应点,不写画法)(2)写出A1、B1、C1的坐标;(3)求出△A1B1C1的面积.【解答】解:(1)如图:△A1B1C1即为所求;(2)A1(1,5),B1(1,0),C1(4,3);(3)△A1B1C1的面积:×5×3=7.5.23.(12分)如图所示,把纸片△A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的式子表式)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.【解答】解:(1)由折叠的性质得出△ADE≌△A′DE,∠ADE=∠A′DE,∠AED=∠A′ED,∠A=∠A′,(2)∵∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠1=180°﹣2∠AED,∠2=180°﹣2∠ADE,∵∠AED=x,∠ADE=y,∴∠1=180°﹣2∠AED=180°﹣2x,∠2=180°﹣2∠ADE=180°﹣2y,(3)∵∠A′+∠A′DE+∠A′ED=180°,∴∠A′DE+∠A′E D=180°﹣∠A′,∵∠A=∠A′,∴∠A′DE+∠A′ED=180°﹣∠A,∵∠A′DE=∠ADE,∠A′ED=∠AED∴∠ADE+∠AED=180°﹣∠A,∵∠1+2∠AED=180°,∠2+2∠ADE=180°,∴2(∠AED+∠ADE)=360°﹣∠1﹣∠2,∴∠AED+∠ADE=180°﹣(∠1+∠2),∴∠A=(∠1+∠2),∴2∠A=∠1+∠2.。

2015-2016学年度第一学期期末八年级数学试题(含答案)

2015-2016学年度第一学期期末八年级数学试题(含答案)

2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。

答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。

第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。

安徽八上期末数学试卷

安徽八上期末数学试卷

人教版八年级数学上册期末试卷及答案解析一、选择题(每题3分,共30分)1.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE【考点】全等三角形的判定【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了。

【解答】解:A.添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确。

B.添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B 选项错误。

C.添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误。

D.添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误。

故选:A2.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4 B.3 C.2 D.1【考点】菱形的判定与性质;含30度角的直角三角形。

【专题】几何图形问题【分析】过点P 做PM ∥CO 交AO 于M ,可得∠CPO=∠POD ,再结合题目推出四边形COMP 为菱形,即可得PM=4,又由CO ∥PM 可得∠PMD=30°,由直角三角形性质即可得PD 。

【解答】解:如图:过点P 做PM ∥CO 交AO 于M ,PM ∥CO∴∠CPO=∠POD ,∠AOP=∠BOP=15°,PC ∥OA∴四边形COMP 为菱形,PM=4PM ∥CO ⇒∠PMD=∠AOP+∠BOP=30°,又∵PD ⊥OA∴PD=21PC=2 令解:作CN ⊥OA∴CN=21OC=2 又∵∠CNO=∠PDO∴CN ∥PD∵PC ∥OD∴四边形CNDP 是长方形∴PD=CN=2故选:C3.如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是( )A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【考点】完全平方公式的几何背景【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案。

2015-2016学年度第一学期八年级数学期末考试试卷及答案

2015-2016学年度第一学期八年级数学期末考试试卷及答案

2015-2016第一学期八年级数学期末试题一、选择题(每小题4分,共40分)1、若分式11-2+x x 的值为零,则x 的值为( ) A. 1 B. -1 C. ±1 D. 02、下列运算正确的是( )A. x 4²x 3 =x 12B.(x 3)4 =x 7C. x 4÷x 3=x(x ≠0)D. x 4+x 4=x 83、已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是 ( )A. 4cmB. 5cmC. 6cmD.13cm4、如图,AC ∥BD ,AD 与BC 相交于O ,∠A =45°,∠B =30°,那么∠AOB 等于( )A.75°B.60°C.45°D.30(4题) (6题) (10题)5、若等腰三角形的一个内角为50°,则另两个角的度数为( )A.65°、65° B 、65°、65°或50°、80°C.50°、80° D 、50°、50°6、如图,MP 、NQ 分别垂直平分AB 、AC 且BC =6cm ,则△APQ 的周长为( )cmA.12B.6C.8D.无法确定7、下列运算中正确的是( )A .236X =X XB .1--=y+x y +x C .b a b +a =b a b +ab +a --22222 D . yx =+y +x 11 8、已知正n 边形的一个内角为135°,则边数n 的值是( )A.6B.7C.8D.109、将多项式x 3-xy 2分解因式,结果正确的是( )A.•x (x 2-y 2)B.x (•x -y )2C.x (x +y )2D.x (x+y )(x -y )10、如图,D 是AB 边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC 上F 处,若∠B =50°,则∠BDF 度数是( )A.80°B.70°C.60°D.不确定二、填空题(每小题3分,共18分)11、如图,在△ABC 中,∠C 是直角,AD 平分∠BAC ,交BC 于点D 。

第一学期八年级数学期末试卷及答案

第一学期八年级数学期末试卷及答案

2015-2016学年度第一学期期末测试试卷参考答案和评分标准二、填空题(每小题3分,共18分)11. 2≠ 12.十 13.)9)(9(-+a a 14. 4 15. 100 16. 240三、解答题(一)(每小题5分,共15分) 17.解:原式=32422)31(24-•-•-y yx y x ————— 1分 =3328-•yy ————— 3分= 16 —————— 5分18.解:原式=)44(22y x x y +- —————— 2分=2)2(y x y - —————— 5分 19.解:设多边形的一个内角为x °,则一个外角为(x 31)°,依题意得: ———— 1分13518031==+x x x —————— 3分 8)13531(360=⨯÷∴或8)135-180(360=÷ —————— 4分答:多边形的边数是8 。

—————— 5分四、解答题(二)(每小题7分,共21分)20. 证明:∵ AE=CF∴ AE+EF=CF+FE即 AF=CE—————— 1分∵ AD ∥BC∴ ∠A=∠C —————— 2分在△ADF 和△CBE 中,AD=CB ∠A=∠CAF=CE ———— 4分 ∴△ADF ≌△CBE(SAS) ------------- 5分 ∴ DF=BE ------------- 6分21.解:原式=1)1111(2+÷-++x x x x =2111)1)(1(xx x x x +•-+-+ ———— 2分=221111xx x x +•-+- =11-+x x ———— 4分 当3=x 时,原式= 2241313==-+ ———— 7分22.解:(1)h AB S ABC •=∆21=3521⨯⨯=215————2分(2)△111C B A 为所求作的图形。

———— 4分 (3)1A (1,5),1B (1,0),1C (4,3) ———— 7分五、解答题(三)(每小题8分,共16分)23.解:设足球的单价是x 元,则篮球的单价为(40+x )元,依题意得: ———1分xx 900401500=+ ———4分 方程两边乘)40(+x x ,得 360009001500+=x x解得 60=x ———6分经检验,60=x 是原分式方程的解。

八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、精心选一选(每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.(π﹣2013)0的计算结果是()A.π﹣2013 B.2013﹣πC.0 D.13.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.D.6x3÷(﹣3x2)=2x4.把分式方程去分母后所得结果正确的是()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣25.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是()A.∠DAE=∠CBE B.△DEA不全等于△CEBC.CE=DE D.△EAB是等腰三角形6.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x7.若a、b、c是△ABC的三边,满足a2﹣2ab+b2=0且b2﹣c2=0,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形8.下列运算正确的是()A.B.C.D.9.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣10.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处二、细心填一填(每小题4分,共40分)11.0.000608用科学记数法表示为.12.(1)(a2)3•(a2)4÷(a2)5=;(2)(2x﹣y)2﹣(2x+y)(﹣y+2x)=.13.等腰三角形一个角为50°,则此等腰三角形顶角为.14.已知4x2+mx+9是完全平方式,则m=.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是.16.若分式有意义,则x的取值范围是.17.已知x+y=6,xy=4,则x2y+xy2的值为.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.19.已知关于x的分式方程=1有增根,则a=.20.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为度.三、作图题(第21题8分,共8分)21.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.四、解答题(共72分)22.分解因式:(1)a3b﹣ab(2)x3y3﹣2x2y2+xy.23.计算:(1)﹣a﹣1(2)(﹣)÷.24.化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6.25.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.26.解方程:.27.某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?五、综合题(共12分)28.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案与试题解析一、精心选一选(每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:B.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2.(π﹣2013)0的计算结果是()A.π﹣2013 B.2013﹣πC.0 D.1【考点】零指数幂.【分析】根据零指数幂:a0=1(a≠0)进而得出答案.【解答】解:(π﹣2013)0=1.故选:D.【点评】此题主要考查了零指数幂:a0=1(a≠0),正确根据定义得出是解题关键.3.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.D.6x3÷(﹣3x2)=2x【考点】整式的混合运算.【专题】计算题.【分析】A、原式利用幂的乘方运算法则计算得到结果,即可做出判断;B、原式利用同分母幂的乘法法则计算得到结果,即可做出判断;C、原式利用负指数幂法则计算得到结果,即可做出判断;D、原式利用单项式除以单项式法则计算得到结果,即可做出判断.【解答】解:A、(x3)2=x6,故选项错误;B、2a﹣5•a3=2a﹣2,故选项错误;C、3﹣2=,故选项正确;D、6x3÷(﹣3x2)=﹣2x,故选项错误.故选C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.把分式方程去分母后所得结果正确的是()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣2【考点】解分式方程.【分析】根据等式的性质:两边都乘以(x﹣2),可得答案.【解答】解:去分母,得1+(1﹣x)=x﹣2,故D正确;故选:D.【点评】本题考查了解分式方程,利用了等式的性质.5.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是()A.∠DAE=∠CBE B.△DEA不全等于△CEBC.CE=DE D.△EAB是等腰三角形【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】根据三角形的内角和定理就可以求出∠DAB=∠CBA,由等式的性质就可以得出∠DAE=∠CBE,根据AAS就可以得出△DEA≌△CEB;由△DEA≌△CEB就可以得出CE=DE,∠1=∠2就可以得出AE=BE,就可以得出结论.【解答】解:∵∠1+∠C+∠ABC=∠2+∠D+∠DAB=180°,且∠1=∠2,∠C=∠D,∴∠ABC=∠DAB,∴∠ABC﹣∠2=∠DAB﹣∠1,∴∠DAB=∠CBA.故A正确;在△DEA和△CEB中,∴△DEA≌△CEB(AAS),故B错误;∴AC=BD.∵∠1=∠2,∴BE=AE,∴△EAB是等腰三角形,AC﹣AE=BD﹣BE,故D正确;∴CE=DE.故C正确.故选B.【点评】本题考查了三角形全等的判定及性质的运用,等腰三角形的判定及性质的运用,等式的性质的运用,解答时证明三角形全等是关键.6.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x【考点】因式分解的意义.【专题】因式分解.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【解答】解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;故选:C.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.7.若a、b、c是△ABC的三边,满足a2﹣2ab+b2=0且b2﹣c2=0,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形【考点】因式分解的应用;因式分解-运用公式法.【专题】计算题.【分析】把已知等式左边分解得到(a﹣b)2=0且(b+c)(b﹣c)=0,则a=b且b=c,即a=b=c,然后根据等边三角形的判定方法矩形判断.【解答】解:∵a2﹣2ab+b2=0且b2﹣c2=0,∴(a﹣b)2=0且(b+c)(b﹣c)=0,∴a=b且b=c,即a=b=c,∴△ABC为等边三角形.故选D.【点评】本题考查因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.8.下列运算正确的是()A.B.C.D.【考点】分式的乘除法;分式的加减法.【分析】利用分式的乘除运算与加减运算法则求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、,故本选项错误;B、,=•=,故本选项错误;C、,==,故本选项正确;D、==﹣,故本选项错误.故选C.【点评】此题考查了分式的乘除运算与加减运算法则.此题难度不大,注意掌握符号的变化是解此题的关键.9.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣【考点】解分式方程.【专题】开放型.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解答】解:根据题意得:2⊗(2x﹣1)=﹣=1,去分母得:2﹣(2x﹣1)=4x﹣2,去括号得:2﹣2x+1=4x﹣2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处【考点】规律型:图形的变化类.【分析】根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1m,2012÷6=335…2,行走了335圈又两米,即落到C点.【解答】解:∵两个全等的等边三角形的边长为1m,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,∵2012÷6=335…2,即正好行走了335圈又两米,回到第三个点,∴行走2012m停下,则这个微型机器人停在C点.故选:C.【点评】本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出2012为6的倍数余数是几.二、细心填一填(每小题4分,共40分)11.0.000608用科学记数法表示为 6.08×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000608用科学记数法表示为6.08×10﹣4,故答案为6.08×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(1)(a2)3•(a2)4÷(a2)5=a4;(2)(2x﹣y)2﹣(2x+y)(﹣y+2x)=2y2﹣4xy.【考点】整式的混合运算.【分析】(1)利用整式的乘方法则,积的乘方法则以及单项式的乘法法则化简即可.(2)先提公因式,然后再化简可以简便运算.【解答】解:(1)原式=a6•a8÷a10=a14﹣10=a4.故答案为a4.(2)原式=(2x﹣y)(2x﹣y﹣2x﹣y)=(2x﹣y)•(﹣2y)=2y2﹣4xy.故答案为2y2﹣4xy.【点评】本题考查整式的乘方法则,积的乘方法则以及单项式的乘法法则,灵活掌握运算法则是正确解题的关键.13.等腰三角形一个角为50°,则此等腰三角形顶角为50°或80°.【考点】等腰三角形的性质;三角形内角和定理.【分析】已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.【解答】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°﹣50°×2=80°故填50°或80°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.已知4x2+mx+9是完全平方式,则m=±12.【考点】完全平方式.【分析】这里首末两项是2x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【解答】解:∵4x2+mx+9是完全平方式,∴4x2+mx+9=(2x±3)2=4x2±12x+9,∴m=±12,m=±12.故答案为:±12.【点评】此题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是2.【考点】整式的混合运算—化简求值.【专题】整体思想.【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b=,ab=1时,原式=1﹣2×+4=2.故答案为:2.【点评】本题考查多项式相乘的法则和整体代入的数学思想.16.若分式有意义,则x的取值范围是x≠.【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于0列式计算即可.【解答】解:由题意得,1﹣2x≠0,解得,x≠,故答案为:x≠.【点评】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.17.已知x+y=6,xy=4,则x2y+xy2的值为24.【考点】因式分解的应用.【专题】因式分解.【分析】先提取公因式xy,整理后把已知条件直接代入计算即可.【解答】解:∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故答案为:24.【点评】本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.19.已知关于x的分式方程=1有增根,则a=1.【考点】分式方程的增根.【专题】计算题.【分析】方程两边都乘以最简公分母(x+2),把分式方程化为整式方程,再根据分式方程的最简公分母等于0求出方程有增根,然后代入求解即可得到a的值.【解答】解:方程两边都乘以(x+2)得,a﹣1=x+2,∵分式方程有增根,∴x+2=0,解得x=﹣2,∴a﹣1=﹣2+2,解得a=1.故答案为:1.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为80度.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据三角形的内角和和折叠的性质计算即可.【解答】解:∵∠1:∠2:∠3=28:5:3,∴设∠1=28x,∠2=5x,∠3=3x,由∠1+∠2+∠3=180°得:28x+5x+3x=180°,解得x=5,故∠1=28×5=140°,∠2=5×5=25°,∠3=3×5=15°,∵△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,∴∠DCA=∠E=∠3=15°,∠2=∠EBA=∠D=25°,∠4=∠EBA+∠E=25°+15°=40°,∠5=∠2+∠3=25°+15°=40°,故∠EAC=∠4+∠5=40°+40°=80°,在△EGF与△CAF中,∠E=∠DCA,∠DFE=∠CFA,∴△EGF∽△CAF,∴α=∠EAC=80°.故填80°.【点评】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.三、作图题(第21题8分,共8分)21.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.【考点】作图-轴对称变换.【分析】(1)先找出对称轴,再从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可,然后从坐标中读出各点的坐标;(2)从图中可以看出四边形ABED是一个梯形,根据梯形的面积公式计算.【解答】解:(1)D(﹣4,3);E(﹣5,1);F(0,﹣2);(5分)(2)AD=6,BE=8,∴S四边形ABED=(AD+BE)•2=AD+BE=14.(8分)【点评】本题的关键是找出各点的对应点,然后顺次连接.四、解答题(共72分)22.分解因式:(1)a3b﹣ab(2)x3y3﹣2x2y2+xy.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式ab,进而利用平方差公式分解因式得出答案;(2)直接提取公因式xy,进而利用完全平方公式分解因式得出答案.【解答】解:(1)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(2)x3y3﹣2x2y2+xy=xy(x2y2﹣2xy+1)=xy(xy﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.23.计算:(1)﹣a﹣1(2)(﹣)÷.【考点】分式的混合运算.【分析】(1)先通分,再进行加减即可;(2)根据运算顺序,先算括号里面的,再进行分式的除法运算.【解答】解:(1)原式=﹣﹣==;(2)原式=(﹣)÷=•==﹣.【点评】本题考查了分式的混合运算,通分、因式分解和约分是解答的关键.24.化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式被除数括号中第一项利用完全平方公式展开,第二项利用平方差公式化简,最后一项利用单项式乘以多项式法则计算,合并后利用多项式除以单项式法则计算得到最简结果,将x与y 的值代入计算,即可求出值.【解答】解:原式=(x2﹣4xy+4y2+x2﹣4y2﹣4x2+2xy)÷2x=(﹣2x2﹣2xy)÷2x=﹣x﹣y,当x=5,y=﹣6时,原式=﹣5﹣(﹣6)=﹣5+6=1.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.25.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.【考点】全等三角形的判定与性质;三角形的外角性质.【专题】证明题.【分析】①利用SAS即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB,利用外角的性质求出∠AEB的度数,即可确定出∠BDC的度数.【解答】①证明:在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);②解:∵△ABE≌△CBD,∴∠AEB=∠BDC,∵∠AEB为△AEC的外角,∴∠AEB=∠ACB+∠CAE=30°+45°=75°,则∠BDC=75°.【点评】此题考查了全等三角形的判定与性质,以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键.26.解方程:.【考点】解分式方程.【专题】计算题.【分析】方程右边分子分母提取﹣1变形后,两边都乘以x﹣3去分母后,去括号,移项合并将x系数化为1,求出x的值,将x的值代入检验,即可得到分式方程的解.【解答】解:方程变形为+2=,去分母得:1+2(x﹣3)=x﹣4,去括号得:1+2x﹣6=x﹣4,解得:x=1,将x=1代入得:x﹣3=1﹣3=﹣2≠0,则分式方程的解为x=1.【点评】此题考查了解分式方程,做题时注意分式方程要检验.27.某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?【考点】分式方程的应用;二元一次方程的应用.【分析】(1)首先设足球单价为x元,则篮球单价为(x+40)元,根据题意可得等量关系:1500元购进的篮球个数=900元购进的足球个数,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,根据题意可得篮球的单价×篮球的个数m+足球的单价×足球的个数n=1000,再求出整数解即可.【解答】解:(1)设足球单价为x元,则篮球单价为(x+40)元,由题意得:=,解得:x=60,经检验:x=60是原分式方程的解,则x+40=100,答:篮球和足球的单价各是100元,60元;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,由题意得:100m+60n=1000,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买篮球7个,购买足球5个;②购买篮球4个,购买足球10个;③购买篮球1个,购买足球15个.【点评】此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.五、综合题(共12分)28.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【考点】全等三角形的判定.【专题】证明题;动点型.【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【解答】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=C Q,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.【点评】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年安徽省含山县八年级(上)期末数学试卷
一、选择题(本题共12个小题,每小题3分,共36分)
1.下列是我国四大银行的商标,其中不是轴对称图形的是()
A.B.C.D.
2.若一个三角形三个内角度数的比为2:3:7,那么这个三角形是()
A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形
3.能使两个直角三角形全等的条件是()
A.斜边相等 B.两直角边对应相等
C.两锐角对应相等D.一锐角对应相等
4.在,,,中,是分式的有()
A.1个B.2个C.3个D.4个
5.下列说法中错误的是()
A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴
B.关于某条直线对称的两个图形全等
C.若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称
D.全等的三角形一定关于某条直线对称
6.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为()
A.3.1×10﹣9米B.3.1×109米C.﹣3.1×109米D.0.31×10﹣8米
7.下列计算中,正确的个数有()
①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.
A.1个B.2个C.3个D.4个
8.下列各式是完全平方式的是()
A.x2+2x﹣1 B.x2+1 C.x2+2xy+1 D.x2﹣x+
9.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()
A.1 B.2 C.3 D.4
10.等腰三角形的周长为24,那么腰长x的取值范围为()
A.0<x≤8 B.0<x<6 C.0<x<12 D.6<x<12
11.若3x=15,3y=5,则3x﹣y等于()
A.5 B.3 C.15 D.10
12.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重合,则∠1的度数为()
A.45°B.60°C.75°D.85°
二、填空题(本题共6小题,每小题4分,共24分)
13.点M(﹣2,1)关于x轴对称的点N的坐标是.
14.因式分解:x2y﹣xy=.
15.如图,点D、E在△ABC的BC边上,∠BAD=∠CAE,要推理得出△ABE≌△ACD,可以补充的一个条件是(不添加辅助线,写出一个即可).
16.当x≠时,分式有意义.
17.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形底角的度数
为°.
18.如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,若∠BDC=140°,∠BGC=110°,则∠A的度数为°.
三、解答题(本题5个小题,共40分)
19.计算:+(﹣2014)0﹣(﹣)﹣1+|﹣2|
20.( 1)化简:(ab2)2•(﹣a3b)3÷(﹣5ab)
(2)解方程:=2+.
21如图,已知∠ABC=90°,∠ABE是等边三角形,点P为射线BC上一点(点P与点B不重合),连结AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连结QE并延长交射线BC于点F.
(1)证明:△ABP≌△AEQ;
(2)求∠QFC的度数.
22.在“大课间”活动跳绳时,相同时间内小锌跳了90下,小婷跳了120下,已知小婷每分钟比小欣多跳20下,请问两人每分钟分别跳多少下?
23.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)求证:DE平分∠BDC;
(2)若点M在DE上,且DC=DM,求证:ME=BD.
八年级(上)期末数学试卷
参考答案
一、选择题(本题共12个小题,每小题3分,共36分)
1.A;2.A;3.B;4.B;5.D;6.A;7.B;8.D;9.B;10.D;
11.B; 12.C;
二、填空题(本题共6小题,每小题4分,共24分)
13.N(-2,-1);14.xy(x-1);15.AB=AC;16.3;17.15或75;18.80;
三、解答题(本题5个小题,共40分)
19.;20.;21.;22.;23.;。

相关文档
最新文档