分析realtimePCR数据
Realtime PCR检测原理和问题处理

只有染料法才需要做熔解曲线,探针法没必要。
原始图谱
导数图谱
精品课件
SYBR Green I的优缺点
• 成本低 不需要制备序列特异的针对性探针,且试剂便宜
• 适合初步筛查 先用SYBR筛查,再对少数关键样品用探针法确认
• 配合熔解曲线分析 需鉴定PCR反应是否有杂带、引物二聚体
• 特异性问题 不能分辨主带与杂带,给出所有双链DNA的总信号
精品课件
[DNA]0
确定初始模板的浓度 初始DNA量越多, 荧光达 到某一值(域值)时所需 要的循环数越少 Log浓度与循环数呈线性 关系,根据样品扩增达到 域值的循环数就可计算出 样品中所含的模板量
精品课件
Real-time PCR动力学曲线和四个阶段
只有在荧光信号 指数扩增阶段, PCR 产物量的对数值与起始 模板量之间存在线性关 系,我们可以选择在这 个阶段进行定量分析。
阈值
阈值= 基线(背景)信号的标准偏差的10倍,即 PCR扩增信 号进入相对稳定对数增长的最下限,通常设定在S型扩增曲 线的增长拐点处附近。
精品课件
Ct值
扩增反应中,当荧光信号增长到大于阈值时所对应的 循环数,即PCR增长信号与 Threshold发生交汇的循环数,也 是FQ-PCR判断阴阳性和进行定量分析的依据。
精品课件
TaqMan探针的作用机理
精品课件
Taqman探针
优点
1. 灵敏、特异性高: 每扩增一个特异产物只释放一个分子的荧光染 料,实时检测特异扩增片断,非特异产物对检测信号没有影响,有 效提高检测的专一性
2. 有多种不同波长的荧光基团对可供选择,可以实现在同一管内检测 多重PCR,降低成本也提高效率和准确性
荧光定量pcr步骤

荧光定量pcr步骤荧光定量PCR(real-timePCR)一种高通量的核酸定量分析技术,用于检测和定量检测基因表达以及实验条件下的细菌基因或病毒基因含量。
荧光定量PCR是基于反转录-聚合酶链反应(RT-PCR)和实时PCR技术,结合这两种技术,可以非常快速地检测和定量基因表达。
本文将介绍荧光定量PCR的步骤。
第一步:样品的准备与检测1.1品的准备:首先,细菌或病毒样品根据实验要求进行灭菌或病毒灭活。
1.2测:根据需要,采用适当的抗体检测样品中是否有病毒和细菌,将病毒和细菌样品中的RNA或DNA分离出来,将分离出来的核酸用于下一步检测。
第二步:荧光定量PCR反应2.1品添加:将分离出来的核酸和所需的实验试剂(如反转录酶、DNA聚合酶、定量PCR探针、模板DNA,以及相关配套试剂)混合,反应体系得到。
2.2动PCR反应:将反应体系定温热处理,使反转录酶向模板DNA 中的特定序列引物亲和,以实现反转录。
2.3入PCR探针:将定量PCR探针加入反应液中,以实现基因表达荧光定量PCR。
2.4复PCR循环:每次循环引入一定量的反应物,以实现基因表达荧光定量PCR,并在每次循环时观察荧光信号,从而实现基因表达定量。
第三步:数据分析3.1据分析:对荧光信号数据进行定量分析,实现基因表达定量,并将结果画在实验曲线上,以观察基因表达的变化情况。
3.2验结果:在实验曲线上,横坐标为PCR循环次数,纵坐标为基因表达量,可以观察实验结果,以确定基因表达量的情况。
荧光定量PCR步骤是用于检测和定量检测基因表达以及实验条件下的细菌基因或病毒基因含量的有效技术,它包括样品的准备和检测、荧光定量PCR反应、数据分析三个步骤,可以快速准确地定量检测基因表达情况,为实验中的细菌和病毒基因分析领域提供有效的参考依据。
RealtimePCR原理及其定量方法

定量PCR技术: 通过对PCR扩增反应中每一 个循环产物荧光信号的实 时检测从而实现对起始模 板定量及定性的分析
2、荧光定量PCR常用的三个概念
扩增曲线、阈值、CT值
plateau phase Liner phase
Exponential phase
Normalised reporter Fluorescence (Rn)
另一种思路
由于PCR反应体系中荧光物质的荧光强度与PCR产物的量成 正比,所以可以用荧光强度来代替PCR产物的量,同时考虑 荧光本底值,则:
Rn= RB+ X0(1+ Ex) Rs
总荧光信号强度=本底信号+分子数量×单位信号强度
Rn:第n个循环时的总信号 RB:本底 RS:单位信号强度 X0:起始DNA数目 Ex:PCR扩增效率
线性关系、扩增效率确认
相关系数(R2):大于0.98 标准曲线斜率: -3 到 -3.5 PCR扩增效率(Ex): 0.9到1.2
扩增效率
106 105 104 103 102 10
荧光强度---循环数曲线
初始模板量对数---C(T)循环数标准曲线
扩增效率理论值为1,即每增加一个循环PCR产物加倍。
实时荧光定量PCR原理和定量方法 一、荧光定量PCR的原理
在PCR反应体系中加入荧 光基团,利用荧光信号累积 实现了实时监测整个PCR进程, 对起始模板进行定量分析的 方法。
三个关键词: 实时,定量,荧光
1、定量与常规PCR的差别
常规PCR技术: 对 PCR 扩 增 反 应 的 终产物进行定量及 定性分析
非理想的PCR反应:
Xn=X0 ×(1+Ex)n
n:扩增循环数 X0:起始模板数量 Xn:第n次循环后扩增产物数量 Ex:PCR扩增效率
实时荧光定量PCR的数据分析方法

实时荧光定量PCR的数据分析方法
作者:易健明, 屈武斌, 张成岗, YI Jian-Ming, QU Wu-Bin, ZHANG Cheng-Gang
作者单位:易健明,张成岗,YI Jian-Ming,ZHANG Cheng-Gang(军事医学科学院放射与辐射医学研究所,蛋白质组学国家重点实验室,全军军事认知与心理卫生研究中心,北京100850;安徽医科大学研究生院,安徽合肥230032)
, 屈武斌,QU Wu-Bin(军事医学科学院放射与辐射医学研究所,蛋白质组学国家重点实验室,全军军事认知
与心理卫生研究中心,北京100850)
刊名:
生物技术通讯
英文刊名:Letters in Biotechnology
年,卷(期):2015,26(1)
引用本文格式:易健明.屈武斌.张成岗.YI Jian-Ming.QU Wu-Bin.ZHANG Cheng-Gang实时荧光定量PCR的数据分析方法[期刊论文]-生物技术通讯 2015(1)。
Real-timePCR实验原理与技术

实时荧光定量PCR技术原理
01
在实时荧光定量PCR反应中, DNA模板被扩增时,与荧光探 针结合,产生荧光信号。
02
随着DNA的扩增,荧光信号逐 渐增强,通过对荧光信号的实 时监测和分析,可以计算出 DNA的起始浓度。
03
通过标准曲线或内参基因的校 准,可以将起始浓度转化为目 标基因的表达量或基因拷贝数 。
实时监测荧光信号
实时监测荧光信号,确保PCR产物在指数扩增阶段被检测到。
标准化实验流程
建立标准化实验流程,确保实验结果的可靠性和可重复性。
未来展望
新技术应用
01
随着新技术的不断发展,如数字PCR、微流控PCR等,Real-
time PCR技术将得到进一步优化。
高通量检测
02
通过多重PCR和高通量检测平台,实现大规模样本的快速检测。
03
Real-time PCR 实验数 据分析
数据收集与整理
数据收集
在实时PCR实验中,数据收集通常涉 及记录每个循环的荧光信号强度。这 些数据通常以图表形式表示,其中横 轴表示循环数,纵轴表示荧光信号强 度。
数据整理
收集到的原始数据需要经过整理,包 括去噪、去除异常值和标准化等步骤, 以确保数据分析的准确性。
自动化与智能化
03
实现Real-time PCR的自动化和智能化,提高实验效率,减少人
为误差。
THANKS FOR WATCHING
感谢您的观看
real-timepcr实验原 理与技术
contents
目录
• Real-time PCR 实验原理 • Real-time PCR 实验技术 • Real-time PCR 实验数据分析 • Real-time PCR 实验应用 • Real-time PCR 实验注意事项与优化建
Real-time_PCR(从原理到实验方法及数据分析)

total RNA total RNA
cDNA
cDNA
cDNA
cDNA
相对定量:内对照 Endogenous Control
用以标准化样品操作
time t =0 t=12 t=24 t=48
total RNA total RNA
total RNA total RNA
cDNA
cDNA
cDNA
cDNA
线性图谱
对数图谱
基线
阈值
Ct值
[DNA]0
什么是阈值?
1. 基线(空白)信号的产生是由于测量的偶然误差引起的。 2. 偶然误差的结果满足对数分布。 3. 阈值 = 基线(背景)信号标准偏差 x 10。 4. 由于测量的偶然误差而导致测得的荧光信号大于阈值的概率小于10-5。 5. 当荧光信号大于阈值时,可以肯定是由于PCR的扩增使得荧光强度得以测量。
突变的存在形式
目标序列的有无
等位基因分型
• 定义:等位基因分型(AD)分析是一种多重(每个反应包括一个以上的 引物和探针对)、终点(在PCR过程的终点收集数据)分析实验,用 于检测某个核酸序列的变异。 每个反应中包括两个引物和探针对,允许在一个目标模板序列的单核 苷酸多态性(SNP)位点上出现两个可能的变异基因型。 目标序列的实际量不确定。
1. 2. 3. 4. 5. 6. Transcription Hairpin release in the nucleus Export to cytoplasm Dicer processing Strand selection by RISC Translational repression
*mature active strand
等位基因自动识别软件
Real_Time_PCR

核糖核苷酸
Q
Cycling Probe法基本原理
热变性 退火 酶切 延伸
SYBR Green I法vs Probe法
SYBR Green I 法
◆优点:价栺便宜、使用方便、无需合成特异性探针。 ◆缺点:引物要求高(要求特异性扩增)、不能进行多重PCR。
Probe法
◆优点:特异性强,能进行多重PCR。 ◆缺点:需要设计特异性探针,成本高、有时设计困难。
实时荧光定量PCR
(Real Time PCR)
主要内容
Real Time PCR 基础知识 Real Time PCR 实验方法
Real Time PCR 解析方法
Real Time PCR 应用实例
Real Time PCR 基础知识
Real Time PCR 的用途及原理
Real Time PCR 检测方法
互补性
特异性
★★★
★★★
RT-PCR用引物 ★★
★号表示重要程度,★号越多,表示该参数越重要,设计时要优先考虑
Real Time PCR引物及探针设计
好的引物 需要寻找好的参照序列
目的基因 目的基因序列获得 引物设计 分析序列
RefSeq序列
特异性确认
基因组序列确认 Real Time RT-PCR 引物
Real Time PCR 检测系统
Real Time PCR 用途
定性分析
病毒和病原菌检测 生物品种鉴定
绝对定量
病毒和病原菌定量分析 导入基因拷贝数解析
相对定量
差异显示结果验证 基因芯片结果验证 siRNA效果确认 mRNA表达量分析
SNP解析
GMO定量检测
操作简单,无需电泳,检测快速,降低污染几率, 适用于大量样品检测,检测灵敏度高; 可以在宽广范围内进行准确定量。
pcr数据分析

一般来讲,进行real-time qPCR MasterMix都是2×的浓缩液,只需要加入模板和引物就可以。
由于real-time qPCR灵敏度高,所以每个样品至少要做3个平行孔,以防在后面的数据分析中,由于Ct相差较多或者SD太大,无法进行统计分析。
通常来讲,反应体系的引物终浓度为100-400mM;模板如果是总RNA一般是10ng-500,如果cDNA,通常情况下是1ul或者1ul的10倍稀释液,要根据目的基因的表达丰度进行调整。
当然这些都是经验值,在操作过程中,还需要根据所用MasterMix,模板和引物的不同进行优化,达到一个最佳反应体系。
在反应体系配置过程中,有下面几点需要注意:1. MasterMix不要反复冻融,如果经常使用,最好溶解后放在4度。
2. 更多的配制Mix进行,减少加样误差。
最好能在冰上操作。
一般来讲,进行real-time qPCR MasterMix都是2×的浓缩液,只需要加入模板和引物就可以。
由于real-time qPCR灵敏度高,所以每个样品至少要做3个平行孔,以防在后面的数据分析中,由于Ct相差较多或者SD太大,无法进行统计分析。
通常来讲,反应体系的引物终浓度为100-400mM;模板如果是总RNA一般是10ng-500,如果cDNA,通常情况下是1ul或者1ul的10倍稀释液,要根据目的基因的表达丰度进行调整。
当然这些都是经验值,在操作过程中,还需要根据所用MasterMix,模板和引物的不同进行优化,达到一个最佳反应体系。
在反应体系配置过程中,有下面几点需要注意:1. MasterMix不要反复冻融,如果经常使用,最好溶解后放在4度。
3. 每管或每孔都要换新枪头!不要连续用同一个枪头加样!4. 所有成分加完后,离心去除气泡。
5. 每个样品至少3个平行孔。
参比或者校正染料(reference dye,passive dye)常用的是ROXTM(现在已经是ABI的注册商标了!)或者其他染料,只要不影响检测PCR产物的荧光值就可以。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析real-time-PCR数据
————————————————————————————————作者:————————————————————————————————日期:
ﻩ
用2-△△Ct法分析real-time PCR数据-----联合应用LightCycler Data Analysis软件和MS Excel
By netmee,
引用请注明作者。
1、打开存取的数据文件,点击
2、依次点击,,这是适合SYBRgreen为染料的选项。
点击step1:Baseline下的“change graph settings”小图标。
取消弹出的Customize
Graph选项卡中的Logarithmis选项,点击“OK”按钮,退出选项卡。
3、点击下的“change graph settings”小图标
,取消弹出的CustomizeGraph选项卡中的Logarithm
is选项,点击“OK”按钮,退出选项卡。
4、在选项卡中拖动红色标记线,选取个条曲线都为直线上升部位。
5、可以在选项卡中观察是否需选取的是曲线直线上升部分。
观察绿线部分与S型曲线交叉的部分是否为直线。
6、如果确为直线,则左侧的“CrossingPoint”值为所需要的Ct值。
7、依次选取下图菜单:将数据导出为文本文件。
8、打开所保存的文本文件,如图选取
9、将数据粘贴入新建的excel文件,“CrossingPoint”列即是Ct值,删除“Standa rd”和“Calculated Concentration”列。
10、将目的基因,本例中为“iNOS”的Ct值按标本对应剪切入beta-actin值右侧一列。
分别标记两列数据为“beta-actin”和“iNOS”。
11、设置所有Ct值的单元格格式
12、数字选项卡,分类选择为数值,点击确定。
13、将E列(目的基因Ct值右侧一列)输入公式“=D4-C4”,求出目的基因与同管beta-actin Ct值之差,即△Ct。
14、向下拉复制公式,将△Ct列数值计算出。
15、在△Ct列右侧一列插入公式“=POWER(2,(0-E4))”,此即目的基因相对beta-actin 的相对表达量,即2-△Ct(2的-△Ct次方)。
16、在2-△Ct列右侧插入公式“=F4/$F$4”,此列即“2-△△Ct”列,复制公式填满所有标本对应的2-△△Ct空格。
17、至此,2-△△Ct法计算的各标本目的基因的相对表达量完成,2-△△Ct列的数据可以用统计软件进行分析。