2017-2018学年北京市西城区高一下学期期末考试数学卷

合集下载

北京市西城区(北区)2012-2013学年高二数学下学期期末考试试题 理(含解析)

北京市西城区(北区)2012-2013学年高二数学下学期期末考试试题 理(含解析)

2012-2013学年北京市西城区(北区)高二(下)期末数学试卷
(理科)参考答案与试题解析
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
==
2.(5分)甲骑自行车从A地到B地,途中要经过4个十字路口,已知甲在每个十字路口遇到红灯的概率都是,且在每个路口是否遇到红灯相互独立,那么甲在前两个十字路口都没有
,第三个路口遇到红灯,概率等于
解:由题意可得甲在每个十字路口遇到红灯的概率都是
=,
=
3.(5分)函数的图象在点(2,φ(2))处的切线方程是()
解:求导函数,可得
的图象在点﹣=(
32
6.(5分)已知一个二次函数的图象如图所示,那么它与ξ轴所围成的封闭图形的面积等于()
=
7.(5分)(2006广州二模)4名男生和4名女生随机地排成一行,有且仅有两名男生排在一
种排列方法.由分步计数原理求出有解:随机排成一行,总共有
个整体,有
种排法,而女生的排法是
=
8.(5分)已知函数,若同时满足条件:
⎺ξ0 (0,+),ξ0为φ(ξ)的一个极大值点;
α ξ(8,+),φ(ξ)>0.
得到
,则=
,则
,即
即上的最小值为
解得
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.(5分)的二项展开式中的常数项为160.(用数字作答)
解:由于
=
10.(5分)如果函数φ(ξ)=χοσξ,那么=.
和,再求出
=χοσ=
σιν
=。

人教版数学高一下册期末测试精选(含答案)1

人教版数学高一下册期末测试精选(含答案)1

人教版高一下册期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.设,m n 为两条不同的直线,,,αβγ为三个不重合平面,则下列结论正确的是( ) A .若m αP ,n αP ,则m n P B .若m α⊥,m n P ,则n α⊥ C .若αγ⊥,βγ⊥,则αβ∥D .若m α⊥,αβ⊥,则m βP【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题 【答案】B2.在四棱锥P ABCD -中,PA ⊥平面ABC ,ABC ∆中,32BA BC AC ===,2PA =,则三棱锥P ABC -的外接球的表面积为( )A .B .22πC .12πD .20π【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题 【答案】B3.直线10x -+=的倾斜角为( ) A .3π B .6π C .23π D .56π 【来源】山西省康杰中学2017-2018学年高二上学期期中考试数学(文)试题 【答案】B4.鲁班锁是中国古代传统土木建筑中常用的固定结合器,也是广泛流传于中国民间的智力玩具,它起源于古代中国建筑首创的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看上去是严丝合缝的十字几何体,其上下、左右、前后完全对称,十分巧妙.鲁班锁的种类各式各样,其中以最常见的六根和九根的鲁班锁最为著名.九根的鲁班锁由如图所示的九根木榫拼成,每根木榫都是由一根正四棱柱状的木条挖一些凹槽而成.若九根正四棱柱底面边长均为1,其中六根最短条的高均为3,三根长条的高均为5,现将拼好的鲁班锁放进一个球形容器内,使鲁班锁最高的三个正四棱柱形木榫的上、下底面顶点分别在球面上,则该球形容器的表面积(容器壁的厚度忽略不计)的最小值为( )A .24πB .25πC .26πD .27π【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】D 5.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .【来源】湖南省邵阳市邵东县创新实验学校2019-2020学年高一上学期期中数学试题 【答案】C6.一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的三视图如图所示,则截去的几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱【来源】北京市西城区2018年1月高三期末考试文科数学试题 【答案】B7.已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,若OAB ∆为正三角形,则实数m 的值为( )A .B .2C .D 【来源】西藏自治区拉萨中学2018届高三第七次月考数学(文)试题 【答案】D8.如果直线l 上的一点A 沿x 轴在正方向平移1个单位,再沿y 轴负方向平移3个单位后,又回到直线l 上,则l 的斜率是( ) A .3 B .13C .-3D .−13【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】C9.一个平面四边形的斜二测画法的直观图是一个边长为1的正方形,则原平面四边形的面积等于( ) A .√2 B .2√2 C .8√23D .8√2【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】B10.直线y =kx +3与圆(x −2)2+(y −3)2=4相交于M,N 两点,若|MN|≥2,则k 的取值范围是( )A .[−√3,√3]B .(−∞,−√3]∪[√3,+∞)C .[−√33,√33] D .[−23,0]【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】A11.已知点P(2,1)在圆C:x 2+y 2+ax −2y +b =0上,点P 关于直线x +y −1=0的对称点也在圆C 上,则实数a,b 的值为( )A .a =−3,b =3B .a =0,b =−3C .a =−1,b =−1D .a =−2,b =1 【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】B12.已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为() A .27πB .36πC .54πD .81π【来源】山西省2019-2020学年高二上学期10月联合考试数学(理)试题 【答案】B13.在三棱锥A BCD -中,AD CD ⊥,2AB BC ==,AD =CD =,则该三棱锥的外接球的表面积为( ) A .8πB .9πC .10πD .12π【来源】辽宁省辽阳市2019-2020学年高三上学期期末考试数学(文)试题 【答案】A14.直线()2140x m y +++=与直线 320mx y +-=平行,则m =( ) A .2B .2或3-C .3-D .2-或3-【来源】江苏省南京市六校联合体2018-2019学年高一下学期期末数学试题 【答案】B15.如图,在正方体1111ABCD A B C D -中,M ,N 分别是为1BC ,1CD 的中点,则下列判断错误的是( )A .MN 与1CC 垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与11A B 平行【来源】2015届福建省三明市一中高三上学期半期考试理科数学试卷(带解析) 【答案】D16. (2017·黄冈质检)如图,在棱长均为2的正四棱锥P -ABCD 中,点E 为PC 的中点,则下列命题正确的是( )A .BE ∥平面PAD ,且BE 到平面PADB .BE ∥平面PAD ,且BE 到平面PAD 的距离为3C .BE 与平面PAD 不平行,且BE 与平面PAD 所成的角大于30° D .BE 与平面PAD 不平行,且BE 与平面PAD 所成的角小于30°【来源】2014-2015学年湖北省安陆市一中高一下学期期末复习数学试卷(带解析)【答案】D17.如图,在直角梯形ABCD 中,0190,//,12A AD BC AD AB BC ∠====,将ABD ∆沿BD 折起,使得平面ABD ⊥平面BCD .在四面体A BCD -中,下列说法正确的是( )A .平面ABD ⊥平面ABCB .平面ACD ⊥平面ABC C .平面ABC ⊥平面BCDD .平面ACD ⊥平面BCD【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题 【答案】B18.已知直线l :()y t k x t -=-()2t >与圆O :224x y +=有交点,若k 的最大值和最小值分别是,M m ,则log log t t M m +的值为( ) A .1B .0C .1-D .222log 4t t t ⎛⎫⎪-⎝⎭【来源】福建省三明市2019-2020学年高二上学期期末数学试题 【答案】B19.若x 2+y 2–x +y –m =0表示一个圆的方程,则m 的取值范围是 A .m >−12 B .m ≥−12 C .m <−12D .m >–2【来源】2018年12月9日——《每日一题》高一 人教必修2-每周一测 【答案】A20.如图所示,直线PA 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面PAC 的距离等于线段BC 的长.其中正确的是( )A .①②B .①②③C .①D .②③【来源】二轮复习 专题12 空间的平行与垂直 押题专练 【答案】B二、多选题21.如图,在长方体1111ABCD A B C D -中,5AB =,4=AD ,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点1B 的坐标为()4,5,3B .点1C 关于点B 对称的点为()5,8,3- C .点A 关于直线1BD 对称的点为()0,5,3 D .点C 关于平面11ABB A 对称的点为()8,5,0【来源】福建省三明市2019-2020学年高二上学期期末数学试题 【答案】ACD三、填空题22.若直线:l y x m =+上存在满足以下条件的点P :过点P 作圆22:1O x y +=的两条切线(切点分别为,A B ),四边形PAOB 的面积等于3,则实数m 的取值范围是_______ 【来源】福建省厦门市2018-2019学年度第二学期高一年级期末数学试题【答案】-⎡⎣23.点E 、F 、G 分别是正方体1111ABCD A B C D -的棱AB ,BC ,11B C 的中点,则下列命题中的真命题是__________(写出所有真命题的序号).①以正方体的顶点为顶点的三棱锥的四个面中最多可以四个面都是直角三角形; ②点P 在直线FG 上运动时,总有AP DE ⊥;③点Q 在直线11B C 上运动时,三棱锥1A D QC -的体积是定值;④若M 是正方体的面1111D C B A ,(含边界)内一动点,且点M 到点D 和1C 的距离相等,则点M 的轨迹是一条线段.【来源】湖北省武汉市(第十五中学、十七中学、常青一中)2019-2020学年高二上学期期末数学试题 【答案】①②④24.如图,M 、N 分别是边长为1的正方形ABCD 的边BC 、CD 的中点,将正方形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,有以下结论:①异面直线AC 与BD 所成的角为定值. ②存在某个位置,使得直线AD 与直线BC 垂直.③存在某个位置,使得直线MN 与平面ABC 所成的角为45°.④三棱锥M -ACN 体积的最大值为48. 以上所有正确结论的序号是__________.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】①③④25.已知两点(2,0)M -,(2,0)N ,若以线段MN 为直径的圆与直线430x y a -+=有公共点,则实数a 的取值范围是___________.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】[]10,10-26.已知正方体1111ABCD A B C D -的棱长为点M 是棱BC 的中点,点P在底面ABCD 内,点Q 在线段11A C 上,若1PM =,则PQ 长度的最小值为_____.【来源】北京市海淀区2018届高三第一学期期末理科数学试题27.某几何体的三视图如下图所示,则这个几何体的体积为__________.【来源】黄金30题系列 高一年级数学(必修一 必修二) 小题好拿分 【答案】20328.设直线3450x y +-=与圆221:9C x y +=交于A , B 两点,若2C 的圆心在线段AB 上,且圆2C 与圆1C 相切,切点在圆1C 的劣弧AB 上,则圆2C 半径的最大值是__________.【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】229.已知直线240x my ++=与圆22(1)(2)9x y ++-=的两个交点关于直线0nx y n +-=对称,则m n -=_______.【来源】辽宁省辽阳市2019-2020学年高二上学期期末数学试题 【答案】3- 30.给出下列命题: ①任意三点确定一个平面;②三条平行直线最多可以确定三个个平面;③不同的两条直线均垂直于同一个平面,则这两条直线平行; ④一个平面中的两条直线与另一个平面都平行,则这两个平面平行; 其中说法正确的有_____(填序号).【来源】河南省三门峡市2019-2020学年高一上学期期末数学试题 【答案】②③31.设直线2y x a =+与圆22220x y ay +--=相交于A ,B 两点,若||AB =,则a =________【来源】吉林省吉林市吉化第一高级中学2019-2020学年高一上学期期末数学试题【答案】四、解答题32.已知圆C 的一般方程为22240x y x y m +--+=. (1)求m 的取值范围;(2)若圆C 与直线240x y +-=相交于,M N 两点,且OM ON ⊥(O 为坐标原点),求以MN 为直径的圆的方程.【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题【答案】(1)5m <;(2)224816555x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭ 33.如图4,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FC ⊥平面BED ,FB .(1)证明:EB FD ⊥; (2)求点B 到平面FED 的距离.【来源】2010年普通高等学校招生全国统一考试(广东卷)文科数学全解全析 【答案】(1)证明见解析(2)d =34.已知圆的方程为228x y +=,圆内有一点0(1,2)P -,AB 为过点0P 且倾斜角为α的弦.(1)当135α=︒时,求AB 的长;(2)当弦AB 被点0P 平分时,写出直线AB 的方程. 【来源】2019年12月14日《每日一题》必修2-周末培优【答案】(1(2)250x y -+=.35.如图,在长方体1111ABCD A B C D -中,2AB AD ==,14AA =,M 是AC 与BD 的交点.求证:(1)1//D M 平面11A C B (2)求1BC 与1D M 的所成角的正弦值.【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题【答案】(1)见解析;(2)1036.如图所示,直角梯形ABCD 中,AD BC ∥,AD AB ⊥,22AE AB BC AD ====,四边形EDCF 为矩形,CF =(1)求证:平面ECF ⊥平面ABCD ;(2)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为10,若存在,求出线段BP 的长,若不存在,请说明理由.【来源】湖北省武汉市(第十五中学、十七中学、常青一中)2019-2020学年高二上学期期末数学试题【答案】(1)见解析;(237.已知圆C 的圆心在直线390x y --=上,且圆C 与x 轴交于两点(50)A ,,0(1)B ,. (1)求圆C 的方程;(2)已知圆M :221(1)12x y ⎛⎫-++= ⎪⎝⎭,设(,)P m n 为坐标平面上一点,且满足:存在过点(,)P m n 且互相垂直的直线1l 和2l 有无数对,它们分别与圆C 和圆M 相交,且圆心C 到直线1l 的距离是圆心M 到直线2l 的距离的2倍,试求所有满足条件的点(,)P m n 的坐标【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)22(3)4x y -+=(2)79,55⎛⎫- ⎪⎝⎭或31,55⎛⎫ ⎪⎝⎭ 38.如图,四棱锥S -ABCD 的底面是边长为2的正方形,每条侧棱的长都是底面边长P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P -AC -D 的大小.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析(2)30°39.如图,在正三棱柱111ABC A B C -中,2AB =,侧棱1AA =E ,F 分别是BC ,1CC 的中点.(1)求证:1//BC 平面AEF ;(2)求异面直线AE 与1A B 所成角的大小.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析(2)45°40.已知直线1:2l y x =-+,直线2l 经过点(40),,且12l l ⊥.(1)求直线2l 的方程;(2)记1l 与y 轴相交于点A ,2l 与y 轴相交于点B ,1l 与2l 相交于点C ,求ABC V 的面积.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)40x y --=(2)941.已知曲线x 2+y 2+2x −6y +1=0上有两点P(x 1,y 1),Q(x 2,y 2)关于直线x +my +4=0对称,且满足x 1x 2+y 1y 2=0.(1)求m 的值;(2)求直线PQ 的方程.【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析)【答案】(1)m =−1;(2)y =−x +1.42.如图,边长为4的正方形ABCD 与矩形ABEF 所在平面互相垂直,,M N 分别为,AE BC 的中点,3AF =.(1)求证:DA ⊥平面ABEF ;(2)求证://MN 平面CDEF ;(3)在线段FE 上是否存在一点P ,使得AP MN ⊥?若存在,求出FP 的长;若不存在,请说明理由.【来源】2014届北京市东城区高三上学期期末统一检测文科数学试卷(带解析)【答案】(1)详见解析;(2)详见解析;(3)存在,94FP = 43.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的菱形,且60BAD ︒∠=,PD ⊥平面ABCD ,,E F 分别为棱,AB PD 的中点.(1)证明://EF 平面PBC .(2)若四棱锥P ABCD -的体积为A 到平面PBC 的距离.【来源】湖南省娄底市2019-2020学年高一上学期期末数学试题【答案】(1)证明见详解;(2.44.已知圆22:6200C x y y +--+=.(1)过点的直线l 被圆C 截得的弦长为4,求直线l 的方程;(2)已知圆M 的圆心在直线y x =-上,且与圆C 外切于点,求圆M 的方程.【来源】湖南省娄底市2019-2020学年高一上学期期末数学试题【答案】(1)x =0x +-=;(2)224x y +=.45.已知ABC V 的顶点坐标分别为()1,2A ,()2,1B --,()2,3C -.(1)求BC 边上的中线所在的直线的方程;(2)若直线l 过点B ,且与直线AC 平行,求直线l 的方程.【来源】四川省凉山彝族自治州西昌市2019-2020学年高二上学期期中数学(理)试题【答案】(1)420x y --=;(2)5110x y ++=46.如图,在四棱锥P ABCD -中,四边形ABCD 为平行四边形,090BAP CDP ∠=∠=,E 为PC 中点,(1)求证://AP 平面EBD ;(2)若PAD ∆是正三角形,且PA AB =.(Ⅰ)当点M 在线段PA 上什么位置时,有DM ⊥平面PAB ?(Ⅱ)在(Ⅰ)的条件下,点N 在线段PB 上什么位置时,有平面DMN ⊥平面PBC ?【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题【答案】(1)详见解析;(2)(Ⅰ) 点M 在线段PA 中点时;(Ⅱ) 当14PN PB =时. 47.已知点P 是圆22:(3)4C x y -+=上的动点,点(3,0)A - ,M 是线段AP 的中点(1)求点M 的轨迹方程;(2)若点M 的轨迹与直线:20l x y n -+=交于,E F 两点,且OE OF ⊥,求n 的值.【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题【答案】(1)221x y +=;(2)n =. 48.已知四棱锥P ABCD -的底面ABCD 是等腰梯形,//AB CD ,AC BD O =I ,22AO OC ==,PA PB AB ===AC PB ⊥.(1)证明:平面PBD ⊥平面ABCD ;(2)求二面角A PD B --的余弦值.【来源】福建省三明市2019-2020学年高二上学期期末数学试题【答案】(1)证明见解析;49.若圆C 经过点3(2,)A -和(2,5)B --,且圆心C 在直线230x y --=上,求圆C 的方程.【来源】2010年南安一中高二下学期期末考试(理科)数学卷【答案】22(1)(2)10x y +++=50.如图,已知矩形ABCD 中,10AB =,6BC =,将矩形沿对角线BD 把ABD ∆折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰在CD 上,即1A O ⊥平面DBC .(1)求证:1BC A D ⊥;(2)求证:平面1A BC ⊥平面1A BD ;(3)求点C 到平面1A BD 的距离.【来源】吉林省吉林市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析;(2)证明见解析;(3)245。

2018年1月北京市西城区七上期末数学试题含答案

2018年1月北京市西城区七上期末数学试题含答案

北京市西城区2017— 2018学年度第一学期期末试卷 七年级数学 2018.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.据中新社2017年10月8日报道,2017年我国粮食总产量达到736 000 000吨,将736 000 000用科学记数法表示为( ).(A )673610⨯ (B )773.610⨯ (C )87.3610⨯ (D )90.73610⨯2. 如图所示,将两个圆柱体紧靠在一起,从上面看这两个立体图形,得到的平面图形是( ).(A ) (B ) (C ) (D ) 3. 下列运算中,正确的是( ).(A )2(2)4=-- (B ) 224=- (C )236= (D )3(3)27-=-4. 下列各式进行的变形中,不.正确..的是( ). (A )若3a =2b ,则3a +2 =2b +2 (B )若3a =2b ,则3a -5 =2b - 5 (C )若3a =2b ,则 9a =4b (D )若3a =2b ,则23a b= 5.若2(1)210x y -++=,则x +y 的值为( ).(A )12(B )12-(C )32(D )32-6. 在一些商场、饭店或写字楼中,常常能看到一种三翼式旋转门在圆柱体的空间內旋转. 旋转门的三片旋转翼把空间等分..成三个部分,下图是从上面俯视旋转门的平面图,两片旋转翼之间的角度是( ).(A )100° (B )120° (C )135° (D )150°7. 实数a,b,c,d在数轴上对应点的位置如图所示,正确的结论是(A)a > c(B)b +c > 0 (C)|a|<|d| (D)-b<d8. 如图,在下列各关系式中,不.正确..的是().(A)AD - CD=AB + BC(B)AC- BC=AD -DB(C)AC- BC=AC + BD(D)AD -AC=BD -BC9. 某礼品包装商店提供了多种款式的包装纸片,将它们沿实线折叠(图案在包装纸片的外部,内部无图案),再用透明胶条粘合,就折成了正方体包装盒,小明用购买的纸片制作的包装盒如右图所示,在下列四种款式的纸片中,小明所选的款式的是().(A)(B)(C)(D).10.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走x 步才能追上走路慢的人,那么,下面所列方程正确的是().(A)10060100x x-=(B)10010060x x-=(C)10060100x x+=(D)10010060x x+=二、填空题(本题共20分,第11~14题每小题3分,第15~18题每小题2分) 11.已知x = 2是关于x 的方程3x + a = 8的解,则a = .12.一个有理数x 满足: x <0且2x <,写出一个满足条件的有理数x 的值: x = . 13.在一面墙上用一根钉子钉木条时,木条总是来回晃动;用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为 , . 14.已知222x x +=,则多项式2243x x +-的值为 . 15.已知一个角的补角比这个角的一半多30°,设这个角的度数为x °,则列出的方程是: .16.右图是一所住宅的建筑平面图(图中长度单位:m ),这所住宅的建筑面积为 m. .17.如图,点A ,O ,B 在同一条直线上,射线OD平分∠BOC ,射线OE 在∠AOC 的内部,且 ∠DOE =90°,写出图中所有互为余角的角: .18.如图,一艘货轮位于O 地,发现灯塔A 在它的正北方向上,这艘货轮沿正东方向航行,到达B 地,此时发现灯塔A 在它的北偏西60°的方向上. (1) 在图中用直尺、量角器画出B 地的位置;(2) 连接AB ,若货轮位于O 地时,货轮与灯塔A 相距1.5千米,通过测量图中AB 的长度,计算出货轮到达B 地时与灯塔A 的实际距离约为 千米(精确到0.1千米).19.(21)(9)(8)(12)---+--- 解:20. 311()()(2)424-⨯-÷-解: 21.31125(25)25()424⨯--⨯+⨯- 解:22.3213(2)0.254[()]4028-⨯-÷---解:23.先化简,再求值:2223()2()3x xy x y xy ---+,其中1x =-,3y =. 解: 24.解方程12423x x +-+=. 解:25.解方程组 253 1.x y x y +=⎧⎨-=⎩,解:26.已知AB =10,点C 在射线 AB 上, 且12BC AB =,D 为AC 的中点.(1)依题意,画出图形; (2)直接写出线段BD 的长. 解:(1)依题意,画图如下:(2)线段BD 的长为 .五、解答题(本题共13分,第27题6分,第28题7分)27.列方程或方程组解应用题为了备战学校体育节的乒乓球比赛活动,某班计划买5副乒乓球拍和若干盒乒乓球(多于5盒).该班体育委员发现在学校附近有甲、乙两家商店都在出售相同品牌的乒乓球拍和乒乓球,乒乓球拍每副售价100元,乒乓球每盒售价25元.经过体育委员的洽谈,甲商店给出每买一副乒乓球拍送一盒乒乓球的优惠;乙商店给出乒乓球拍和乒乓球全部九折的优惠.(1)若这个班计划购买6盒乒乓球,则在甲商店付款元,在乙商店付款元;(2)当这个班购买多少盒乒乓球时,在甲、乙两家商店付款相同?28. 如图,A,O,B三点在同一直线上,∠BOD与∠BOC互补.(1)试判断∠AOC与∠BOD之间有怎样的数量关系,写出你的结论,并加以证明;(2)OM平分∠AOC,ON平分∠AOD,①依题意,将备用图补全;②若∠MON=40°,求∠BOD的度数.解:(1)答:∠AOC与∠BOD之间的数量关系为:;理由如下:(2)①补全图形;②备用图北京市西城区2017— 2018学年度第一学期期末试卷七年级数学附加题2018.1试卷满分:20分一、填空题(本题共6分)1.用“△”定义新运算:对于任意有理数a,b,当a≤b时,都有2a b a b∆=;当a>b时,都有2a b ab∆=.那么,2△6 = ,2()3-△(3)-= .二、解答题(本题共14分,每小题7分)2.输液时间与输液速率问题静脉输液是用来给病人注射液体和药品的.在医院里,静脉输液是护士护理中最重要的一项工作,护士需要依据输液速率D,即每分钟输入多少滴液体,来计算输完点滴注射液的时间t(单位:分钟).他们使用的公式是:dVtD=,其中,V 是点滴注射液的容积,以毫升(ml)为单位,d 是点滴系数,即每毫升(ml)液体的滴数.(1)一瓶点滴注射液的容积为360毫升,点滴系数是每毫升25 滴,如果护士给病人注射的输液速率为每分钟50滴,那么输完这瓶点滴注射液需要多少分钟?(2)如果遇到的病人年龄比较大时,护士会把输液速率缩小为原来的12,准确地描述,在V 和d 保持不变的条件下,输完这瓶点滴注射液的时间将会发生怎样的变化?3.阅读下列材料:我们给出如下定义:数轴上给定两点A,B以及一条线段PQ,若线段AB的中点R在线段PQ 上(点R能与点P或Q重合),则称点A与点B关于线段PQ径向对称.下图为点A与点B关于线段PQ径向对称的示意图.解答下列问题:如图1,在数轴上,点O为原点,点A表示的数为−1,点M表示的数为2.图1(1)①点B,C,D分别表示的数为−3,32,3,在B,C,D三点中,与点A关于线段OM径向对称;②点E 表示的数为x,若点A与点E关于线段OM的径向对称,则x的取值范围是;(2)点N是数轴上一个动点,点F表示的数为6,点A与点F关于线段ON径向对称,线段ON的最小值是;(3)在数轴上,点H,K,L表示的数分别是−5,−4,−3,当点H以每秒1个单位长度的速度向正半轴方向移动时,线段KL同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t(t>0)秒,问t为何值时,线段KL上至少存在一点与点H关于线段OM径向对称.解:(1)①与点A关于线段OM的径向对称;②x的取值范围是;(2)线段ON的最小值是;(3)北京市西城区2017— 2018学年度第一学期期末试卷七年级数学参考答案及评分标准 2018.1一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10答案 C A D C A B D C D B二、填空题(本题共20分,第11~14题每小题3分,第15~18题每小题2分)题号11 12 13 14 15答案 2 答案不唯一,如:-1 经过一点有无数条直线,两点确定一条直线 1题号16 17 18答案∠1和∠3, ∠2和∠3,∠1和∠4,∠2和∠4互为余角作图位置正确 1分3.0千米 2分三、计算题(本题共16分,每小题4分)19.解:= -21 + 9 - 8 + 12 1分= -29 + 21 3分= -8 4分20.解:2分3分4分21.解:= 1分= 2分=25 4分22.解:= 1分= 2分= 3分= 4分四、解答题(本题共21分,23~25题每小题5分,第26题6分)23.,其中,.解:= 2分= 3分当,时,原式= 4分=19.5分24.解方程.解:去分母,得.1分去括号,得. 2分移项,得.3分合并同类项,得. 4分系数化1,得.5分25.解:由①得.③1分把③代入②,得.2分解这个方程,得.3分把代入③,得.4分所以,这个方程组的解为5分26.解:(1)依题意,画图如下:图1 图24分(2)15或5.6分五、解答题(本题共13分,第27题6分,第28题7分)27.(1)525 ,585;2分(2)解:设这个班购买x ( x>5 ) 盒乒乓球时,在甲、乙两家商店付款相同.3分由题意,得.5分解方程,得.答:购买30盒乒乓球时,在甲、乙两家商店付款相同.6分28.解:(1)∠AOC =∠BOD ;1分理由如下:∵点A,O,B三点在同一直线上,∴∠AOC +∠BOC = 180°.2分∵∠BOD与∠BOC互补,∴∠BOD +∠BOC = 180°.∴∠AOC =∠BOD.3分(2)①补全图形,如图所示.②设∠AOM =α,∵ OM平分∠AOC,∴∠AOC =2∠AOM =2α.∵∠MON=40°,∴∠AON =∠MON +∠AOM =40°+ α.∵ ON平分∠AOD,∴∠AOD =2∠AON =80° +2α.由(1)可得∠BOD=∠AOC=2α,∵∠BOD +∠AOD =180°,∴ 2α. + 80 +2α.=180°.∴ 2α. =50°.∴∠BOD =50°.7分北京市西城区2017— 2018学年度第一学期期末试卷七年级数学附加题参考答案及评分标准 2018.1一、填空题(本题共6分)1. 24,-6 6分二、解答题(本题共14分,每小题7分)2.解:(1)由D = 50, d = 25, , ,∴.3分∴ t =180.4分答:输完点滴注射液的时间是180分钟.(2)设输的速率为D1滴/分,点滴注射的时间为t1分钟,则.5分输液速率缩小为 2,点滴注射的时间延长到t2分钟,则,6分答:在d 和V保持不变的条件下,D 将缩小到原来的时,点输完滴注射的时间延长为原来的2倍.7分3.(1)①点C,点D与点A是关于线段OM的径向对称点;2分②x的取值范围是1≤x≤5;4分(2)5分(3)解:移动时间为t(t>0)秒时,点H,K,L表示的数分别是−5+t,−4+3t,−3+3t. 此时,线段HK的中点R1表示的数是,线段HL的中点R2表示的数是2t−4.当线段R1R2在线段OM上运动时,线段KL上至少存在一点与点P关于线段OM径向对称.当R2经过点O时,2t−4=0时,t=2.当R1经过点M时, =2时,t= .∴当2≤t≤时,线段R1R2在线段OM上运动.∴ 2≤t≤时,线段KL上至少存在一点与点P关于线段OM径向对称.7分。

XXX2017-2018学年第一学期期末考试高一数学试卷

XXX2017-2018学年第一学期期末考试高一数学试卷

XXX2017-2018学年第一学期期末考试高一数学试卷XXX2017-2018学年第一学期期末考试高一年级数学试卷第I卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知向量a=(2,1),b=(λ−1,2),若a+b与a−b共线,则λ=()A.−2B.−1C.1D.2改写:向量a=(2,1),向量b=(λ-1,2),若a+b和a-b共线,则λ=() A。

-2 B。

-1 C。

1 D。

22.已知3sinα+4cosα=2,则1-sinαcosα-cos2α的值是() A。

- B。

C。

-2 D。

2改写:已知3sinα+4cosα=2,求1-sinαcosα-cos2α的值,答案为() A。

- B。

C。

-2 D。

23.已知在△ABC中,AB=AC=1,BC=3,则AB·AC=() A。

1/33 B。

- C。

-2 D。

-改写:在△ABC中,AB=AC=1,BC=3,求XXX的值,答案为() A。

1/33 B。

- C。

-2 D。

-4.在△ABC中,若AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定改写:在△ABC中,如果AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定5.已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanA-tanB=3,则△ABC的面积为() A。

3/33 B。

- C。

3 D。

33/2改写:已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanB=3,求△ABC的面积,答案为() A。

3/33 B。

- C。

2017-2018高一数学上学期期末考试试题及答案

2017-2018高一数学上学期期末考试试题及答案

2017-2018学年度第一学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己的姓名、座号、考籍号分别填写在试卷和答题纸规定的位置.第Ⅰ卷(选择题 共48分)参考公式:1.锥体的体积公式1,,.3V Sh S h =其中是锥体的底面积是锥体的高 2.球的表面积公式24S R π=,球的体积公式343R V π=,其中R 为球的半径。

一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( )A .{}0B .{}1,2C .{}0,2D .{}0,1,2 2.空间中,垂直于同一直线的两条直线 ( )A .平行B .相交C .异面D .以上均有可能3.已知幂函数()αx x f =的图象经过点错误!,则()4f 的值等于 ( )A .16B 。

错误!C .2D 。

错误!4。

函数()lg(2)f x x =+的定义域为 ( )A 。

(—2,1)B 。

[-2,1]C 。

()+∞-,2 D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP |的最小值为 ( )AB .CD .26.设m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是 ( )A .若m ∥n ,m ∥α,则n ∥αB .若α⊥β,m ∥α,则m ⊥βC .若α⊥β,m ⊥β,则m ∥αD .若m ⊥n ,m ⊥α, n ⊥β,则α⊥βOOO O1 1117.设()x f 是定义在R 上的奇函数,当0≤x 时,()x x x f -=22,则()1f 等于 ( )A .-3B .-1C .1D .3 8.函数y =2-+212x x⎛⎫⎪⎝⎭的值域是 ( )A .RB .错误!C .(2,+∞)D 。

北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷

北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷

北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷北京市西城区2017-2018学年度第二学期期末试卷高一数学2018.7 A卷 [立体几何初步与解析几何初步] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合要求的。

1.已知点 M(-1,2),N(3,0),则点 M 到点 N 的距离为()。

A) 2 (B) 4 (C) 5 (D) 2√52.直线 x-y-3=0 的倾斜角为()。

A) 45 (B) 60 (C) 120 (D) 1353.直线 y=2x-2 与直线 l 关于 y 轴对称,则直线 l 的方程为()。

A) y=-2x+2 (B) y=-2x-2 (C) y=2x+2 (D) y=1/x-14.已知圆 M: x^2+y^2=1 与圆 N: (x-2)^2+y^2=9,则两圆的位置关系是()。

A) 相交 (B) 相离 (C) 内切 (D) 外切5.设m,n 为两条不重合的直线,α,β 为两个不重合的平面,m,n 既不在α 内,也不在β 内。

则下列结论正确的是()。

A) 若m//α,n//α,则 m//n。

B) 若 m//n,n//α,则m//α。

C) 若 m⊥α,n⊥α,则 m⊥n。

D) 若 m⊥α,m⊥β,则α⊥β。

6.若方程 x^2+y^2-4x+2y+5k=0 表示圆,则实数 k 的取值范围是()。

A) (-∞,1) (B) (-∞,1] (C) [1,+∞) (D) R7.圆柱的侧面展开图是一个边长为 2 的正方形,那么这个圆柱的体积是()。

A) π (B) π/2 (C) 2π (D) π/28.方程 x=1-y^2 表示的图形是()。

A) 两个半圆 (B) 两个圆 (C) 圆 (D) 半圆9.如图,四棱锥 P-ABCD 的底面 ABCD 是梯形,XXX。

若平面 PAD 平面 PBC∥l,则()。

北京市西城区17-18学年上七年级第1次月考试试卷--数学

北京市西城区17-18学年上七年级第1次月考试试卷--数学

北京市西城区2017-2018学年上学期七年级第1次月考试数学试卷数据的收集、整理与描述一、精心选一选(每小题3分,共30分)1.下列各项调查:①调查中央电视台《新闻联播》节目的收视率;②某校学生订做一套校服,对学生的胸围、腰围进行的测量;③一批罐头产品的质量检查;④对河水污染情况的调查.其中适合用全面调查的是( ).A.②B.②③④C.①②③D.①②③④2.为了了解恩施市七年级学生体重的大致情况,想抽取1000名七年级学生进行调查,应该( ).A.从身体肥胖的同学中抽取B.从身体瘦弱的同学中抽取C.从某初中学校在课外活动时,抽取正在进行体育活动的同学D.对全市所有初中学校在校园里随机调查七年级同学3.计算机上为了直观地看出磁盘“已用空间”与“可用空间”各占整个磁盘空间的百分比,选用的统计图是( ).A.频率分布直方图B.折线统计图C.扇形统计图D.以上三种都可以4.一个扇形统计图中,扇形A、B、C、D 的面积之比为2∶1∶4∶5,则最大扇形的圆心角为( ).A.80°B.100°C.120°D.150°5.现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的是( ).A.9 B.12 C.15 D.186.下列调查中:①为了了解七年级学生每天做作业的时间,对某学校七年级⑴班的学生进行调查;②爱心中学美术爱好小组拟组织一次郊外写生活动,为了确定写生地点,对美术爱好小组全体成员进行调查;③为了了解观众对电视剧的喜爱程度,数学兴趣小组调查了某小区的100位居民,其中属于抽样调查的有()A. 3个B. 2个C. 1个D. 0个7.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是( )A.该班总人数为50人B.骑车人数占总人数的20%C.步行人数为30人D.乘车人数是骑车人数的2.5倍8.如图是某班40名学生一分钟跳绳测试成绩(次数为整数)的频数分布直方图,从左起第一、二、三、四个小长方形的高的比为1∶4∶3∶2,那么该班一分钟跳绳次数在100次以上的学生有( )A.6人B.8人C.16人D.20人9.随着经济的发展,人们的生活水平不断提高。

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+13.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量+++化简后等于()A.B.C.D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=412.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知=, =, =, =, =,则+++﹣= .16.已知tan()=,tan()=﹣,则tan()= .三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向【考点】向量的物理背景与概念.【分析】根据共线向量、平行向量、相等向量以及零向量的概念便可判断每个说法的正误,从而找出正确选项.【解答】解:A.共线向量的方向相同或相反;方向相同时,夹角为0°,相反时的夹角为180°,∴该说法正确;B.长度相等,方向相同的向量叫做相等向量,∴该说法错误;C.平行向量也叫共线向量,∴共线向量不是向量所在直线在同一直线上;∴该说法错误;D.零向量的方向任意,并不是没有方向,∴该说法错误.故选:A.2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+1【考点】函数奇偶性的判断.【分析】要探讨函数的奇偶性,先求函数的定义域,判断其是否关于原点对称,然后探讨f(﹣x)与f(x)的关系,即可得函数的奇偶性.【解答】解:选项A,定义域为R,sin|﹣x|=sin|x|,故y=sin|x|为偶函数.选项B,定义域为R,sin(﹣2x)=﹣sin2x,故y=sin2x为奇函数.选项C,定义域为R,﹣sin(﹣x)+2=sinx+2,故y=sinx+2为非奇非偶函数偶函数.选项D,定义域为R,sin(﹣x)+1=﹣sinx+1,故y=sinx+1为非奇非偶函数,故选:B.3.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣【考点】任意角的三角函数的定义.【分析】根据三角函数的定义进行求解即可.【解答】解:∵角α的终边经过点P(4,﹣3),∴tanα==,故选:B.4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.【考点】三角函数的周期性及其求法.【分析】根据余弦函数的最小正周期的求法,将ω=4代入T=即可得到答案.【解答】解:∵y=cos(4x﹣π),∴最小正周期T==.故选:D.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.【考点】直线的倾斜角.【分析】由已知方程得到直线的斜率,根据斜率对于得到倾斜角.【解答】解:由已知直线的方程得到直线的斜率为﹣,设倾斜角为α,则tanα=﹣,α∈[0,π),所以α=;故选:D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【考点】正弦函数的单调性.【分析】利用y=sinx的单调性,求出函数的单调递减区间,进而可求函数的单调递减区间.【解答】解:利用y=sinx的单调递减区间,可得∴∴函数的单调递减区间(k∈Z)故选D.7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.【考点】正弦函数的图象.【分析】利用正弦函数的图象的对称性,求得y=3sin(2x+)+2图象的一条对称轴方程.【解答】解:∵对于函数y=3sin(2x+)+2图象,令2x+=kπ+,求得x=+,可得函数图象的一条对称轴方程为x=π,故选:C.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大【考点】命题的真假判断与应用.【分析】分别举例说明四个选项的正误得答案.【解答】解:对于A,终边不同的角同一三角函数值可以相等,正确,如;对于B,三角形的内角是第一象限角或第二象限角,错误,如是终边在坐标轴上的角;对于C,第一象限是锐角,错误,如是第一象限角,不是锐角;对于D,第二象限的角比第一象限的角大,错误,如是第二象限角,是第一象限角,但.故选:A.9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】三角函数的化简求值.【分析】根据象限得出sinθ,cosθ的符号,得出θ的象限.【解答】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.10.向量+++化简后等于()A.B.C.D.【考点】向量加减混合运算及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解:向量+++=,故选:D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=4【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.【解答】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.12.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4【考点】任意角的概念.【分析】由任意角的三角函数的定义,三角函数值与象限角的关系,即可得出结论.【解答】解:①由任意角的三角函数的定义知,终边相同的角的三角函数值相等,正确.②在三角形中,若sinA=sinB,则有A=B,故正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,正确,④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,故不正确.⑤若cosα<0,则α是第二或第三象限角或α的终边落在x轴的非正半轴上,故不正确.其中正确的个数为3个,故选:C.二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是2x﹣y﹣3=0 .【考点】待定系数法求直线方程.【分析】先求出线段AB的中垂线的斜率,再求出线段AB的中点的坐标,点斜式写出AB的中垂线得方程,并化为一般式.【解答】解:设A(0,2)、B(4,0).=﹣,所以线段AB的中垂线得斜率k=2,又线段AB的中点为(2,1),直线AB的斜率 kAB所以线段AB的中垂线得方程为y﹣1=2(x﹣2)即2x﹣y﹣3=0,故答案为:2x﹣y﹣3=0.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为 3 .【考点】直线与圆的位置关系.【分析】圆心(0,0)到直线3x+4y﹣25=0的距离d==5,圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r,从而可求.【解答】解:∵圆心(0,0)到直线3x+4y﹣25=0的距离d==5,∴圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r=5﹣2=3故答案为:3.15.已知=, =, =, =, =,则+++﹣= .【考点】向量的加法及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解: +++﹣=+++﹣=﹣=,故答案为:.16.已知tan()=,tan()=﹣,则tan()= 1 .【考点】两角和与差的正切函数.【分析】观察三个函数中的角,发现=﹣(),故tan()的值可以用正切的差角公式求值【解答】解:∵=﹣(),∴tan()===1故答案为1三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.【考点】任意角的三角函数的定义.【分析】利用三角函数的定义可求得sinα与cosα,从而可得2sinα+cosα.【解答】解:由已知r==13a…∴sinα=﹣,cosα=,…∴2sinα+cosα=﹣…18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.【考点】待定系数法求直线方程.【分析】(1)利用中点坐标公式、斜截式即可得出.(2)利用斜率计算公式、相互垂直的直线斜率之间的关系、斜截式即可得出.【解答】解:(1)∵线段AB的中点为(﹣1,5),∴AB边的中线所在直线方程是=,即x+3y﹣14=0.(2)AC的中点为(4.3)==﹣,∵KAC∴y﹣3=4(x﹣4)即y=4x﹣13,∴AC的中垂线方程为y=4x﹣13.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.【考点】圆的一般方程.【分析】设出圆的一般式方程,把三个点的坐标代入,求解关于D、E、F的方程组得答案.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,解得.∴圆的方程为:.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.【考点】二倍角的正切;两角和与差的余弦函数.【分析】(1)利用已知及同角三角函数基本关系式可求sinα,进而可求tanα,利用二倍角的正切函数公式可求tan2α的值.(2)由0<β<α<,得0<α﹣β<,利用同角三角函数基本关系式可求sin(α﹣β),由β=α﹣(α﹣β)利用两角差的余弦函数公式即可计算求值.【解答】解:(1)∵由cosα=,0<α<,得sinα===,∴得tan=∴于是tan2α==﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)==,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==.…21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)利用正弦函数的图象的对称性,求得函数的对称轴方程和对称中心坐标.【解答】解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2, ==+,∴ω=2.再根据五点法作图可得2•(﹣)+φ=,∴φ=,函数f(x)=2sin(2x+).(Ⅱ)由2x+=kπ+,求得x=﹣,可得函数的图象的对称轴方程为x=﹣,k∈Z.令2x+=kπ,求得x=﹣,可得函数的图象的对称轴中心为(﹣,0),k∈Z.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用降幂公式降幂,再由辅助角公式化简,由x的范围求得相位的范围,则函数的取值范围可求;(2)利用复合函数的单调性求得原函数的单调区间.【解答】解:(1)f(x)=sin2ωx+sinωx•cosωx﹣1==.∵ω>0,∴T=,则ω=1.∴函数f(x)=sin(2x﹣)﹣.由0,得,∴,∴.∴f(x)的取值范围[﹣1,];(2)令,得:,(k∈Z),∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年北京市西城区高一下学期期末考试数学卷试卷满分:150分考试时间:120分钟A卷[立体几何初步与解析几何初步] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.的方程为()二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. 11.已知点(,2)A m -,(3,0)B ,若直线AB 的斜率为12,则m =_____. 12.若直线1:280l ax y +-=与直线2:0l x y -=平行,则a =______.13. 最大侧面的面积为______.14.已知直线y kx k =+15.在直三棱柱111ABC A B C -中,D 为1AA 中点,点P 在侧面11BCC B 上运动,当点P 满足 条件_______________时,1//A P 平面BCD . (答案不唯一,填一个满足题意的条件即可)16. 如图,矩形ABCD 中AB 边与x 轴重合,(2,2)C ,(1,2)D -BC 反射到CD 上,再经CD 反射到AD 上点Q 处. ①若OP 的斜率为12,则点Q 的纵坐标为______;②若点Q 恰为线段AD 中点,则OP 的斜率为______.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,PA ⊥平面ABCD ,且2P A A D ==,点E 为线段PD 的中点. (Ⅰ)求证://PB 平面AEC ; (Ⅱ)求证:AE ⊥平面PCD ; (Ⅲ)求三棱锥A PCE -的体积.18.(本小题满分12分)已知直线:8l y x =-+与x 轴相交于点A ,点B 坐标为(0,4)-,过点B 作直线l 的垂线,交直线l 于点C .记过A 、B 、C 三点的圆为圆M . (Ⅰ)求圆M 的方程;(Ⅱ)求过点C 与圆M 相交所得弦长为8的直线方程.19.(本小题满分12分)如图,已知正方体1111ABCD A B C D -的棱长为1,点E 是棱AB 上的动点,F 是棱1CC 上一点,1:1:2CF FC =. (Ⅰ)求证:111B D A F ⊥;(Ⅱ)若直线1A F ⊥平面11B D E ,试确定点E 的位置,并证明你的结论;(Ⅲ)设点P 在正方体的上底面1111A B C D 上运动,求总能使BP 与1A F 垂直的点P 所形成的轨迹的长度.(直接写出答案)ABCDPEDBCA 1B 1C 1D 1AEFB 卷 [学期综合]本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 1.在区间[2,4]-内随机选取一个实数x ,则[1,3]x ∈的概率为_____.2.如图所示,茎叶图记录了甲、乙两组各四名工人1天加工的零件数,且甲、乙两组工人平均每人加工零件的个数相同,则m =_____;甲、乙两组工人加工零件数方差较大的一组的方差为______.3.从1,2,3,4这四个数中一次随机选取两个数,所取两个数之和不小于5的概率为_____. 4.一艘货船以15km /h 的速度向东航行,货船在A 处看到一个灯塔P 在北偏东60方向上,行驶4小时后,货船到达B 处,此时看到灯塔P 在北偏东15方向上,这时船与灯塔的距离为_____km .5.在△ABC 中,角,,A B C 所对的边分别为,,a b c .已知△ABC 面积S 满足12S ≤≤,且1sin sin sin 8A B C =. 给出下列结论:①16abc ≥; ②228a b ab +>; ③32ab <; 其中正确结论的序号是_____.(写出所有正确结论的序号)二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分8分)甲乙9 8 1 92 1 2 0 0 m在某地区高二年级的一次英语口语测试中,随机抽取M 名同学的成绩,数据的分组统计表如下:(Ⅰ)求出表中,,,m n M N 的值;(Ⅱ)根据上表,请在答题纸中给出的坐标系中完整画出频率分布直方图;(Ⅲ)若该地区高二年级学生有5000人,假设同一组中的每个数据可用该组区间的中点值代替,试估计这次测试中该地区高二年级学生的平均分数及分数在区间(60,90]内的学生人数.7.(本小题满分10分)在△ABC 中,角,,A B C 所对的边分别为,,a b c.b =4B π=. (Ⅰ)若3a =,求sin A 及sin C 的值; (Ⅱ)若△ABC 的面积等于1,求a 的值.8.(本小题满分12分)已知圆22:(3)25C x y +-=与x 轴的负半轴相交于点M . (Ⅰ)求点M 的坐标及过点M 与圆C 相切的直线方程;(Ⅱ)一般把各边都和圆相切的三角形叫做圆的外切三角形.记圆C 的外切三角形为△DEF ,且(5,2)D --,(,2)(5)E t t ->.试用t 表示△DEF 的面积;(Ⅲ)过点M 作,MA MB 分别与圆相交于点,A B ,且直线,MA MB 关于x 轴对称,试问直线AB 的斜率是否为定值?若是,请求出这个值;若不是,请说明理由.北京市西城区2017— 2018学年度第二学期期末试卷高一数学参考答案及评分标准2018.7A卷[立体几何初步与解析几何初步] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.C2.A3. B4.C5.B6. A7. A8.D9.D 10.C.二、填空题:本大题共6小题,每小题4分,共24分.11.1-12.2-14. (1,0)-15.P是1CC中点,等16.33,25注:第16题每空两分.三、解答题:本大题共3小题,共36分.17.(本小题满分12分)(Ⅰ)证明:连结BD,交AC于点O,连结OE.因为O是正方形ABCD对角线交点,所以O为BD中点,由已知E为线段PD的中点,所以//PB OE.…………………2分又OE⊂平面ACE,PB⊄平面ACE,所以//PB平面ACE.…………………5分(Ⅱ)证明:因为PA AD=,E为线段PD的中点,所以AE PD⊥,…………………6分因为PA⊥平面ABCD,所以PA CD⊥,…………………7分AB CD PEO在正方形ABCD 中,CD AD ⊥, 又PA AD A =I ,所以CD ⊥平面PAD ,…………………8分又AE ⊂平面PAD ,所以CD AE ⊥,…………………9分 又PD CD D =I ,所以AE ⊥平面PCD ,…………………10分(Ⅲ)因为AE ⊥平面PCD ,所以三棱锥A PCE -的体积.13PCE V S AE =⋅V 11112232323PE CD AE =⨯⋅⋅=⨯. …………………12分18.(本小题满分12分) 解:(Ⅰ)由已知(8,0)A ,依题意,圆M 的圆周角90ACB ∠=,所以过A 、B 、C 三点的圆M 即为以AB 为直径的圆.…………………3分 所以,圆M 的圆心为AB 的中点(4,2)-.因为AB M 的半径为,…………………5分所以圆M 的方程为22(4)(2)20x y -++=. …………………6分 (Ⅱ)因为所求直线与圆M 相交所得弦长为8,由垂径定理,圆M 2=.…………………7分 易知,直线6x =满足题意.…………………8分 由已知,直线:4AC y x =-,解4,8y x y x =-⎧⎨=-+⎩得点C 的坐标为(6,2)C . …………………9分设斜率存在且满足题意的直线方程为2(6)y k x -=-,即620kx y k --+=.则圆心(4,2)-到直线620kx y k --+=,……10分2=,解得34k =. …………………11分 所以,所求直线方程为6x =和34100x y --=. …………………12分19.(本小题满分12分)(Ⅰ)证明:连结11AC .1111A B C D 是正方形,所以1111B D A C ⊥. …………………1分在正方体1111ABCD A B C D -中,1CC ⊥平面1111A B C D ,所以111CC B D ⊥, …………………2分 又1111CC A C C =I ,所以11B D ⊥平面11AC C , …………………3分 因为1A F ⊂平面11AC C ,所以11B D ⊥1A F . …………………4分 (Ⅱ)当:1:2AE EB =时,直线1A F ⊥平面11D B E .…5分证明如下:过点F 在平面11BCC B 作//FG BC 交1BB 于点G , 连结1A G ,交1B E 于点H ,因为1:1:2CF FC =,所以1:1:2BG GB =,在11Rt A B G △与1Rt B BE △中,1B G BE =,111A B B B =, 所以111A B G B BE ≅△△,111B A G BB E ∠=∠.又111190B AG AGB ∠+∠=,所以11190BB E AGB ∠+∠=. 所以190B HG ∠=o ,11A G B E ⊥.…………………7分 在正方体1111ABCD A B C D -中,CB ⊥面11ABB A , 所以FG ⊥面11ABB A , 所以1FG B E ⊥, 又1AG FG G =I ,所以1B E ⊥面1A FG ,…………………8分 所以1B E ⊥1A F .又11B D ⊥1A F ,1111B D B E B =I ,所以直线1A F ⊥平面11B D E .…………………9分. …………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1.132.1,2.53.234..②③. 注:第5题少选得2分,多选、错选不得分.第2题每空2分. 二、解答题:本大题共3小题,共30分. 6.(本小题满分8分) 解:(Ⅰ)1N =. 因为20.02M=,所以100M =. 从而100(23123815)30m =-++++=,DBCA 1B 1C 1D 1A EF G H0.30mn M==.…………………4分 (Ⅱ)直方图如下:…………………6分(Ⅲ)平均分约为450.02550.04650.12750.38850.30950.1578.6⨯+⨯+⨯+⨯+⨯+⨯=.该地区高二年级同学分数在区间(60,90]内的人数约为5000(0.120.380.30)4000⨯++=(人).…………………8分7.(本小题满分10分)解:(Ⅰ)在△ABC 中,3a =,b =4B π=,sin sin a bA B=.所以sin sin 4a A B b π===. …………………2分 当A为锐角时,cos A =sin sin()sin cos cos sin C A B A B A B =+=+…………………3分==…………………4分 当A为钝角时,cos A =,sin C=…………………5分(Ⅱ)△ABC的面积1sin 24ABC S ac ∆π==,1=. …………① …………………7分 在ABC ∆中,2222cos 4b ac ac π=+-, …………………9分所以225a c =+. …………②由①得c =,代入②得 22854a a=+-,所以42980a a -+=.解得1a =或a =. …………………10分8.(本小题满分12分)解:(Ⅰ)点M 的坐标为(4,0)-. …………………1分直线CM 的斜率3030(4)4CM k -==--,…………………2分所以过点M圆C的切线斜率43k=-,所以,过点M的切线方程为40[(4)]3y x-=---,即43160x y++=. …………3分(Ⅱ)已知(5,2)D--,所以直线DF方程为5x=-.设直线EF的斜率为k,则直线EF方程为()2y k x t=--,即20kx y kt---=.5=,所以22(25)100t k tk-+=,解得0k=(舍)或21025tkt-=-,…………………5分所以直线EF方程为210()225ty x tt-=---.当5x=-时,210810(5)2525t ty ttt-+=---=--.…………………6分所以810(5,)5tFt+--,所以△DEF的面积18105(5)(5)(2)255DEFt t tS tt t∆++=⋅+⋅+=--,(5t>).…………7分(Ⅲ)解法一(解析法):设点(,),(,)A AB BA x yB x y,设直线MA的方程为:4x my=-.由224,(3)25x myx y=-⎧⎪⎨+-=⎪⎩得22(1)(86)0m y m y+-+=.所以2861Amym++=+,2861Amym+=+. …………8分所以2861Bmym-+=+,…………………9分所以2161A Bmy ym-=+.又直线MB的方程为4x my=--,所以4A Ax my=-,4B Bx my=--,212()1A B A B A Bmx x my my m y ym-=+=+=+.…………………11分所以直线AB的斜率22164131A BABA Bmy y mkx xm-+===-+.即直线AB的斜率为定值,其值为43. …………………12分注:其他解法相应给分.解法二(几何法):如图,设圆与x 轴的正半轴相交于点M '.由,MA MB 关于x 轴对称可知,AM M BM M ''∠=∠, 所以M '为»AB 的中点,连结CM ',则CM AB '⊥, 因为直线CM '的斜率303044CM k '-==--, 所以43AB k =.即直线AB 的斜率为定值,其值为43.附:B 卷5. 略解:因为1sin sin sin 8A B C =, 所以111sin sin sin 888ab bc ca A B C ab bc ca ⋅⋅=⨯⋅⋅; 所以222364a b c S =.因为12S ≤≤,所以2221864a b c ≤≤,8abc ≤≤所以①不正确.因为22()8a b ab ab a b abc +=+>≥. 所以②正确. 因为1sin sin sin 8A B C =,所以1sin 8C >,所以111sin 282ab C ab >⨯,所以16ab S <,所以32ab <.所以③正确.。

相关文档
最新文档