数学教学中应怎样处理好算理和算法的关系

合集下载

怎样处理算理和算法的关系

怎样处理算理和算法的关系

怎样处理算理和算法的关系算理和算法的关系是计算机科学中一个非常重要的问题。

算理,又称为理论计算机科学,研究的是计算的本质、边界和原理,旨在寻找问题的求解能力和计算的极限。

而算法,则是指解决问题的有序的计算步骤。

算法是算理的应用,而算理则为算法提供了基础和指导。

下面将详细探讨算理和算法的关系,并提出一些处理该关系的方法。

首先,算理为算法提供了基础。

算理研究的是计算机科学的本质和理论模型,例如图灵机、自动机等。

这些理论模型提供了计算过程的抽象和形式化描述,为算法设计和分析提供了基本的数学语言和工具。

算理通过数学和逻辑方法,对算法的正确性、效率和可实现性进行研究,为算法的设计和分析提供了理论基础。

其次,算理为算法提供了指导。

算理研究的是计算的极限和难题,包括NP完全性、不可计算性等。

这些理论结果为算法设计和分析提供了指导方针。

例如,对于NP完全问题,算理的理论结果表明不存在多项式时间的算法来解决这些问题,因此算法设计者不必再花费精力去寻找多项式时间算法,而可以转而寻找近似算法或启发式算法。

算理通过对计算的边界和难题的研究,为算法设计提供了指导,帮助设计者做出更明智的选择。

同时,算法也为算理提供了实践验证和驱动力。

算法是对现实问题的求解过程的抽象和模拟,它们通过一系列的计算步骤来解决问题。

算法的实际应用和效果可以为算理提供实践验证,验证算理研究的正确性和可行性。

而实践中的问题和需求也可以为算理的研究提供驱动力。

算法在实际应用中暴露出的问题和挑战,可以推动算理研究对计算模型和理论的改进和完善。

为了更好地处理算理和算法的关系,可以采取一些方法和策略。

计算教学中如何使算理和算法有效结合

计算教学中如何使算理和算法有效结合

计算教学中如何使算理和算法有效结合计算教学中如何使算理和算法有效结合【徐金荣】刘老师这节课共有4个教学环节,分别是引出问题,理解算理、探索算法,自主练习,课堂总结。

其中,1.引出问题环节,用时大约2分钟。

课一开始,刘老师直接出示信息:"每根灯柱上有23盏灯,大楼前共有12根灯柱。

"由学生提出数学问题:一共有多少盏灯?列式后,刘老师有意设计了让学生说算式的意义,运用直观图帮助学生进一步理解算式的意义两个环节,突出了乘法的意义,为后面学生理解算理,探索算法作好铺垫。

2."理解算理,探索算法"是本节课的教学重点、难点,用时大约27分钟。

刘老师在这个环节,把估算、口算、笔算三种计算方式有机联系,使学生充分理解它们之间的联系,降低了思维的坡度,有利于学生理解算理,掌握算法。

在27分钟内,(1)估算。

用时大约2分钟。

老师着重引领学生用23×10估算出的得数,与23×12的得数进行比较,23×10仅仅算了10个23,还少了2个23,所以估算结果要比准确得数小。

(2)口算。

用时大约5分钟。

在口算环节,学生先独立尝试。

在交流口算方法时,刘老师有目的地先交流"23×10=230,23×2=46,230+46=276"的口算过程,并运用直观图,帮助学生进一步理解:把一个因数拆成一个整十数和一个一位数就变得简单了。

(3)笔算。

用时大约14分钟。

在交流算法时,教师有目的地选取以下两种笔算方法:①直接写出最后的计算结果。

②分成三个竖式完成。

在逐个展示并由学生评价后,使学生明确第①种笔算方法体现不出计算过程,第②种笔算方法能展示过程但有些麻烦。

刘老师引导学生思考:有没有两全其美的方法,既体现出过程,又比较简单?一名学生说道:先把23×12列出来,先算23×2=46,再算23×10=230,然后把46和230加起来得276。

浅谈小学数学计算教学中算理和算法的有效结合

浅谈小学数学计算教学中算理和算法的有效结合

浅谈小学数学计算教学中算理和算法的有效结合小学数学计算教学是一项重要的工作,对于孩子们的学习和未来的发展都有着不可忽视的作用。

在小学数学计算教学中,算理和算法的有效结合是非常重要的,可以帮助学生更好地掌握数学知识,提高他们的计算能力。

算理和算法是小学数学计算教学中的核心概念。

算理是指数学计算中的基本原理,包括加减乘除等。

这些原理是数学计算的基础,是学生掌握其他数学知识的必要前提。

而算法是指具体计算过程,它是根据算理原则设计出来的一种计算方法,用于解决具体数学问题。

算法是数学计算的重要组成部分,可以帮助学生更有效地应用算理原则,完成各种数学计算任务。

在小学数学计算教学中,教师需要将算理和算法有机结合起来,使学生能够真正地理解数学计算的原理,同时也能够掌握具体的计算方法。

这样,学生才能在实际运用中更好地应用所学知识,提高他们的数学能力。

具体来说,需要采取以下措施:首先,教师要将算理和算法的关系作为教学内容的重点,通俗易懂地讲解二者的概念和关系。

在讲解算理原理时,可以采用生动的故事和例子来帮助学生理解。

例如,在讲解加减法时,可以用小动物的故事来说明,并通过举例演示加减法的计算过程。

在讲解算法时,可以进行一些具体数学练习,帮助学生掌握具体的计算方法。

其次,教师要结合实际生活中的数学问题来进行教学。

通过讲解实际生活中的数学问题,例如购物、旅游等,可以帮助学生更好地理解算理原理和算法。

并且,通过实际生活中的问题,可以帮助学生将所学知识应用到实际中,更好地掌握数学知识。

最后,教师需要进行不同层次的教学,根据学生的实际情况进行个性化教学。

部分学生可能在算理方面较为弱势,需要进行一些基础练习来提高他们的算理能力。

而另一些学生可能比较擅长算理,需要更多地练习算法,以提高他们的计算能力。

因此,教师需要根据不同学生的情况,量身定制教学计划。

如何处理算理和算法的关系

如何处理算理和算法的关系

如何处理算理和算法的关系算理是算法的理论依据,算法是算理的提炼和概括,它们是相辅相成的,算理与算法,贵在合谐,而寻求算理与算法的平衡点是计算教学理性回归需要解决的主要问题。

算法多样化,算理要让学生掌握数学思想方法。

怎样处理好算理与算法教学统一,使学生既理解算理,又能牢固掌握算法、提高计算的速度和正确率呢?下面就以两位数乘一位数为例,说说如何实现理算理与算法的的教学统一。

1、引导研究,理解算理学生只有理解了计算的道理,才能“创造”出计算的方法,才能理解和掌握计算方法,才能正确迅速地计算,所以计算教学必须从算理开始。

教学中要引导学生对计算的道理进行深入的研究,帮助学生应用已有的知识领悟计算的道理。

首先引导学生思考:为什么可以用14×2计算?使学生明白14×2表示求2个14是多少;其次,让学生思考:你打算怎么计算14×2?使学生明白14是由1个十和4个一组成的,可以把14×2转化成已经学过的乘法计算:先算2个10 是多少,再算2个4是多少,最后把两次算的得数合并,计算的过程有三个算式:4×2=8,10×2=20,20+8=28。

通过这样的研究学生就理解两位数乘一位数计算的道理,学生就能应用这样的道理解决其他两位数乘一位数的计算问题。

2、及时练习,巩固内化通过上面的计算研究,学生虽然理解了两位数乘一位数的道理,但是此时学生对算理的理解还处于似懂非懂的状态,学生是否真正掌握了算理还要经过实际计算才能得到检验和巩固,此时及时组织学生进行相应的练习是很有必要的,只有在练习中才能把算理内化为自己的理解,才能使学生理解和掌握算理。

所以在学生初步理解了算理后,应当及时组织学生用三个算式进行两位数乘一位数的练习,使学生在练习中加深对算理的理解,在练习中牢固掌握算理,为后面的抽象、概括计算方法奠定坚实的基础。

3、应用算理,进行创造。

算理是计算的思维本质,如果都这样思考着算理进行计算,不但思维强度太大,而且计算的速度很慢算。

算理和算法有效结合磨课总结

算理和算法有效结合磨课总结

算理和算法有效结合磨课总结篇一:计算教学中如何使算理和算法有效结合计算教学中如何使算理和算法有效结合算理与算法之间有着密切的关系:算理是客观存在的规律,为计算提供了正确的思维方式,保证了计算的合理性和正确性,它是算法的理论依据;算法为计算提供了快捷的操作方法,提高了计算的速度,它是算理的提炼和概括,二者是相辅相成的。

要实现二者的有效融合很有必要,它不仅关系着算理能否掌握,还直接关系算法能否落实。

怎样将二者融合呢?从磨课方案到教学设计到上课实录,再到总结研讨,真是醍醐灌顶,如获至宝。

尤其是本次磨课中对于算理与算法的有效结合做的是炉火纯青,值得我仔细揣摩,谈到本课例片段中是怎么处理算理和算法关系,采取了哪些促使算理和算法有效结合的措施,具体来说我认为:一、算理必须要让学生感悟,而不是让学生单纯的理解。

本片段中口算环节,先由学生独立试算,其实这就是让学生自主探究感悟算理,该怎么做呢,为什么这样做呢?二、算法是学生在理解了算理的根底上对适合自己的计算方法的总结,本片段中让学生中交流算法,其中引入了直观图;然后比照几种口算方法,寻找其共同点。

这其实就是在感悟的根底上对算法进行一种理解总结。

真的就是感悟算理和掌握算法是计算教学的两大任务,算法是解决问题的操作程序,算理是算法赖以成立的数学原理。

三、我个人认为本片段中自主探究环节设计的巧妙,自主探究环节是找准“算理〞与“算法〞的连接点,是促使算理和算法有效结合的有力措施。

总之通过本次研修我个人认为只有根据学生已有的“旧知〞,并与抽象的竖式计算建立起联系,从而让学生经历竖式,才能真正掌握竖式计算的方法。

才能到达算理与算法的有效结合。

篇二:磨课总结与反思磨课总结反思邹城市中心店镇付庄小学王波研修即将结束,回忆这将近两个月的紧张磨课经历,一路走来,我感到收获颇多。

整个磨课过程,我与研修组全体成员精诚团结,群策群力,虽然工作繁忙,可磨课任务一样都没落下。

真是“为磨精课人憔悴,衣带渐宽终不悔。

算理与算法并重,促进学生计算能力的培养

算理与算法并重,促进学生计算能力的培养

算理与算法并重,促进学生计算能力的培养•相关推荐算理与算法并重,促进学生计算能力的培养算理与算法并重,促进学生计算能力的培养摘要:算理就是计算过程中的道理,是指计算过程中思维方式,是解决为什么这样算的问题。

算法就是计算的方法,主要是指计算的法则,是指怎样算的问题。

本文旨在"算理与算法并重,促进学生计算能力的培养"方面谈谈自己的一些浅见。

关键字:算理算法计算能力一、算理与算法之间的关系。

算理是计算的理论依据,是计算过程中的道理,是指计算过程中思维方式,是解决为什么这样算的问题,而算法则是依据算理提炼出来的计算规律和方法,主要是指计算的法则,就是简约了复杂的思维过程、添加了人为规定后的程式化的操作步骤,主要是解决算的方便、准确,它是算理的具体体现。

算理和算法是相辅相成的,算理是学生走向算法的桥梁,是学生学习算法的知识基础,而算法是学生学习的中心任务。

只强调算理,能理解了新问题,但无法实现计算方法上质的飞跃;只是强调算法,学生知其然,而不知其所以然,不利于学生进一步的学习和能力的培养。

"感悟算理和掌握算法是计算教学的两大任务,算法是解决问题的操作程序,算理是算法赖以成立的数学原理。

"在教学中,要引导学生联系自己身边具体、有趣的事物,通过观察、操作、解决问题等丰富的活动,感受算理,学会算法。

如在教学西师版小学数学二年级(下)三位数的加法例1:计算220+260时,就是根据数的组成进行演算的:220是由2个百、2个十组成的,260是由2个百和6个十组成的,所以先把2个十与6个十相加得8个十,再把2个百与2个百相加得4个百,最后把4个百、8个十合并得480,这就是算理;当学生进行了一定量的练习以后,发现了计算的规律:个位数只能与个位数直接相加、十位数只能与十位数直接相加、百位数只能与百位数直接相加,也就是相同数位上的数才能直接相加,最后再把几个得数合并,这是学生感悟算理的过程;最后进行优化计算过程,为了便于计算一般写成竖式形式,在此基础上引导学生抽象概括出普遍适用的计算法则:把相同数位对齐列出竖式,再从个位加起,满十向前一位进一,这就是算法。

小学数学教学如何处理“算理与算法”的关系-最新资料

小学数学教学如何处理“算理与算法”的关系-最新资料

小学数学教学如何处理“算理与算法”的关系新课程标准将我国小学数学划分为“数与代数”“空间与图形”“统计与概率”和“综合与实践”四个学习领域,数的运算作为“数与代数”部分的严重内容,一直以来被老师所重视,科学处理算理和算法的关系,直接影响到学生计算能力以及运用算理解决实际问题能力的培养。

而在实际教学中,大多数老师都存在重算法轻算理的问题,那么算理和算法的关系到底是怎样的,我们应该如何科学处理算理和算法之间的关系呢?我觉得首先我们得从算理和算法的关系谈起。

一、算理与算法之间的关系所谓算理就是计算过程中的道理,是解决为什么这样算的问题,它是四则运算的理论依据。

而算法也就是计算的法则,是解决如何算得便当、确凿的问题。

二、在理清二者关系的基础上,教师要科学处理算理与算法的关系,做到算理与算法兼顾1.积极转变教学观念算理与算法兼顾,说起来简易,做起来难,原因主要存在以下几点:一是教师本身对算理与算法的关系理解不到位,在实际教学中普遍存在重算法、轻算理,甚至不讲算理的情况。

特别是一些老教师,他们往往将课堂的主要精力放在了算法的机械掌握和不断地强化练习上,通过不断地机械练习,让学生达到烂熟操作的目的。

二是现有考试制度和教师考核制度的限制。

在很多情况下,在老师只重算法不讲算理、只是机械巩固练习的情况下,学生虽然是“只知其然,不知其所以然”,但熟能生巧,学生的成绩仍然很高,年终考核的时候教师考核成绩仍然可以。

既没有浪费太多的时间在那些不好理解的算理上,学生的计算能力貌似还可以,自己的考核成绩也可以,长此以往,形成惯性,算理的严重性更是被抛在了脑后……而这样的老师教出来的学生虽然短期内成绩要好,但如果试题难度加大,特别是需要解决实际问题的时候,这些学生往往就会显得束手无策,成绩会大失水准。

所以,数学老师在日常教学中要积极转变教学观念,做到算理和算法并重。

2.注重学生的体验探究和动手操作,有利于学生在活动中发现算理例如,在学习青岛版新课标小学数学三年级下册第九单元“解决问题”这一信息窗时,帮助学生理解建构相遇问题的数学模型是关键。

提高学生计算能力的良药——在教学中如何才能真正处理好算理与算法的关系

提高学生计算能力的良药——在教学中如何才能真正处理好算理与算法的关系

提高学生计算能力的良药——在教学中如何才能真正处理好算理与算法的关系
在小学的数学教学中,计算教学占很大的比重,这是学生在学习生涯中必须具备的一项很重要的能力。

当前教学给我的感悟是:学生的计算能力越来越差,是学生所谓的“粗心”?还是没有掌握好“算法”?在反思的同时我也找到了问题的根源:有的学生并没有真正掌握好算理与算法。

大多数学生在做题时主要是“照葫芦画瓢”,并没有真正去领会计算的依据,同时也使学生形成了不良的习惯:做题时讲求速度而不要求质量,有些学困生甚至“乱做一气”,导致了恶性循环。

我觉得,要想真正提高学生的计算能力,必须让学生掌握算法,明确算理,理解算理,具体做到以下几点:
一、要重视算理的教学。

学生每学习一种算法,要先让他们明白为什么?教师要把学习时间充分还给学生,千万不要一学习就让学生记住法则,按法则的步骤去照搬。

二、在理解算理的基础上让学生掌握算法。

教师可充分利用预设的教学情境、教学媒体、教具、学具等让学生充分理解。

三、处理好与“算理”与“算法”的关系。

首先必须让学生明确怎样算,并在理解算理的基础上掌握计算方法,要让学生不仅“知其然”,还要“知其所以然”引导学生在理解算理的基础上自主地生成算法,在算法形成与巩固的过程中进一步明确算理。

四、要重视口算教学,。

学生在口算时也要说出为什么这样算。

五、估算教学也不可忽视。

估算时要让学生明确估算方法的多样化,同时也要让学生说出为什么?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学教学中应怎样处理好算理和算法的关系?
在计算教学中(特别是第一节课)由于平时的教学中算理与算法的关系处理不当,使得教学效率低下。

如何正确处理算理与算法的关系,课堂上保证新算法的练习时间和练习量,改变计算教学的模式,给予理解算理的空间,这些都值得我们去探究。

为此,谈一下个人看法:
一、借助直观模型,促成算理与算法的有效结合。

二、抓住课堂“生成”,促成算理与算法的有效结合。

学生在学习计算的过程中,理解了算理和掌握了算法,才能便于灵活、简便地进行计算,计算的多样性才有基础和可能。

因此,在计算教学中正确处理好计算教学中算理和算法的关系是十分重要的。

通过以上活动原本枯橾的计算充满了活力,学生学的主动而有兴趣。

数形结合,促成了使学生经历了探索、运用除法笔算方法的全过程,主动构建知识。

学生学的快乐、主动,达到了预期的教学目的。

三、数学教学中“算理”与“算法”要融会贯通
1、引导研究,理解算理例如教学13×2
首先引导学生思考:你打算怎么计算13×2?使学生明白13是由1个十和3个一组成的,可以把13×2转化成已经学过的乘法计算:先算2个10 是多少,再算2个3是多少,最后把两次算的得数合并起来,写成的算式是:10×2=20,3×2=6,20+6=26。

实际上这是口算的方法,口算的过程体现了两位数乘一位数的算理。

2、及时练习,巩固内化让学生在练习中加深对算理的理解,为后面抽象、概括计算方法奠定坚实的基础。

3、应用算理,进行创造。

如果都像上面的例子这样,分三步思考算理进行计算,不但思维强度大,而且计算的速度很慢。

为了提高计算速度,就必须寻找计算的普遍规律,抽象、概括出计算法则。

计算后,再引导学生对竖式计算过程进行观察反思:这些乘法的竖式计算都是怎么算的?分几个步骤?从而归纳出两位数乘一位数的计算法则。

4、观察比较,归纳方法。

当学生比较熟练地继续竖式计算后,再引导学生对竖式计算过程进行观察反思:这些乘法的竖式计算都是怎么算的?分几个步骤?从而归纳出两位数乘一位数的计算法则:先用一位乘数乘两位数的个位数,积的末尾写在个位上,再用一位乘数乘两位的十位数,积的末尾写在十位上。

这时的计算就不再思考每一步的计算道理,只要按照这样的操作步骤进行演算就能得到计算的结果,计算的速度大大加快。

我们要处理好算理和算法的关系,引导学生循“理”入“法”,以“理”驭“法”,实现算理与算法的融会贯通。

四、处理计算教学中算理与算法的关系应注意以下五点:
1、算理与算法是计算教学中有机统一的整体,形式上可分,实质上不可分,重算法必须重算理,重算理也要重算法。

2、计算教学的问题情境既为引出新知服务,体现“学以致用”,也为理解算理、提炼算法服务,教学要注意在“学用结合”的基础上,以理解算理,掌握算法,形成技能为主。

3、算理教学需借助直观,引导学生经历自主探索、充分感悟的过程,但要把握好算法提炼的时机和教学的“度”,为算法形成与巩固提供必要的练习保证。

4、算法形成不能依赖形式上的模仿,而要依靠算理的透彻理解,只有在真正理解算理的基础上掌握算法、形成计算技能,才能算是找到了算理与算法的平衡点。

5、要防止算理与算法之间出现断痕或硬性对接,要充分利用例题或“试一试”中的“可以怎样算?”“在小组里说一说,计算时要注意什么?”等问题,指导学生提炼算法,为算理与算法的有效衔接服务。

教学中应鼓励学生去自主探究,在小组内集体讨论,取他人之长,补已之短。

一些教师片面理解了新课程理念和新教材,他们把过多的时间用在形式化的情境创设、动手操作、自主探索、合作交流上,在理解算理上大做文章,过分强调为什么这样算,还可以怎样算,却缺少对算法的提炼与巩固,造成学生理解算理过繁,掌握算法过软,形成技能过难,教学走向“重算理、轻算法”的另一极端。

总之老师在后面的笔算环节并没有明确的给算理和算法规定先后顺序,先学谁后学谁,而是通过引导学生尝试,交流,巩固等措施,使学生在理解算理的基础上得出算法,把算理和算法有机结合起来,真正做到了算理和算法相辅相成。

相关文档
最新文档