辽宁省大连市甘井子区2016-2017学年七年级(上)期末数学试卷(解析版)

合集下载

辽宁省大连市七年级上学期期末数学试卷(含答案)

辽宁省大连市七年级上学期期末数学试卷(含答案)

辽宁省大连市七年级上学期期末数学试卷(含答案)一、选择题(本题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项正确)1.若气温零上3℃记作+3℃,则气温零下2℃记作( )A .+2℃B .+1℃C .-2℃D .-1℃2.下列几何体属于棱柱的是( )A .B .C .D .3.下列的四个角中,是已知角的余角的是( )A .B .C .D .4.如图,点A 位于点O 的方向是( )A .南偏东35°B .北偏西65°C .南偏东65°D .南偏西65°5.下面的四个选项表示的是检验4个工件时的记录,超过标准质量的记作正数,不足标准质量的记作负数,其中最接近质量标准的工件是( )A .-1B .-0.2C .0.5D .1.56.下列各式的结果不等于...123-的算式是( ) A .123-- B .123⎛⎫-+ ⎪⎝⎭ C .()123⎛⎫-+- ⎪⎝⎭ D .123-+ 7.当1x =-时,代数式24x -的值为( )A .-3B .3C .-5D .58.已知等式25a b =+,下列各式中不成立的是( )A .25a b -=B .1522a b =+C .25b a =+D .214a b -=+9.一个两位数的个位上数字是a ,十位上的数字是b ,这个两位数用含a ,b 的代数式表示是( )A .abB .baC .10a b +D .10b a +10.下表是2023年1月的月历,用一个方框任意..框出4个数a ,b ,c ,d .若2a d +的值为65,那么a 的值是( )A .19B .20C .21D .22二、填空题(本题共8小题,每小题3分,共24分)11.()3--=______.12.如图,固定窗帘架只需固定其中的两点,这样做的根据是______.13.大连是一个美丽的海滨城市,海岸线长1787000米,用科学记数法表示数字1787000为______.14.单项式212xy -的系数是______. 15.某工厂去年的产值是a 万元,今年比去年增加10%,今年的产值是______万元(用含a 的式子表示).16.如图,将两块直角三角尺的直角顶点重合,若20AOC ∠=︒,则BOD ∠的度数为______.17.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少?设共有x 人,根据题意可列方程______.18.观察下面*运算的运算结论. ()()235++=,()()235--=;()()235-+=-,()()235+-=-;()022+=;()202-=.…,同号得正,异号得负,______;特别地,0和任何数运算或任何数和0运算,都得这个数的绝对值.”三、解答题(本题共7小题,第19~22题每小题10分,第23~25题每小题12分,合计76分)19.计算:(1)()1274-⨯-;(2)352146324⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭. 20.计算:(1)9355y y -=+;(2)32123x x --=+. 21.如图,点A ,B ,C 是同一平面内三个点.(1)读下列语句,并分别画出图形:①画直线AB ;②画射线AC ,在线段AC 的延长线上截取CD AC =(尺规作图,保留作图痕迹);③连接BD .(2)根据(1)中的图形,判断AC CD +和AB BD +的大小关系,并说明理由.22.如图,点B 是线段AC 上一点,9AB =,13BC AB =,点O 是线段AC 的中点.求线段OB 的长.23.某校初一(3)班组织生活小常识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了其中4个参赛者的得分情况. 参赛者答对题数 答错题数 得分 A20 0 120 B① 2 106 C② ③ 78 D10 ④ 50 (2)补全表格;①______;②______;③______;④______.(3)参赛者E 说他得分是60分,请你判断可能吗?并说明理由;24.点A 直线OM 的上方,将OA 绕点O 顺时针旋转到OB 得到的AOB ∠度数为()1090αα︒<<︒,AOB ∠与MON ∠互补,若点B 也在OM 上方且10BON ∠=︒.OC 平分AON ∠.(1)如图,若AOB ∠在MON ∠内部,50α=︒,求BOC ∠的度数;(2)用含α的式子表示MOC ∠.25.模型与应用数学模型 在数学中,可以用一条直线上的点表示数,这条直线叫做数轴.用数轴上的点表示数对数学的发展起了重要作用,借助图直观地表示很多与数相关的问题,体现了数形结合的思想方法.问题解决 如图1,在数轴上,点A 和点B 表示的有理数分别为-2和4,点P 、点Q 为线段..AB 上两点,点Q 在点P 右侧且1PQ =.若点P 对应的数为x ,3AP BQ =,求此时x 的值.形成观念 如图2,某地的高速口与动车口水平距离为1千米,同向平行行驶的轿车和动车在各自卡口同时出发.已知普通家庭轿车的长度是4米,行驶速度为120千米/小时;8组编的动车长度为266米,行驶速度为200千米/小时.求动车车头追上轿车车尾到动车车尾离开轿车车头需要多少秒?参考答案及评分标准1.C 2.B 3.A 4.B 5.B 6.D 7.A 8.C 9.D 10.A 11.3 12.两点确定一条直线 13.61.78710⨯ 14.12- 15.()10%a a + 16.20° 17.8374x x -=+ 18.并把绝对值相加 19.(1)原式122840+=;(2)原式()()3522418201614463⎛⎫=-+⨯-=--+=- ⎪⎝⎭. 20.(1)5394y y +=-,84y =,12y =. (2)()()33236x x -=-+,39246x x -=-+,11x =21.(1)画图略① ②(没有弧线作图痕迹的,扣一分) ③(2)AB BD AC CD +>+.∵AB BD AD +>(两点之间,线段最短),又∵AD AC CD =+(线段和的定义)∴AB BD AC CD +>+.22.由题可知,119333BC AB ==⨯=, ∴9312AC AB BC =+=+=, ∵O 是AB 的中点,∴1112622OC AC ==⨯=, ∴633OB OC BC =-=-=.23.(1)由A 可知,答对一题得分为120206÷=,由表格可知,B 答对了()20218-=题,()10618621-⨯÷=-.答:答错一题扣1分.(2)①18;②14;③6;④10;(3)不可能.设E 答对了x 道题,则他答错了()20x -道题,根据题意,()62060x x --=, 解得,807x =,∵题数是整数,∴807x =不合题意,舍去. 答:参赛者E 不可能得60分.24.(1)∵501060AON AOB BON ∠=∠+∠=︒+=︒,∵OC 平分AON ∠,∴11603022CON AOC ∠=∠=⨯︒=︒,∴301020BOC CON BOC ∠=∠-∠=︒︒=︒-.(2)①如图1,当OA 、OB 都在MON ∠的内部时,∵10AON AOB BON α∠=∠+∠=+︒,∵OC 平分AON ∠, ∴()111022CON AON α∠=∠=+︒, ∵MON ∠与AOB ∠互补,∴180MON AOB ∠+∠=︒,∴180180MON AOB α∠=︒-∠=︒-,∴()131801017522MOC MON CON ααα∠=∠-∠=︒--+︒=︒-; ②如备用图,当OA 在MON ∠的内部,OB 在MON ∠的外部,∵10AON AOB BON α∠=∠-∠=-︒,∴()111022CON AON α∠=∠=-︒, ∵MON ∠与AOB ∠互补,∴180MON AOB ∠+∠=︒,∴180180MON AOB α∠=︒-∠=︒-,∴()131801018522MOC MON CON ααα∠=∠-∠=︒---︒=︒-, 综上,当10BON ∠=︒时,MOC ∠为31752α︒-或31852α︒-.25.解决问题由题,点P 对应的数是x ,则点Q 对应的数是1x +.∴2AP x =+,()41BQ x =-+,∵3AP BQ =,∴()2341x x +=-+⎡⎤⎣⎦,解得,74x =. 形成观念如图,以高速卡口为原点,小轿车行驶的方向为正方向,1千米为一个单位长度,建立数轴.t 小时后,轿车头部A 对应的数为120t ,轿车尾部B 对应的数为1200.004t -,动车头部C 对应的数为1200t -+,动车尾部D 对应的数为12000.266t -+-,当B 与C 重合时,12001200.004t t -+=-,解得,0.01245t =,当A 与D 重合时,12000.266120t t -+-=,解得,0.015825t =,()0.0158250.01245360012.15-⨯=(秒).答:动车头追上轿车尾到动车尾离开轿车头一共需要12.15秒.。

2016-2017学年新人教版七年级上期末数学试卷含答案解析

2016-2017学年新人教版七年级上期末数学试卷含答案解析

七年级(上)期末数学试卷(解析版)一、选择题1.﹣3的绝对值是()A.﹣3 B.﹣C.D.32.一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释的应是()A.两点之间线段最短 B.两点确定一条直线C.线段可以大小比较 D.线段有两个端点3.海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的()A.南偏西50°B.南偏西40°C.北偏东50°D.北偏东40°4.下面四个几何体中,从正面观察得到的平面图形是圆的几何体是()A.B.C. D.5.江苏省的面积约为102 600km2,这个数据用科学记数法表示正确的是()A.12.26×104B.1.026×104C.1.026×105D.1.026×1066.与算式32+32+32的运算结果相等的是()A.33B.23C.36D.387.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3 B.∠1=180°﹣∠3 C.∠1=90°+∠3 D.以上都不对8.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利20元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣20 B.(1+50%)x×80%=x+20C.(1+50%x)×80%=x﹣20 D.(1+50%x)×80%=x+20二、填空题(每题3分,共24分)9.计算:﹣1﹣2=______.10.已知|m﹣2|+|3﹣n|=0,则﹣n m=______.11.如图,是一个简单的数值运算程序当输入x的值为﹣1时,则输出的数值为______.12.方程2x+1=3和方程2x﹣a=0的解相同,则a=______.13.若(5x+3)与(﹣2x+9)互为相反数,则x=______.14.已知∠α的余角等于30°,则∠α的补角=______.15.按规律填数:,______,…16.已知∠AOB=50°,∠BOC=30°,则∠AOC=______.三、解答题(本大题共2小题,每题6分,共12分)17.计算:﹣14×[6﹣(﹣3)2].18.解方程:.四、解答题(共2小题,每题7分,共14分)19.某剧团为“希望工程”募捐组织了一次义演,共卖出900张票,成人票1张15元,学生票1张8元,共筹款10805元.问成人票和学生票各售出多少张?20.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.五、解答题21.现有甲、乙两个瓷器店出售茶壶和茶杯,茶壶每只价格为20元,茶杯每只价格为5元,已知甲店制定的优惠方法是买一只茶壶送一只茶杯,乙店按总价的92%付款.学校办公室需要购买茶壶4只,茶杯若干只(不少于4只).(1)当购买多少只茶杯时,两店的优惠方法付款一样多?(2)当需要购买40只茶杯时,若让你去办这件事,你打算去哪家商店购买?为什么?22.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC;(1)求∠MON;(2)∠AOB=α,∠BOC=β,求∠MON的度数.六、解答题(共1小题,共10分)23.(10分)(2014秋•信丰县期末)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?七年级(上)期末数学试卷参考答案与试题解析一、选择题1.﹣3的绝对值是()A.﹣3 B.﹣C.D.3【考点】绝对值.【分析】根据绝对值的定义直接解答即可.【解答】解:∵﹣3的绝对值表示﹣3到原点的距离,∴|﹣3|=3,故选D.【点评】本题考查了绝对值的定义,知道绝对值表示某点到原点的距离是解题的关键.2.一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释的应是()A.两点之间线段最短 B.两点确定一条直线C.线段可以大小比较 D.线段有两个端点【考点】线段的性质:两点之间线段最短.【分析】一条弯曲的公路改为直道,使两点之间接近线段,因为两点之间线段最短,所以可以缩短路程.【解答】解:由题意把弯曲的公路改为直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.故选A.【点评】此题为数学知识的应用,考查知识点两点之间线段最短.3.海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的()A.南偏西50°B.南偏西40°C.北偏东50°D.北偏东40°【考点】方向角.【分析】根据方向角的定义即可判断.【解答】解:海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的南偏西40°.故选B.【点评】本题主要考查了方向角的定义,正确理解定义是关键.4.下面四个几何体中,从正面观察得到的平面图形是圆的几何体是()A.B.C. D.【考点】简单几何体的三视图.【分析】分别根据几何体写出主视图即可.【解答】解:A、正方体从正面观察得到的平面图形是正方形,故此选项错误;B、圆锥从正面观察得到的平面图形是三角形,故此选项错误;C、圆柱从正面观察得到的平面图形是长方形,故此选项错误;D、球从正面观察得到的平面图形是圆,故此选项正确;故选:D.【点评】此题主要考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.5.江苏省的面积约为102 600km2,这个数据用科学记数法表示正确的是()A.12.26×104B.1.026×104C.1.026×105D.1.026×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于102600有6位,所以可以确定n=6﹣1=5.【解答】解:102 600=1.026×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.6.与算式32+32+32的运算结果相等的是()A.33B.23C.36D.38【考点】有理数的乘方.【分析】32+32+32表示3个32相加.【解答】解:32+32+32=3×32=33.故选A.【点评】本题根据乘法的意义可知32+32+32=3×32,根据乘方的意义可知3×32=33.7.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3 B.∠1=180°﹣∠3 C.∠1=90°+∠3 D.以上都不对【考点】余角和补角.【分析】根据∠1与∠2互补,∠2与∠3互余,先把∠1、∠3都用∠2来表示,再进行运算.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:C.【点评】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.8.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利20元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣20 B.(1+50%)x×80%=x+20C.(1+50%x)×80%=x﹣20 D.(1+50%x)×80%=x+20【考点】由实际问题抽象出一元一次方程.【分析】根据售﹣进价=利润,求得售价,进一步列出方程解答即可.【解答】解:设这件夹克衫的成本是x元,由题意得(1+50%)x×80%﹣x=20也就是(1+50%)x×80%=x+20.故选:B.【点评】此题考查了由实际问题抽象出一元一次方程的知识,掌握销售问题中基本数量关系是解决问题的关键.二、填空题(每题3分,共24分)9.计算:﹣1﹣2=﹣3.【考点】有理数的减法.【分析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.【解答】解:﹣1﹣2=﹣1+(﹣2)=﹣3.故答案为﹣3.【点评】本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.10.已知|m﹣2|+|3﹣n|=0,则﹣n m=﹣9.【考点】非负数的性质:绝对值.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出m、n的值,代入所求代数式计算即可.【解答】解:∵|m﹣2|+|3﹣n|=0,∴m﹣2=0,3﹣n=0,∴m=2,n=3.∴﹣n m=﹣9.故答案为:﹣9.【点评】本题考查的知识点是:两个绝对值的和为0,那么这两个绝对值里面的代数式均为0.11.如图,是一个简单的数值运算程序当输入x的值为﹣1时,则输出的数值为1.【考点】有理数的混合运算.【分析】根据题目中的式子可以求出当x=﹣1时的代数式的值.【解答】解:(﹣1)×(﹣3)﹣2=3﹣2=1,故答案为:1.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.12.方程2x+1=3和方程2x﹣a=0的解相同,则a=2.【考点】同解方程.【分析】由这两个方程的解相同,可以先解出方程2x+1=3的解x=1,再把x=1代入方程2x ﹣a=0,求出a=2.【解答】解:由2x+1=3得:2x=2,解得x=1,把x=1代入方程2x﹣a=0得:2﹣a=0,∴a=2.【点评】本题考查的是两个同解方程,由已知方程的解求出另一个未知数的值.13.若(5x+3)与(﹣2x+9)互为相反数,则x=﹣4.【考点】解一元一次方程.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:(5x+3)+(﹣2x+9)=0,去括号得:5x+3﹣2x+9=0,移项合并得:3x=﹣12,解得:x=﹣4.故答案为:﹣4【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.14.已知∠α的余角等于30°,则∠α的补角=120°.【考点】余角和补角.【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【解答】解:根据余角的定义,这个角的度数=90°﹣30°=60°,根据补角的定义,这个角的补角度数=180°﹣60°=120°,故答案为:120°.【点评】此题综合考查余角与补角,主要记住互为余角的两个角的和为90度,互为补角的两个角的和为180度.15.按规律填数:,,…【考点】规律型:数字的变化类.【分析】首先观察符号规律:第奇数个数是正数,第偶数个数是负数;且第n个数的分子是n,分母是对应的分子的平方加1,即n2+1,所以可直接写出第五个数.【解答】解:∵第n个数的分子是n,分母是n2+1,∴第五个数是.故答案为:.【点评】本题考查了数字的变化类,此类题应先找符号的规律,再分别找分子和分母的规律,先找到易找的规律,然后观察另一个和它是否有关系.16.已知∠AOB=50°,∠BOC=30°,则∠AOC=20°或80°.【考点】角的计算.【分析】本题是角的计算的多解问题,求解时要注意分情况讨论,可以根据OC与∠AOB 的位置关系分为OC在∠AOB的内部和外部两种情况求解.【解答】解:当OC在∠AOB内部,因为∠AOB=50°,∠BOC=30°,所以∠AOC为20°;当OC在∠AOB外部,因为∠AOB=50°,∠BOC=30°,所以∠AOC为80°;故∠AOC为20°或80°.【点评】本题只是说出了两个角的度数,而没有指出OC与∠AOB的位置关系,因此本题解题的关键是根据题意准确画出图形.三、解答题(本大题共2小题,每题6分,共12分)17.计算:﹣14×[6﹣(﹣3)2].【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1﹣×(﹣3)=﹣1+1=0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.解方程:.【考点】解一元一次方程.【分析】本题方程含有分数,若直接进行通分,书写会比较麻烦,而方程左右两边同时乘以公分母6,则会使方程简单很多.【解答】解:去分母,得:2(2x+1)﹣(5x﹣1)=6去括号,得:4x+2﹣5x+1=6移项、合并同类项,得:﹣x=3方程两边同除以﹣1,得:x=﹣3.【点评】本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.而此类题目学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.四、解答题(共2小题,每题7分,共14分)19.某剧团为“希望工程”募捐组织了一次义演,共卖出900张票,成人票1张15元,学生票1张8元,共筹款10805元.问成人票和学生票各售出多少张?【考点】一元一次方程的应用.【分析】设成人票售出x张,则学生票售出(900﹣x)张,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设成人票售出x张,则学生票售出(900﹣x)张,根据题意得:15x+8(900﹣x)=10805,解得:x=515,则900﹣x=385,答:成人票515元,学生票385元.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.20.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.【考点】整式的加减;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)将B的代数式代入A﹣2B中化简,即可得出A的式子;(2)根据非负数的性质解出a、b的值,再代入(1)式中计算.【解答】解:(1)∵A﹣2B=A﹣2(﹣4a2+6ab+7)=7a2﹣7ab,∴A=(7a2﹣7ab)+2(﹣4a2+6ab+7)=﹣a2+5ab+14;(2)依题意得:a+1=0,b﹣2=0,a=﹣1,b=2.原式A=﹣(﹣1)2+5×(﹣1)×2+14=3.【点评】本题考查了非负数的性质和整式的化简,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.五、解答题21.现有甲、乙两个瓷器店出售茶壶和茶杯,茶壶每只价格为20元,茶杯每只价格为5元,已知甲店制定的优惠方法是买一只茶壶送一只茶杯,乙店按总价的92%付款.学校办公室需要购买茶壶4只,茶杯若干只(不少于4只).(1)当购买多少只茶杯时,两店的优惠方法付款一样多?(2)当需要购买40只茶杯时,若让你去办这件事,你打算去哪家商店购买?为什么?【考点】一元一次方程的应用.【分析】(1)设购买x只茶杯时,两店的优惠方法付款一样多,分别表示出两店需要的付款,运用方程思想求解;(2)分别求出在甲乙两店需要的花费,比较即可得出答案.【解答】解:(1)设购买x只茶杯时,两店的优惠方法付款一样多,根据题意得:92%(20×4+5x)=20×4+5(x﹣4),解得:x=34,答:购买34只茶杯时,两店的优惠方法付款一样多.(2)打算去乙店购买.因为需要购买40只茶杯时,在甲店需付款20×4+5×(40﹣4)=260(元);在乙店需付款92%×(20×4+5×40)=257.6(元);故乙店比甲店便宜.【点评】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,得出两家商店需要付款的表达式,难度一般.22.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC;(1)求∠MON;(2)∠AOB=α,∠BOC=β,求∠MON的度数.【考点】角的计算;角平分线的定义.【分析】(1)根据角平分线的定义得到∠MOC=∠AOC,∠NOC=∠BOC,则∠MON=∠MOC﹣∠NOC=(∠AOC﹣∠BOC)=∠AOB,然后把∠AOB的度数代入计算即可;(2)同理可得,∠MOC=,∠CON=,所以∠MON=∠MOC﹣∠CON==.【解答】解:(1)∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∵∠AOC=∠AOB+∠BOC,∴∠MON=∠MOC﹣∠NOC=(∠AOB+∠BOC﹣∠BOC)=∠AOB,∵∠AOB=90°,∴∠MON=×90°=45°.(2)同理可得,∠MOC=,∠CON=,∴∠MON=∠MOC﹣∠CON==.【点评】本题考查了角平分线的定义,属于基础题,解决本题的关键是熟记平分线的定义.六、解答题(共1小题,共10分)23.(10分)(2014秋•信丰县期末)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?【考点】一元一次方程的应用;数轴.【分析】(1)设经过x秒点M与点N相距54个单位,由点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过t秒点P到点M,N的距离相等,得出(2t+6)﹣t=(6t﹣8)﹣t或(2t+6)﹣t=t﹣(6t﹣8),进而求出即可.【解答】解:(1)设经过x秒点M与点N相距54个单位.依题意可列方程为:2x+6x+14=54,解方程,得x=5.答:经过5秒点M与点N相距54个单位.(算术方法对应给分)(2)设经过t秒点P到点M,N的距离相等.(2t+6)﹣t=(6t﹣8)﹣t或(2t+6)﹣t=t﹣(6t﹣8),t+6=5t﹣8或t+6=8﹣5tt=或t=,答:经过或秒点P到点M,N的距离相等.【点评】此题主要考查了一元一次方程的应用,根据已知点运动速度得出以及距离之间的关系得出等式是解题关键.xl;sd2011;马兴田;。

2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.43.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=08.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3=D.﹣3=二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为.11.某校图书室共藏书34500册,数34500用科学记数法表示为.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是.13.56°24′=°.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].16.解方程:﹣=﹣1.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.4【考点】有理数.【分析】先判断每个数是什么数,最后得到整数的个数.【解答】解:因为﹣2、15、0是整数,π是无理数,﹣、0.555…是分数.所以整数共3个.故选C.3.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位【考点】近似数和有效数字.【分析】近似数2.6万精确到0.1万位.【解答】解:近似数2.6万精确到千位.故选A.5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据对顶角的定义,邻补角的定义以及互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1+∠2>90°,∠1和∠2不是互为余角,故本选项错误;B、∠1和∠2互为邻补角,故本选项错误;C、∠1和∠2是对顶角,不是互为余角,故本选项错误;D、∠1+∠2=180°﹣90°=90°,∠1和∠2互为余角,故本选项正确.故选D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式【考点】同类项;整式;多项式.【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是二次三项式,故本选项错误.故选C.7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=0【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、是一元一次方程,故此选项正确;D、不是一元一次方程,故此选项错误;故选:C.8.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3= D.﹣3=【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系,再列出方程即可.【解答】解:设A、B两码头间距离为x,可得:,故选B二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣5<﹣1<0<,∴实数﹣5,﹣1,0,四个数中,最大的数是.故答案为:.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为1.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+5|+(b﹣4)2=0,∴a+5=0,b﹣4=0,解得:a=﹣5,b=4,则原式=1,故答案为:111.某校图书室共藏书34500册,数34500用科学记数法表示为 3.45×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:34500用科学记数法表示为3.45×104,故答案为:3.45×104.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是3.【考点】同类项;绝对值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣3x m+2y2017与2x2016y n是同类项,∴m+2=2016,n=2017,解得:m=2014,∴|m﹣n|=3.故答案为:3.13.56°24′=56.4°.【考点】度分秒的换算.【分析】把24′化成度,即可得出答案.【解答】解:24÷60=0.4,即56°24′=56.4°,故答案为:56.4.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是两点之间,线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质进行解答即可.【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1﹣(﹣)÷×[﹣2+9]=﹣1+×7=216.解方程:﹣=﹣1.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣2﹣x﹣2=9x﹣3﹣6,移项合并得:﹣8x=﹣5,解得:x=.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.【考点】比较线段的长短.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【考点】代数式求值;有理数的混合运算.【分析】先根据新运算展开,化简后代入求出即可.【解答】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.【考点】角平分线的定义.【分析】利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数.【解答】解:∵OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,∴∠AOD=∠BOD,∠BOE=∠COE,∴∠DOE=∠AOC=65°.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?【考点】一元一次方程的应用.【分析】设用xm3木料制作桌面,则用(5﹣x)m3木料制作桌腿恰好配套,根据条件的数量关系建立方程求出其解即可.【解答】解:设用xm3木料制作桌面,由题意得4×50x=200(5﹣x),解得x=2.5,5﹣x=2.5m3,答:用2.5m3木料制作桌面,2.5m3木料制作桌腿,能使制作得的桌面和桌腿刚好配套.21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴先判断a+c、a﹣b、b+c、b与0的大小关系,然后即可进行化简【解答】解:由图可知:a+c<0,a﹣b>0,b+c<0,b<0,∴原式=﹣(a+c)﹣(a﹣b)﹣(b+c)+b=﹣a﹣c﹣a+b﹣b﹣c+b=﹣2a+b﹣2c22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.【考点】代数式求值.【分析】根据相反数、绝对值、倒数得出a+b=0,cd=1,e=±5,再代入求出即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|e|=5,∴a+b=0,cd=1,e=±5,当e=5时,原式=52﹣+1102﹣5=21;当e=﹣5时,原式=(﹣5)2﹣+1102﹣(﹣5)=31.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?【考点】一元一次方程的应用.【分析】(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据第二次进货单价比第一次进货单价贵30元即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=销售第一批烤火器的利润+销售第二批烤火器的利润即可求出家电销售部共获利多少元.【解答】解:(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据题意得:150x=180(x﹣10),解得x=60,x﹣10=50.答:家电销售部第一次购进烤火器60台,第二次购进50台.(2)×60+×50=9500(元).答:以250元/台的售价卖完这两批烤火器,家电销售部共获利9500元.24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)【考点】规律型:数字的变化类.【分析】(1)通过观察可知:右边幂的底数等于左边各个幂的底数的和;(2)利用规律即可解决问题.【解答】解:(1)右边幂的底数等于左边各个幂的底数的和;(2)13+23+33+43+…+1003=(1+2+3+…+100)2=[×100]2=50502.。

甘井子区初一期末数学试卷

甘井子区初一期末数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,正数是()。

A. -5B. 0C. 3D. -2.52. 已知a=3,b=-2,则a+b的值为()。

A. 1B. -1C. 5D. -53. 下列代数式中,同类项是()。

A. 2x^2 + 3yB. 4a^2b - 5a^2bC. 3xy + 5xy^2D. 7mn - 9m4. 一个长方形的长是10cm,宽是6cm,它的周长是()cm。

A. 16B. 26C. 36D. 465. 若x=2,则x^2 + 3x - 2的值为()。

A. 5B. 7C. 9D. 116. 在直角三角形ABC中,∠C=90°,AC=3cm,BC=4cm,则AB的长度为()cm。

A. 5B. 6C. 7D. 87. 下列函数中,自变量x的取值范围是所有实数的是()。

A. y = x^2 - 1B. y = 1/xC. y = √(x - 2)D. y = x + 58. 下列图形中,属于轴对称图形的是()。

A. 正方形B. 长方形C. 等腰三角形D. 以上都是9. 下列数据中,众数是()。

A. 2, 3, 3, 4, 5B. 1, 2, 2, 3, 4C. 3, 3, 4, 4, 5D. 2, 3, 4, 5, 510. 下列运算中,正确的是()。

A. 3a + 2b = 5a + bB. 2(a + b) = 2a + 2bC. (a + b)^2 = a^2 + 2ab + b^2D. a^2 - b^2 = (a + b)(a - b)二、填空题(每题5分,共20分)11. 若a=5,b=-3,则a^2 - b^2的值为______。

12. 下列等式中,正确的是______。

13. 一个等腰三角形的底边长为8cm,腰长为6cm,则该三角形的面积为______cm^2。

14. 若y = 2x + 3,当x=2时,y的值为______。

三、解答题(每题10分,共30分)15. 解下列方程:(1) 3x - 5 = 14(2) 2(3x - 1) - 4 = 5x + 116. 已知一个数的2倍与5的和等于13,求这个数。

学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)

学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)

2016---2017学年度第一学期期末考试七年级数学试题参考答案一、选择题(每小题3分,共30分)1、B2、D3、B4、C5、A6、C7、D8、C9、C 10、B二、填空题(每小题4分,共24分)11、-8℃ 12、m=-2 n= 2 13、-2 14、-415、两点确定一条直线 16、(6n+2)三、解答题(共66分)17、解:(1) 原式=()2483917⎛⎫+-⨯-÷- ⎪⎝⎭…………2分 =()748399⎛⎫+-⨯-⨯- ⎪⎝⎭…………3分 =4247-+ …………4分 =13- …………5分(2) 原式=()15718369⎛⎫-+⨯- ⎪⎝⎭…………2分 =()()()157181818369⨯--⨯-+⨯- …………3分 =61514-+- …………4分 =5- …………5分18、解:(1) 222(52)2(3)xy x xy y y xy +-+--=2225226xy x xy y y xy +-+-+ …………2分=22x xy + …………3分 当12,2x y =-=时,原式=()()2122222-+⨯-⨯= …………4分 (2) 22(54)(542)x x x x -+++-+=2254542x x x x -+++-+…………5分=2(21)(45)(54)x x -+++-…………6分=291x x ++…………7分当2x =-时, 原式=2(2)9(2)113-+⨯-+=-…………8分19、(1)3(5)4(1)9x x x --+=+解: 315449x x x ---=+ …………2分349154x x x --=++ …………4分228x -= …………5分14x =- …………6分(2) 5415323412y y y +---=+ 解:()()()454312453y y y +--=+- …………2分 2016332453y y y +-+=+- …………3分2035243163y y y --=--- …………4分122y = …………5分16y = …………6分 20、解:(1)()20x - 360x -甲队整治河道天数 甲队整治河道总长度 …………4分(2)解:设甲队整治河道用时x 天,则乙队整治河道用时()20x -天. ()241620360x x +-= …………6分解方程,得 5x = …………8分 24120x = ()1620240x -= 答:甲队整治河道120米,乙队整治河道240米. …………10分 或 设甲队整治河道x 米,则乙队整治河道()360x -360202416x x -+= …………6分 解方程,得 120x = …………8分 360240x -=答:甲队整治河道120米,乙队整治河道240米. …………10分21、解:因为AD=7,BD=5所以AB=12 …………2分因为 点C 为线段AB 的中点所以 AC=6 …………4分 所以 CD=AD-AC=1 …………6分22、解:(1)因为OD 是∠AOC 的平分线,所以 ∠COD =21∠AOC.因为OE 是∠BOC 的平分线,所以∠COE =21∠BOC. …………2分所以∠DOE=∠COD+∠COE=21(∠AOC +∠BOC )=21∠AOB=90°.…………4分(2) 因为∠COD =65° OD 是∠AOC 的平分线所以 ∠AOD=∠COD=65° …………6分 因为∠DOE =90°所以 ∠AOE=∠AOD+∠DOE=155° …………8分23、解:(1)40000.93600⨯=(元)40000.83003500⨯+=(元)36003500100-=(元)答:小张购买优惠卡后再购物合算,能省100元. …………4分(2)设顾客购买x元的商品时,买卡与不买卡花钱相等.=+…………6分0.90.8300x x解方程,得x=3000答:顾客购买3000元的商品时,买卡与不买卡花钱相等. …………8分(3)设这台冰箱的进价为y元.+=?…………10分y y0.2540000.8y=解方程,得2560答:这台冰箱的进价为2560元. …………12分。

大连市甘井子区2016-2017学年度第二学期期末考试七年级数学试卷及答案

大连市甘井子区2016-2017学年度第二学期期末考试七年级数学试卷及答案

2016—2017学年第二学期期末学习质量抽测七年级数学1. 在√3,1/2,0,−2这四个数中,为无理数的是()A. √3B. 1/2C. 0D. −22. 在平面直角坐标系中,点(3,-4)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 如图所示,直线AB、CD相交于点O,且∠AOD+∠BOC=100∘,则∠AOC是()A. 150∘B. 130∘C. 100∘D. 90∘4. 已知x=−2,y=1是方程mx+3y=5的解,则m的值是()A. 1B. −1C. −2D. 25. 若a<b,则下列不等式一定成立的是()A. a+1>b+1B. -a<-bC. 3a>3bD. a/2<b/26. 如果一个三角形的两边长分别为3和7,则第三边长可能是()A. 3B. 4C. 7D. 107. 下列调查中,最适合采用全面调查(普查)的是()A. 对甘井子区中小学生的睡眠时间的调查B. 对甘井子初中学生的兴趣爱好的调查C. 对大连市中学教师的健康状况的调查D. 对“天宫二号”飞行器各零部件的质量的调查8.某校七年级统计30名学生的身高情况(单位cm),其中身高最大值为175,最小值为149,且组距为3,则组距为A. 7B. 8C. 9D. 10二、填空题(本大题共8小题,每小题3分,共24分)9.计算:√16=________10.用“>”或“<”填空:√5-1___________111.将方程6x-2y+3=0改写成用含x 的式子表示y 的形式为_____________12.某中学对图书馆的书分为3类,A 表示技术类,B 表示科学类,C 表示艺术类,所占百分比如图,如果该校共有图书8500册,则艺术类的书有______册13.如图,围棋棋盘放在平面直角坐标系内,已知黑棋(甲)的坐标为(-2,2)黑棋(乙)的坐标为(-1,-2)则白棋(甲)的坐标是____________14.如图,AD 是△ABC 的∠BAC 的平分线,若∠B=40°,∠C=60°,则∠ADB=______° 15.如图,直线l 1//l 2,CD ⊥AB 于点D,∩1=50°,则∠BCD 的度数为________°16.某次知识竞赛共有20到题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,若他至少答对x 到题,则可列不等式为_____________三、解答题(本题共4小题,其中18,19,20题各10分,17题9分,共39分) 17.计算:|√3-2 | - 3√8 + √(-2)218.解方程组:3x+4y=16,5x-6y=3319.解不等式组:5x+2>3(x-1) 12 x-1≤7-32 x, 并把解集在数轴上表示出来四、解答题(本大题共3小题,其中21,22题各9分,23题10分,共28分)21.已知△ABC在平面直角坐标系中的位置如图所示,(1)直接写出点A,B,C的坐标(2)将△ABC按照某种方式平移后,其内部点P的对应点P`如图所示,请在所给的坐标系中画出△A`B`C`,并写出点A`,B`,C`的坐标22. 周末小明从家骑自行车去20km外的海滩游玩,中途因道路施工步行一段路,1.5小时后到达海滩,他骑车的平均速度是每小时15km/h, 步行的速度是每小时5km/h,他骑车与步行各用多长时间23.如图,如图,∠AGF=∠ABC,∠1+∠2=180∘.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150∘,求∠AFG的度数。

2016-2017七年级上期末数学试卷含答案解析

2016-2017七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1. a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣12.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.如图所示立体图形从上面看到的图形是()A.B.C.D.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=17.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为.12.若x3y2k与﹣x3y8是同类项,则k= .13.32.48°=度分秒.14.若一个角的余角是这个角的4倍,则这个角的补角是度.15.如果x=1是方程ax+1=2的解,则a= .16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是.17.若3<a<5,则|5﹣a|+|3﹣a|= .18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为元.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.20.计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).21.解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.四、解答题:已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1.a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣1【考点】倒数.【分析】利用倒数的定义得出a2=1,解简单的二次方程即可得出结论.【解答】解:∵a=,∴a2=1,∴a=±1,故选D.【点评】此题是倒数,主要考查了倒数的定义,简单的一元二次方程(平方根的定义),解本题的关键掌握倒数的定义,是一道比较一道基础题目.2.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B错误;C、系数相加字母及指数不变,故C正确;D、系数相加字母及指数不变,故D错误;故选:C.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B【考点】线段的性质:两点之间线段最短.【分析】根据连接两点的所有线中,直线段最短的公理解答.【解答】解:∵从C到B的所有线中,直线段最短,所以选择路线为A⇒C⇒F⇒B.故选B.【点评】此题考查知识点是两点之间线段最短.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.【点评】此题主要考查了单项式的次数与系数,正确把握定义是解题关键.5.如图所示立体图形从上面看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【解答】解:从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点评】解决本题的关键是得到3列正方形具体数目.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=1【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A错误;B、两边除以不同的数,故B错误;C、两边都减同一个整式,故C正确;D、两边除以不同的数,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.7.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)【考点】由实际问题抽象出一元一次方程.【分析】首先把3小时化为180分钟,根据题意可得山下到山顶的路程可表示为180x+1或150(1.5x),再根据路程不变可得方程.【解答】解:3小时=180分钟,设上山速度为x千米/分钟,则下山速度为1.5x千米/分钟,由题意得:180x+1=150(1.5x),故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【考点】两点间的距离.【专题】计算题.【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.【解答】解:∵点A、B、C都是直线l上的点,∴有两种情况:①当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选C.【点评】在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个【考点】数轴;正数和负数.【专题】推理填空题.【分析】根据图示,可得m<0<n,而且|m|>|n|,据此逐项判断即可.【解答】解:∵m<0<n,而且|m|>|n|,∴m+n<0,∴①的结果为负数;∵m<0<n,∴m﹣n<0,∴②的结果为负数;∵m<0<n,而且|m|>|n|,∴|m|﹣n>0,∴③的结果为正数;∵m<0<n,而且|m|>|n|,∴m2﹣n2>0,∴④的结果为正数;∵m<0<n,∴m3n3<0,∴④的结果为负数,∴式子结果为负数的个数是3个:①、②、⑤.故选:B.【点评】此题主要考查了数轴的特征和应用,以及正数、负数的特征和判断,要熟练掌握.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算的值.【解答】解:∵100!=100×99×98×...×1,98!=98×97× (1)所以=100×99=9900.故选:C.【点评】本题考查的是有理数的混合运算,根据题目中的规定,先得出100!和98!的算式,再约分即可得结果.二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为 6.75×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若x3y2k与﹣x3y8是同类项,则k= 4 .【考点】同类项.【分析】根据x3y2k与﹣x3y8是同类项,可得出2k=8,解方程即可求解.【解答】解:∵ x3y2k与﹣x3y8是同类项,∴2k=8,解得k=4.故答案为:4.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.32.48°=32 度28 分48 秒.【考点】度分秒的换算.【分析】先把0.48°化成分,再把0.8′化成秒即可.【解答】解:0.48°=28.8′,0.8′=48″,即32.48°=32°28′48″,故答案为:32,28,48.【点评】本题考查了度、分、秒之间的换算的应用,能熟记度、分、秒之间的关系是解此题的关键.14.若一个角的余角是这个角的4倍,则这个角的补角是162 度.【考点】余角和补角.【分析】首先设这个角为x°,则它的余角为(90﹣x)°,根据题意列出方程4x=90﹣x,计算出x 的值,进而可得补角.【解答】解:设这个角为x°,由题意得:4x=90﹣x,解得:x=18,则这个角的补角是180°﹣18°=162°,故答案为:162.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角,补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.如果x=1是方程ax+1=2的解,则a= 1 .【考点】一元一次方程的解.【专题】方程思想.【分析】方程的解就是能使方程的左右两边相等的未知数的值,把x=1代入即可得到一个关于a的方程,求得a的值.【解答】解:根据题意得:a+1=2解得:a=1故答案是1.【点评】本题主要考查了方程的解的定义,根据方程的解的定义可以把求未知系数的问题转化为解方程的问题.16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是11a+20 .【考点】列代数式.【分析】两位数为:10×十位数字+个位数字.【解答】解:两位数,个位数字是a,十位数字比个位数字大2可表示为(a+2).∴这个两位数是10(a+2)+a=11a+20.【点评】本题的关键是,两位数的表示方法:十位数字×10+个位数字,要求掌握该方法.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.17.若3<a<5,则|5﹣a|+|3﹣a|= 2 .【考点】绝对值;代数式求值.【分析】解此题可根据a的取值,然后可以去掉绝对值,即可求解.【解答】解:依题意得:原式=5﹣a+a﹣3=2.【点评】此题考查的是学生对绝对值的意义的掌握,含绝对值的数等于它本身或相反数.18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为1000 元.【考点】一元一次方程的应用.【专题】压轴题.【分析】首先设这种电器的进价是x元,则标价是(1+40%)x元,根据售价=标价×打折可得方程(1+40%)x×80%=1120,解方程可得答案.【解答】解:设这种电器的进价是x元,由题意得:(1+40%)x×80%=1120,解得:x=1000,故答案为:1000.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出题目中的等量关系,设出未知数列出方程,此题用到的公式是:售价=标价×打折.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.(2016秋•岳池县期末)计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=20+8+4=32;(2)原式=﹣9+3+6﹣8+5=﹣3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(2016秋•岳池县期末)计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).【考点】整式的加减.【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy)=4x2y﹣3xy﹣5x2y+2xy=﹣x2y﹣xy;(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n)=6m+6n+3m﹣3n﹣2n+2m﹣m﹣n=10m.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.(2016秋•岳池县期末)解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.【考点】解一元一次方程.【分析】根据一元一次方程的解法即可求出答案.【解答】解:(1)6(4﹣1.5y)=y+424﹣9y=y+4﹣y﹣9y=4﹣24﹣10y=﹣20y=10(2)2(5x﹣7)+12=3(3x﹣1)10x﹣14+12=9x﹣310x﹣9x=﹣3﹣12+14x=﹣1【点评】本题考查一元一次方程的解法,属于基础题型.四、解答题:(2016秋•岳池县期末)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.【考点】代数式求值.【分析】依据相反数、绝对值、倒数的性质可得到a+b=0,cd=1,m=±2,然后代入计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1.又∵|m|=2,∴m=2或m=﹣2.当=2时,原式=0+4×2﹣3×1=5;当m=﹣2时,原式=0+4×(﹣2)﹣3×1=﹣11.所以代数式的值为5或﹣11.【点评】本题主要考查的是求代数式的值,熟练掌握相反数、绝对值、倒数的性质是解题的关键.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.【考点】整式的加减—化简求值.【分析】先去括号,合并同类项,再代入计算即可求解.【解答】解:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y=12x2y﹣4xy2+5xy2﹣5x2y﹣2x2y=5x2y+xy2,当x=,y=﹣5时,原式=5×()2×(﹣5)+×(﹣5)2=﹣1+5=4.【点评】此题考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.【考点】余角和补角.【分析】由于OB是∠AOC的平分线,可得∠1=∠2,则∠1:∠2:∠3:∠4=2:2:5:3,然后根据四个角的和是360°即可求得∠2的度数,再根据余角的定义可求∠2的余角∠α的度数.【解答】解:∵OB是∠AOC的平分线,∴∠1=∠2,又∵∠2:∠3:∠4=2:5:3,∴∠1:∠2:∠3:∠4=2:2:5:3,∴∠2=×360°=60°,∠2的余角∠α的度数=90°﹣60°=30°.【点评】本题考查了余角和补角,角度的计算,理解∠1:∠2:∠3:∠4=2:2:5:3是本题的关键.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.【考点】两点间的距离.【分析】(1)根据线段的中点的性质,可得MC、NC的长,再根据线段的和差,可得答案;(2)根据题意画出图形,同(1)即可得出结果.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.【点评】本题主要利用线段的中点定义,线段的中点把线段分成两条相等的线段.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【考点】一元一次方程的应用.【专题】经济问题;图表型.【分析】若设初一(1)班有x人,根据总价钱即可列方程;第二问利用算术方法即可解答;第三问应尽量设计的能够享受优惠.【解答】解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.【点评】在优惠类一类问题中,注意认真理解优惠政策,审题要细心.。

大连市七年级上册数学期末考试试卷

大连市七年级上册数学期末考试试卷

大连市七年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)﹣2的相反数是()A .B . 2C . -D . -22. (2分)某品牌乒乓球的标准质量为2.7克,误差为±0.03克,若从符合要求的乒乓球中随意取出两只,则这两只乒乓球的质量最多相差()A . 0.03克B . 0.06克C . 2.73克D . 2.67克3. (2分)在“流浪地球”的影片中地球要摆脱太阳引力,必须靠外力推动达到逃逸速度,已知地球绕太阳公转的速度约为110000km/h,这个数用科学记数法表示为(单位:km/h)()A . 0.11×104B . 0.11×106C . 1.1×105D . 1.1×1044. (2分)(2017·广丰模拟) 如图所示的几何体的俯视图是()A .B .C .D .5. (2分)方程x+1=3的解是()A . x=0B . x=1C . x=2D . x=36. (2分)如果3a7xby+7和﹣7a2﹣4yb2x是同类项,则x,y的值是()A . x=﹣3,y=2B . x=2,y=﹣3C . x=﹣2,y=3D . x=3,y=﹣27. (2分)已知:△ABC的三边分别为a,b,c,△A′B′C′的三边分别为a′,b′,c′,且有a2+a′2+b2+b′2+c2+c′2=2ab′+2bc′+2ca′,则△ABC与△A′B′C′()A . 一定全等B . 不一定全等C . 一定不全等D . 无法确定8. (2分) (2019八下·南岸期中) 如图,△AB C中,AB=AC,AB 的垂直平分线交 AB 于点 D,交 CA 的延长线于点 E,∠EBC=42°,则∠BAC=()A . 159°B . 154°C . 152°D . 138°9. (2分)(2011·河南) ﹣5的绝对值是()A . 5B . ﹣5C .D . ﹣10. (2分) (2016七上·临清期末) 如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A,B,C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A,B,C内的三个数依次是()A . 1,0,﹣2B . 0,1,﹣2C . 0,﹣2,1D . ﹣2,0,1二、填空题 (共7题;共21分)11. (1分)(2017·洪山模拟) ﹣3的绝对值的倒数的相反数是________.12. (1分) (2016七上·鼓楼期中) 比较大小:﹣ ________﹣(填“<”、“=”、“>”).13. (1分) (2016七上·磴口期中) 化简:﹣|﹣(+ )|=________.14. (1分)方程x﹣(2x﹣a)=2的解是正数,则a的取值范围是________.15. (1分) (2016七上·岳池期末) 若x=2是方程3x﹣4= ﹣a的解,则a2015+ 的值是________.16. (1分)如图,已知线段,延长到,使,为的中点,,那么的长为________.17. (15分) (2018八上·硚口期末) 是的高.(1)如图1,若,的平分线交于点,交于点,求证:;(2)如图2,若,的平分线交于点,求的值;(3)如图3,若是以为斜边的等腰直角三角形,再以为斜边作等腰,是的中点,连接、,试判断线段与的关系,并给出证明.三、解答题 (共8题;共117分)18. (5分) (2019七上·东莞期中) 计算:63×()+()÷19. (10分) (2018七上·余干期末) 解下列方程:(1) x﹣7=10﹣4(x+0.5);(2)﹣ =1.20. (16分) (2019七上·蓬江期末) 如图,平面上有线段AB和点C ,按下列语句要求画图与填空:(1)作射线AC;(2)用尺规在AB的延长线上截取BD=AC;(3)连接BC,DC;(4)图中以C为顶点的角中,小于平角的角共有________个.21. (60分)细心算一算(1)(﹣m)3•(﹣m);(2)(mn)6÷(﹣mn)3;(3)a•a5﹣(﹣2a2)3﹣(﹣a3)2;(4)(﹣m)•(﹣m2)2÷m3;(5)(x﹣2y)4÷(2y﹣x)3•(x﹣2y);(6)(﹣)4÷(﹣)5;(7) 2(x3)4+x4(x4)2+x5•x7+x6(x3)2(8)(﹣2×1012)÷(﹣2×103)3÷(0.5×102)2(9)()﹣2+()0+()﹣1(10) 2﹣5×0.5﹣4+3﹣2×()﹣3(11)102÷(103×10﹣2)(12)(﹣)﹣1+(﹣2)2×50﹣()﹣2.22. (5分) (2015七下·威远期中) 某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?23. (5分) (2019七上·鞍山期末) 上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1180公里,问两车几点相遇?24. (8分) (2019七上·阜宁期末) 如图,点P是∠AOB的边OB上的一点(1)①过点P画OA的平行线PQ②过点P画OA的垂线,垂足为H③过点P画OB的垂线,交OA于点C(2)线段PH的长度是点P到________的距离,________是点C到直线OB的距离.(3)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC.PH、OC这三条线段大小关系是________(用“<“号连接).25. (8分)(1)若|x+5|=2,则x=________;(2)代数式|x﹣1|+|x+3|的最小值为________,当取此最小值时,x的取值范围是________;(3)解方程:|2x+4|﹣|x﹣3|=9.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共21分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、17-2、17-3、三、解答题 (共8题;共117分) 18-1、19-1、19-2、20-1、20-2、20-3、20-4、21-1、21-2、21-3、21-4、21-5、21-6、21-7、21-8、21-9、21-10、21-11、21-12、22-1、23-1、24-1、24-2、24-3、25-1、25-2、25-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年辽宁省大连市甘井子区七年级(上)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确.1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.如图,下面几何体,从左边看到的平面图形是()A.B.C.D.3.下列运算正确的是()A.5a﹣3a=2 B.2a+3b=5ab C.﹣(a﹣b)=b+a D.2ab﹣ba=ab4.解方程1﹣,去分母,得()A.1﹣x﹣3=3x B.6﹣x﹣3=3x C.6﹣x+3=3x D.1﹣x+3=3x5.小胖同学用手中一副三角尺想摆成∠α与∠β互补,下面摆放方式中符合要求的是()A.B. C.D.6.若使等式(﹣4)□(﹣6)=2成立,则□中应填入的运算符号是()A.+B.﹣C.×D.÷7.下列等式变形不正确的是()A.由x=y,得到x+2=y+2 B.由2a﹣3=b﹣3,得到2a=bC.由m=n,得到2am=2an D.由am=an,得到m=n8.如图,有理数a、b、c、d在数轴上的对应点分别是A、B、C、D,若a、c互为相反数,则b+d()A.小于0 B.大于0 C.等于0 D.不确定二、填空题:本大题共8小题,每小题3分,共24分.9.比1小2的数是.10.如图是我市十二月份某一天的天气预报,该天最高气温比最低气温高℃.11.若5x m+1y5与3x2y5是同类项,则m=.12.如图,线段AB=10cm,点D为线段AB上一点,BD=3cm,点C为AB的中点,则线段CD的长为cm.13.如果x=1是关于x方程x+2m﹣5=0的解,则m的值是.14.如图,点A位于点O北偏西.15.公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为.16.有一个数值转换器,其工作原理如图所示,若输入﹣3,则输出的结果是.三、解答题:本大题共4小题,其中17、18、19题各10分,20题9分,共39分.17.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣2)3﹣(﹣3)2÷(﹣2)+(﹣3)×[(﹣4)2+2].18.解方程:(1)3x+7=32﹣2x(2)3x+=3﹣.19.计算:(1)(5a2+2a﹣1)﹣4(3﹣8a+2a2);(2)先化简,再求值:5x2+4﹣3x2﹣5x﹣2x2﹣5+6x,其中x=﹣3.20.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=AB+BC;(4)在线段BD上取点P,使PA+PC的值最小.四、解答题:本大题共3小题,其中21、22题各9分,23题10分,共28分.21.当温度每上升1℃时,某种金属丝伸长0.002mm,反之,当温度每下降1℃时,金属丝缩短0.002mm把15℃的这种金属丝加热到60℃,再使它冷却降温到5℃,求最后的长度比原来伸长了多少?22.已知A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|3a+1|+(2﹣3b)2=0,求A﹣2B的值.23.某车间有22名工人,每人每天可以生产1200个螺钉或2000螺母,一个螺钉需要配两个螺母,为了使每天生产的螺钉和螺母刚好配套,则这个车间一天可最多生产多少个螺钉?五、解答题:本大题共3小题,其中24题11分,25、26题各12分,共35分.24.某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表所示:(1)若商场购进的甲型节能灯500只,则购买甲、乙两种节能灯共需多少元?(2)若商场购进甲型节能灯x只,则购买甲、乙两种节能灯共需元;(用含x的代数式表示)(3)如何进货,商场销售完节能灯时恰好获利30%,此时利润为多少元?25.已知∠AOB=α(90°<α<180°),∠COD在∠AOB的内部,OM平分∠AOC,ON平分∠BOD.(1)若∠COD=180°﹣α时,探索下面两个问题:①如图1,当OC在OD左侧,求∠MON的度数;②当OC在OD右侧,请在图2内补全图形,并求出∠MON的度数(用含α的代数式表示);(2)如图3,当∠COD=kα,且OC在OD左侧时,直接写出∠MON的度数(用含α、k的代数式表示).26.数学问题:如图,在数轴上点A表示的数为﹣20,点B表示的数为40,动点P从点A出发以每秒5个单位长度的速度沿正方向运动,动点Q从原点出发以每秒4个单位长度的速度沿正方向运动,动点N从点B出发以每秒8个单位的速度先沿负方向运动,到达原点后立即按原速返回,三点同时出发,当点N回到点B时,三点停止运动.(1)三个动点运动t(0<t<5)秒时,则P、Q、N三点在数轴上所表示的三个数分别为,,.(2)当QN=10个单位长度时,求此时点P在数轴上所表示的数.(3)尝试借助上面数学问题的解题经验,建立数轴完成下面实际问题:码头C位于A、B两码头之间,且知AC=20海里,AB=60海里,甲船从A码头顺流驶向B码头,乙船从C码头顺流驶向B码头,丙船从B码头开往C码头后立即调头返回B码头.已知甲船在静水中航速为5海里/小时,乙船在静水中航速为4海里/小时,丙船在静水中航速为8海里/小时,水流速度为2海里/小时,三船同时出发,每艘船都行驶到B码头停止.在整个运动过程中,是否存某一时刻,这三艘船中的一艘恰好在另外两船之间,且与两船的距离相等?若存在,请求出此时甲船离B码头的距离;若不存在,请说明理由.提示:如果你不用上面数学问题中的解题方法也能完成本题,可得满分.2016-2017学年辽宁省大连市甘井子区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确.1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D.【考点】绝对值.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.2.如图,下面几何体,从左边看到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据由已知条件可知,左视图有2列,每列小正方形数目分别为3,1,据此即可判断.【解答】解:已知条件可知,左视图有2列,每列小正方形数目分别为3,1.故选C.3.下列运算正确的是()A.5a﹣3a=2 B.2a+3b=5ab C.﹣(a﹣b)=b+a D.2ab﹣ba=ab【考点】整式的加减.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,错误;B、原式不能合并,错误;C、原式=﹣a+b,错误;D、原式=ab,正确,故选D4.解方程1﹣,去分母,得()A.1﹣x﹣3=3x B.6﹣x﹣3=3x C.6﹣x+3=3x D.1﹣x+3=3x【考点】解一元一次方程.【分析】去分母的方法是方程左右两边同时乘以分母的最小公倍数,注意分数线的括号的作用,并注意不能漏乘.【解答】解:方程两边同时乘以6得6﹣x﹣3=3x.故选B.5.小胖同学用手中一副三角尺想摆成∠α与∠β互补,下面摆放方式中符合要求的是()A.B. C.D.【考点】余角和补角.【分析】根据互补的定义,两个角的度数的和是180°,依据定义即可作出判断.【解答】解:A、∠α+∠β=180°﹣90°=90°,则∠α与∠β互余,选项错误;B、∠α<90°,∠β<90°,则∠α+∠β<180°,则∠α与∠β不是互补,选项错误;C、∠α>90°,∠β>90°,则∠α+∠β>180°,则∠α与∠β不是互补,选项错误;D、∠α和∠β互补正确.故选D.6.若使等式(﹣4)□(﹣6)=2成立,则□中应填入的运算符号是()A.+B.﹣C.×D.÷【考点】有理数的混合运算.【分析】利用运算法则计算即可确定出运算符号.【解答】解:根据题意得:(﹣4)﹣(﹣6)=﹣4+6=2,故选B7.下列等式变形不正确的是()A.由x=y,得到x+2=y+2 B.由2a﹣3=b﹣3,得到2a=bC.由m=n,得到2am=2an D.由am=an,得到m=n【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边都加2,结果不变,故A正确;B、两边都加3,结果不变,故B正确;C、两边都乘以2a,结果不变,故C正确;D、a=0时,两边都除以a无意义,故D错误;故选:D.8.如图,有理数a、b、c、d在数轴上的对应点分别是A、B、C、D,若a、c互为相反数,则b+d()A.小于0 B.大于0 C.等于0 D.不确定【考点】数轴;相反数.【分析】根据数轴和题目中的条件可以判断a、b、c、d的正负和它们的绝对值的大小,从而可以求得b+d的正负情况,本题得以解决.【解答】解:由数轴可得,d<a<0<b<c,∵a、c互为相反数,∴|a|=|c|,∴|d|>|b|,∴b+d<0,故选A.二、填空题:本大题共8小题,每小题3分,共24分.9.比1小2的数是﹣1.【考点】有理数的减法.【分析】关键是理解题中“小”的意思,根据法则,列式计算.【解答】解:比1小2的数是1﹣2=1+(﹣2)=﹣1.10.如图是我市十二月份某一天的天气预报,该天最高气温比最低气温高7℃.【考点】有理数的减法.【分析】用最高气温减去最低气温列出算式,然后再依据有理数的减法法则计算即可.【解答】解:5﹣(﹣2)=5+2=7℃.故答案为:7.11.若5x m+1y5与3x2y5是同类项,则m=1.【考点】同类项.【分析】根据同类项的概念即可求出m的值.【解答】解:由题意可知:m+1=2∴m=1故答案为:112.如图,线段AB=10cm,点D为线段AB上一点,BD=3cm,点C为AB的中点,则线段CD的长为2cm.【考点】两点间的距离.【分析】先根据中点定义求BC的长,再利用线段的差求CD的长.【解答】解:∵C为AB的中点,∴BC=AB=×10=5,∵BD=3,∴CD=BC﹣BD=5﹣3=2,则CD的长为2cm;故答案为:2.13.如果x=1是关于x方程x+2m﹣5=0的解,则m的值是2.【考点】一元一次方程的解.【分析】将方程的解代入方程得到关于m的方程,从而可求得m的值.【解答】解:当x=1时,1+2m﹣5=0,解得:m=2.故答案为:2.14.如图,点A位于点O北偏西25°.【考点】方向角.【分析】根据题意求出65°的余角,根据方向角的概念解答即可.【解答】解:∵90°﹣65°=25°,∴点A位于点O北偏西25°,故答案为:25°.15.公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为.【考点】一元一次方程的应用.【分析】设“它”为x,根据它的全部,加上它的七分之一,其和等于19列出方程,求出方程的解得到x的值,即可确定出“它”的值.【解答】解:设“它”为x,根据题意得:x+x=19,解得:x=,则“它”的值为,故答案为:.16.有一个数值转换器,其工作原理如图所示,若输入﹣3,则输出的结果是﹣1.【考点】有理数的混合运算.【分析】首先求出﹣3的平方是9;然后根据9大于8,用9减去10,求出输出的结果是多少即可.【解答】解:(﹣3)2=9∵9>8,∴若输入﹣3,则输出的结果是:9﹣10=﹣1故答案为:﹣1.三、解答题:本大题共4小题,其中17、18、19题各10分,20题9分,共39分.17.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣2)3﹣(﹣3)2÷(﹣2)+(﹣3)×[(﹣4)2+2].【考点】有理数的混合运算.【分析】(1)根据有理数的加法和减法可以解答本题;(2)根据幂的乘方、有理数的乘除法和加减法可以解答本题.【解答】解:(1)12﹣(﹣18)+(﹣7)﹣15=12+18+(﹣7)+(﹣15)=8;(2)(﹣2)3﹣(﹣3)2÷(﹣2)+(﹣3)×[(﹣4)2+2]=(﹣8)﹣9÷(﹣2)+(﹣3)×[16+2]=(﹣8)+4.5+(﹣3)×18=(﹣8)+4.5+(﹣54)=﹣57.5.18.解方程:(1)3x+7=32﹣2x(2)3x+=3﹣.【考点】解一元一次方程.【分析】(1)方程移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)移项合并得:5x=25,解得:x=5;(2)方程去分母得:18x+3x﹣3=18﹣4x+2,移项合并得:25x=23,解得:x=.19.计算:(1)(5a2+2a﹣1)﹣4(3﹣8a+2a2);(2)先化简,再求值:5x2+4﹣3x2﹣5x﹣2x2﹣5+6x,其中x=﹣3.【考点】整式的加减—化简求值.【分析】(1)原式去括号合并即可得到结果;(2)原式合并同类项得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13;(2)原式=(5﹣3﹣2)x2+(﹣5+6)x+(4﹣5)=x﹣1,当x=﹣3时,原式=﹣3﹣1=﹣4.20.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=AB+BC;(4)在线段BD上取点P,使PA+PC的值最小.【考点】直线、射线、线段.【分析】根据直线、射线、线段的概念、两点之间,线段最短画图即可.【解答】解:如图所画:(1)(2)(3)(4).四、解答题:本大题共3小题,其中21、22题各9分,23题10分,共28分.21.当温度每上升1℃时,某种金属丝伸长0.002mm,反之,当温度每下降1℃时,金属丝缩短0.002mm把15℃的这种金属丝加热到60℃,再使它冷却降温到5℃,求最后的长度比原来伸长了多少?【考点】有理数的混合运算.【分析】首先用把15℃的这种金属丝加热到60℃时的温度差乘0.002,求出这种金属丝加热到60℃后伸长了多少;然后用它减去它降温到5℃又缩短的长度,求出最后的长度比原来伸长了多少即可.【解答】解:(60﹣15)×0.002﹣(60﹣5)×0.002=45×0.002﹣55×0.002=(45﹣55)×0.002=(﹣10)×0.002=﹣0.02(mm)答:最后的长度比原来伸长了﹣0.02mm.22.已知A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|3a+1|+(2﹣3b)2=0,求A﹣2B的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)用3a2﹣4ab减去a2+2ab,求出A﹣2B的值是多少即可.(2)若|3a+1|+(2﹣3b)2=0,则3a+1=0,2﹣3b=0,求出a、b的值各是多少,据此求出A﹣2B的值是多少即可.【解答】解:(1)A﹣2B=(3a2﹣4ab)﹣2(a2+2ab)=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab(2)∵|3a+1|+(2﹣3b)2=0,∴3a+1=0,2﹣3b=0,解得a=﹣,b=,∴A﹣2B=a2﹣8ab=﹣8×(﹣)×=+=23.某车间有22名工人,每人每天可以生产1200个螺钉或2000螺母,一个螺钉需要配两个螺母,为了使每天生产的螺钉和螺母刚好配套,则这个车间一天可最多生产多少个螺钉?【考点】一元一次方程的应用.【分析】设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程求出即可求出答案.【解答】解:设这个车间x人生产螺钉,(22﹣x)人生产螺母.根据题意得:2×1200x=2000(22﹣x),6x=5(22﹣x),6x=110﹣5x,11x=110,x=10,10×1200=12000(个),答:这个车间一天可最多生产12000个螺钉.五、解答题:本大题共3小题,其中24题11分,25、26题各12分,共35分.24.某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表所示:(1)若商场购进的甲型节能灯500只,则购买甲、乙两种节能灯共需多少元?(2)若商场购进甲型节能灯x只,则购买甲、乙两种节能灯共需﹣20x+54000元;(用含x的代数式表示)(3)如何进货,商场销售完节能灯时恰好获利30%,此时利润为多少元?【考点】一元一次方程的应用;列代数式.【分析】(1)根据总进价=甲灯的单价×购进甲灯的数量+乙灯的单价×购进乙灯的数量,代入数据即可求出结论;(2)若商场购进甲型节能灯x只,则购进乙型节能灯只,根据总进价=甲灯的单价×购进甲灯的数量+乙灯的单价×购进乙灯的数量,代入数据即可得出结论;(3)设商场购进甲型节能灯x只,则购进乙型节能灯只,根据总售价=加价+利润即可得出关于x的一元一次方程,解之即可得出x的值,再根据利润=总进价×30%,代入数据即可得出结论.【解答】解:(1)500×25+×45=44000(元).答:购买甲、乙两种节能灯共需44000元.(2)若商场购进甲型节能灯x只,则购进乙型节能灯只,∴购买甲、乙两种节能灯共需25x+45=﹣20x+54000.故答案为:﹣20x+54000.(3)设商场购进甲型节能灯x只,则购进乙型节能灯只,根据题意得:(﹣20x+54000)(1+30%)=30x+60,解得:x=450,∴(﹣20x+54000)×30%=(﹣20×450+54000)×30%=13500.答:此时利润为13500元.25.已知∠AOB=α(90°<α<180°),∠COD在∠AOB的内部,OM平分∠AOC,ON平分∠BOD.(1)若∠COD=180°﹣α时,探索下面两个问题:①如图1,当OC在OD左侧,求∠MON的度数;②当OC在OD右侧,请在图2内补全图形,并求出∠MON的度数(用含α的代数式表示);(2)如图3,当∠COD=kα,且OC在OD左侧时,直接写出∠MON的度数(用含α、k的代数式表示).【考点】角的计算;角平分线的定义.【分析】(1)①根据角平分线的定义,得出∠AOM=∠AOC,∠BON=∠BOD,再根据∠AOB=α,∠COD=180°﹣α,得出∠AOC+∠BOD=∠AOB﹣∠COD=α﹣=2α﹣180°,进而得出∠AOM+∠BON=(2α﹣180°)=α﹣90°,最后根据∠MON=∠AOB﹣(∠AOM+∠BON)进行计算即可;②根据①中的方法进行计算,即可得出∠MON的度数;(2)先根据角平分线的定义,得出∠AOM=∠AOC,∠BON=∠BOD,再根据∠A OB=α,∠COD=kα,得出∠AOC+∠BOD=∠AOB﹣∠COD=α﹣kα,进而得到∠AOM+∠BON=(α﹣kα)=α(1﹣k),最后根据∠MON=∠AOB﹣(∠AOM+∠BON)进行计算即可.【解答】解:(1)①如图1,∵OM平分∠AOC,ON平分∠BOD,∴∠AOM=∠AOC,∠BON=∠BOD,∴∠AOM+∠BON=(∠AOC+∠BOD),∵∠AOB=α,∠COD=180°﹣α,∴∠AOC+∠BOD=∠AOB﹣∠COD=α﹣=2α﹣180°,∴∠AOM+∠BON=(2α﹣180°)=α﹣90°,∴∠MON=∠AOB﹣(∠AOM+∠BON)=α﹣(α﹣90°)=90°;②当OC在OD右侧,补全图形如图2所画,∵OM平分∠AOC,ON平分∠BOD,∴∠AOM=∠AOC,∠BON=∠BOD,∵∠AOB=α,∠COD=180°﹣α,∴∠AOC+∠BOD=∠AOB+∠COD=α+=180°,∴∠AOM+∠BON=×180°=90°,∴∠MON=∠AOB﹣(∠AOM+∠BON)=α﹣90°;(2)∠MON的度数为(1+k)α.理由:如图3,∵OM平分∠AOC,ON平分∠BOD,∴∠AOM=∠AOC,∠BON=∠BOD,∴∠AOM+∠BON=(∠AOC+∠BOD),∵∠AOB=α,∠COD=kα,∴∠AOC+∠BOD=∠AOB﹣∠COD=α﹣kα,∴∠AOM+∠BON=(α﹣kα)=α(1﹣k),∴∠MON=∠AOB﹣(∠AOM+∠BON)=α﹣α(1﹣k)=(1+k)α.26.数学问题:如图,在数轴上点A表示的数为﹣20,点B表示的数为40,动点P从点A出发以每秒5个单位长度的速度沿正方向运动,动点Q从原点出发以每秒4个单位长度的速度沿正方向运动,动点N从点B出发以每秒8个单位的速度先沿负方向运动,到达原点后立即按原速返回,三点同时出发,当点N回到点B时,三点停止运动.(1)三个动点运动t(0<t<5)秒时,则P、Q、N三点在数轴上所表示的三个数分别为﹣20+5t,4t,40﹣8t.(2)当QN=10个单位长度时,求此时点P在数轴上所表示的数.(3)尝试借助上面数学问题的解题经验,建立数轴完成下面实际问题:码头C位于A、B两码头之间,且知AC=20海里,AB=60海里,甲船从A码头顺流驶向B码头,乙船从C码头顺流驶向B码头,丙船从B码头开往C码头后立即调头返回B码头.已知甲船在静水中航速为5海里/小时,乙船在静水中航速为4海里/小时,丙船在静水中航速为8海里/小时,水流速度为2海里/小时,三船同时出发,每艘船都行驶到B码头停止.在整个运动过程中,是否存某一时刻,这三艘船中的一艘恰好在另外两船之间,且与两船的距离相等?若存在,请求出此时甲船离B码头的距离;若不存在,请说明理由.提示:如果你不用上面数学问题中的解题方法也能完成本题,可得满分.【考点】一元一次方程的应用;数轴;两点间的距离.【分析】(1)根据路程=速度×时间即可求解;(2)Q、N相遇的时间为秒,Q到B的时间为10秒,N到O的时间为5秒,N到B的时间为10秒.N到O前,P所表示的数为﹣20+5t;Q所表示的数为4t;N所表示的数为40﹣8t.分三种情况:①Q、N相遇前;②Q、N相遇后,N到O 前;③Q、N相遇后,N到O后.分别根据QN=10列出方程;(3)建立如图所示的数轴A所表示的数为﹣20;C所表示的数为0;B所表示的数为40.分四种情况:①乙丙相遇前;②甲丙相遇前;③甲丙相遇后,丙到C 前;④甲丙相遇后,丙到C后.根据这三艘船中的一艘恰好在另外两船之间,且与两船的距离相等列出方程.【解答】解:(1)三个动点运动t(0<t<5)秒时,则P、Q、N三点在数轴上所表示的三个数分别为﹣20+5t,4t,40﹣8t.故答案为﹣20+5t,4t,40﹣8t;(2)Q、N相遇的时间为秒,Q到B的时间为10秒,N到O的时间为5秒,N到B的时间为10秒.N到O前,P所表示的数为﹣20+5t;Q所表示的数为4t;N所表示的数为40﹣8t.①Q、N相遇前:40﹣8t﹣4t=10,解得t=2.5,所以P所表示的数为﹣20+5×2.5=﹣7.5;②Q、N相遇后,N到O前,4t﹣(40﹣8t)=10,解得t=,所以P所表示的数为﹣20+5×=;③Q、N相遇后,N到O后:P所表示的数为﹣20+5t;Q所表示的数为4t;N所表示的数为8(t﹣5),4t﹣8(t﹣5)=10,解得t=7.5,所以P所表示的数为﹣20+5×7.5=17.5;(3)建立如图所示的数轴A所表示的数为﹣20;C所表示的数为0;B所表示的数为40.甲到C的时间为秒,甲到B的时间为秒,乙到B的时间为秒,丙到C的时间为秒,丙到B的时间为秒,甲遇丙的时间为秒,乙遇丙的时间为秒,甲追乙的时间为20(舍),丙追甲的时间为(舍).丙到C前,甲所表示的数为﹣20+7t;乙所表示的数为6t;丙所表示的数为40﹣6t①乙丙相遇前:6t﹣(﹣20+7t)=40﹣6t﹣6t,解得t=,所以甲船离B码头的距离为40﹣(﹣20+7×)=(海里);②甲丙相遇前:40﹣6t﹣(﹣20+7t)=6t﹣(40﹣6t),解得t=4,所以甲船离B码头的距离为40﹣(﹣20+7×4)=32(海里);③甲丙相遇后,丙到C前:6t﹣(﹣20+7t)=﹣20+7t﹣(40﹣6t),解得t=,所以甲船离B码头的距离为40﹣(﹣20+7×)=20(海里);④甲丙相遇后,丙到C后:甲所表示的数为﹣20+7t;乙所表示的数为6t;丙所表示的数为10(t﹣).6t﹣(﹣20+7t)=﹣20+7t﹣10(t﹣),解得t=>(舍).综上所述,在整个运动过程中,分别在小时、4小时、小时时,这三艘船中的一艘恰好在另外两船之间,且与两船的距离相等,此时甲船离B码头的距离分别为海里,32海里,20海里.2017年3月1日。

相关文档
最新文档