第二十六章反比例函数习题
新人教版九年级下《第26章反比例函数》单元测试题含答案解析

新人教版九年级下册数学?第26章反比例函数?单元测试题一.选择题〔共10小题〕1.以下关系式中,y是x的反比例函数的是〔〕A.y=4x B.=3 C.y=﹣ D.y=x2﹣12.在同一平面直角坐标系中,函数 y=kx与y=的图象大致是〔〕A.〔1〕〔3〕B.〔1〕〔4〕C.〔2〕〔3〕D.〔2〕〔4〕3.反比例函数y=﹣,以下结论中不正确的选项是〔〕A.图象必经过点〔﹣3,2〕B.图象位于第二、四象限C.假设x<﹣2,那么0<y<3D.在每一个象限内,y随x值的增大而减小4.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,S阴影=,那么S1+S2等于〔〕A.4B.C.D.5.以下各点中,在函数y=﹣图象上的是〔〕A.〔﹣3,﹣2〕B.〔﹣2,3〕C.〔3,2〕D.〔﹣3,3〕6.以下函数中,图象经过点〔1,﹣2〕的反比例函数关系式是〔〕A.y=B.y=C.y=D.y=7.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A〔2,2〕,当y=x的函数值大于y=的函数值时,x的取值范围〔〕A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>28.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了 6小时到达目的地,当他按原路匀速返回时,汽车的速度v〔千米/时〕与时间t〔小时〕的函数关系为〔〕A.v=B.v+t=480C.v=D.v=9.对于反比例函数y=〔k≠0〕,以下所给的四个结论中,正确的选项是〔〕A.假设点〔2,4〕在其图象上,那么〔﹣2,4〕也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,那么矩形OAPB的面积为kD.反比例函数的图象关于直线y =x和y=﹣x成轴对称10.反比例函数y=〔k≠0〕的图象经过〔﹣4,2〕,那么以下四个点中,在这个函数图象上的是〔〕A.〔1,8〕B.〔3,〕C.〔,6〕D.〔﹣2,﹣4〕二.填空题〔共8小题〕11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大〞,那么此函数的表达式可以为.12.如图,在平面直角坐标系xOy中,函数y=〔x>0〕的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,连接OA,OB,那么△OAC与△OBD的面积之和为.13.A〔x1,y1〕,B〔x2,y2〕都在反比例函数的图象y=﹣上,且x1<0<x2,那么y1与y2大小关系是.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A〔2,1〕,C2与C1关于x轴对称,那么图象C2对应的函数的表达式为〔x>0〕.15.反比例函数y=的图象与正比例函数y=6x的图象交于点P〔m,12〕,那么反比例函数的关系式是.16.如图、点P在反比例函数y=的图象上,PM⊥y轴于M,S△POM=4,那么k=.17.如图,在平面直角坐标系xOy中,函数y=〔x>0〕的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.假设点B在x轴上,点A的坐标为〔6,4〕,那么△BOC的面积为.18.如果点〔﹣1,y 1〕、B 〔1,y 2〕、C 〔2,y 3〕是反比例函数y =图象上的三个点,那么y 1、y 2、y 3的大小关系是 .三.解答题〔共7小题〕19.y =〔m 2+2m 〕x是关x 于的反比例函数,求m 的值及函数的解析式.20.反比例函数y =〔m ﹣2〕〔1〕假设它的图象位于第一、三象限,求m 的值;〔2〕假设它的图象在每一象限内 y 的值随x 值的增大而增大,求 m 的值.21.双曲线y =如下图,点 A 〔﹣1,m 〕,B 〔n ,2〕.求S △AOB .22.如图,在平面直角坐标系中,Rt △ABC 的边AB ⊥x 轴,垂足为 A ,C 的坐标为〔1,0〕,反比例函数y =〔x >0〕的图象经过 BC 的中点D ,交AB 于点E .AB =4,BC =5.求k 的值.23.如图,直线 y =﹣2x 经过点P 〔﹣2,a 〕,点P 关于y 轴的对称点 P ′在反比例函数y =〔k ≠0〕的图象上.1〕求反比例函数的解析式;2〕直接写出当y<4时x的取值范围.24.如图,一次函数y=kx+b与反比例函数y=〔x<0〕的图象相交于点A、点B,与X轴交于点C,其中点A〔﹣1,3〕和点B〔﹣3,n〕.〔1〕填空:m=,n=.〔2〕求一次函数的解析式和△AOB的面积.〔3〕根据图象答复:当x为何值时,kx+b≥〔请直接写出答案〕.25.如图,在平面直角坐标系中,一次函数y=kx+b〔k≠0〕与反比例函数y=〔m≠0〕的图象交于点A〔3,1〕,且过点B〔0,﹣2〕.1〕求反比例函数和一次函数的表达式;2〕如果点P是x轴上的一点,且△ABP的面积是3,求点P的坐标;〔3〕假设P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.新人教版九年级下册数学?第26章反比例函数?单元测试题参考答案与试题解析一.选择题〔共10小题〕1.以下关系式中, y 是x 的反比例函数的是〔A .y =4xB .=3【分析】根据反比例函数的定义判断即可. 【解答】解:A 、y =4x 是正比例函数;B 、 =3,可以化为 y =3x ,是正比例函数;C 、y =﹣ 是反比例函数;D 、y =x 2﹣1是二次函数;应选:C .【点评】此题考查的是反比例函数的定义,形如2.在同一平面直角坐标系中,函数 y =kx 与〕 C .y =﹣ D .y =x 2﹣1y = 〔k 为常数,k ≠0〕的函数称为反比例函数.y = 的图象大致是〔 〕A .〔1〕〔3〕B .〔1〕〔4〕C .〔2〕〔3〕D .〔2〕〔4〕 【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项. 【解答】解:当k >0时,函数y =kx 的图象位于一、三象限, y = 的图象位于一、三象限,〔1〕符合;当k <0时,函数y =kx 的图象位于二、四象限, y = 的图象位于二、四象限,〔4〕符合;应选:B .【点评】考查了反比例函数和正比例函数的性质,解题的关键是能够分类讨论,难度不大.3.反比例函数y=﹣,以下结论中不正确的选项是〔〕A.图象必经过点〔﹣3,2〕B.图象位于第二、四象限C.假设x<﹣2,那么0<y<3D.在每一个象限内,y随x值的增大而减小【分析】根据反比例函数的性质进行选择即可.【解答】解:A、图象必经过点〔﹣3,2〕,故A正确;B、图象位于第二、四象限,故B正确;C、假设x<﹣2,那么y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;应选:D.【点评】此题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.4.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,S阴影=,那么S1+S2等于〔〕A.4B.C.D.5【分析】根据反比例函数系数k的几何意义可得S四边形AEOF=4,S四边形BDOC=4,根据S1+S2=S 四边形AEOF+S四边形BDOC﹣2×S阴影,可求S1+S2的值.【解答】解:如图,∵A、B两点在双曲线y=上,S四边形AEOF=4,S四边形BDOC=4,S1+S2=S四边形AEOF+S四边形BDOC﹣2×S阴影,S1+S2=8﹣=应选:C.【点评】此题考查了反比例函数系数k的几何意义,熟练掌握在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.5.以下各点中,在函数y=﹣图象上的是〔〕A.〔﹣3,﹣2〕B.〔﹣2,3〕C.〔3,2〕D.〔﹣3,3〕【分析】只需把所给点的横纵坐标相乘,结果是﹣6的,就在此函数图象上.【解答】解:∵反比例函数y=﹣中,k=﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上,四个选项中只有B选项符合.应选:B.【点评】此题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.6.以下函数中,图象经过点〔1,﹣2〕的反比例函数关系式是〔〕A.y=B.y=C.y=D.y=【分析】利用待定系数法求出反比例函数解析式即可.【解答】解:设反比例函数解析式为y=〔k≠0〕,把〔1,﹣2〕代入得:k=﹣2,那么反比例函数解析式为y=﹣,应选:D.【点评】此题考查了待定系数法求反比例函数解析式,熟练掌握待定系数法是解此题的关键.7.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A〔2,2〕,当y=x的函数值大于y=的函数值时,x的取值范围〔〕A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>2【分析】由题意可求点B坐标,根据图象可求解.【解答】解:∵正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A〔2,2〕,∴点B坐标为〔﹣2,﹣2〕∴当x>2或﹣2<x<0应选:D.【点评】此题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.8.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v〔千米/时〕与时间t〔小时〕的函数关系为〔〕A.v=B.v+t=480C.v=D.v=【分析】先求得路程,再由等量关系“速度=路程÷时间〞列出关系式即可.【解答】解:由于以80千米/时的平均速度用了 6小时到达目的地,那么路程为∴汽车的速度v〔千米/时〕与时间t〔小时〕的函数关系为v=.应选:A.【点评】此题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.9.对于反比例函数y=〔k≠0〕,以下所给的四个结论中,正确的选项是〔A.假设点〔2,4〕在其图象上,那么〔﹣2,4〕也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,那么矩形OAPB D.反比例函数的图象关于直线y=x和y=﹣x成轴对称【分析】根据反比例函数的性质一一判断即可;80×6=480千米,〕的面积为k【解答】解:A、假设点〔2,4〕在其图象上,那么〔﹣2,4〕不在其图象上,故本选项不符合题意;B、当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C、错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,那么矩形OAPB的面积为|k|;故本选项不符合题意;D、正确,本选项符合题意,应选:D.【点评】此题考查反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.10.反比例函数y=〔k≠0〕的图象经过〔﹣4,2〕,那么以下四个点中,在这个函数图象上的是〔〕A.〔1,8〕B.〔3,〕C.〔,6〕D.〔﹣2,﹣4〕【分析】根据反比例函数y=〔k≠0〕的图象经过〔﹣4,2〕,可以得到k的值,从而可以判断各个选项是否符合题意,此题得以解决.【解答】解:∵反比例函数y=〔k≠0〕的图象经过〔﹣4,2〕,∴k=xy=〔﹣4〕×2=﹣8,∵1×8=8≠﹣8,应选项A不符合题意,∵3×〔﹣〕=﹣8,应选项B符合题意,∵×6=3≠﹣8,应选项C不符合题意,∵〔﹣2〕×〔﹣4〕=8≠﹣8,应选项D不符合题意,应选:B.【点评】此题考查反比例函数图象上点的坐标特征,解答此题的关键是明确题意,利用反比例函数的性质解答.二.填空题〔共8小题〕11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大〞,那么此函数的表达式可以为y=.【分析】根据题意和反比例函数的性质可以写出一个符合要求的函数解析式,此题得以解决.【解答】解:∵当x>0时,y随x的增大而增大,∴此函数的解析式可以为y=,故答案为:y=.【点评】此题考查反比例函数的性质,解答此题的关键是明确题意,写出相应的函数解析式,注意此题答案不唯一.12.如图,在平面直角坐标系xOy中,函数y=〔x>0〕的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,连接OA,OB,那么与△OBD的面积之和为2.△OAC【分析】根据反比例函数比例系数k的几何意义可得S△OAC=S△OBD=×2=1,再相加即可.【解答】解:∵函数y=〔x>0〕的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,∴S△OAC=S△OBD=×2=1,∴S△OAC+S△OBD=1+1=2.故答案为2.【点评】此题考查了反比例函数比例系数k的几何意义:过反比例函数图象上的点向x轴或y轴作垂线,这一点和垂足、原点组成的三角形的面积等于|k|.13.A〔x1,y1〕,B〔x2,y2〕都在反比例函数的图象y=﹣上,且x1<0<x2,那么y1与y2大小关系是y1>y2.【分析】将点A,点B坐标代入解析式,可求y1,y2,由x1<0<x2,可得y1>0,y2<0,即可得y1与y2大小关系.【解答】解:∵A〔x1,y1〕,B〔x2,y2〕都在反比例函数的图象y=﹣上,∴y1=,y2=,x1<0<x2,∴y1>0>y2,故答案为:y1>y2【点评】此题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A〔2,1〕,C2与C1关于x轴对称,那么图象C2对应的函数的表达式为y=﹣〔x>0〕.【分析】根据关于x轴对称的性质得出点A关于x轴的对称点A′坐标〔2,﹣1〕,从而得出C2对应的函数的表达式.【解答】解:∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A〔2,1〕,A′坐标〔2,﹣1〕,C2对应的函数的表达式为y=﹣,故答案为y=﹣.【点评】此题考查了反比例函数的性质,掌握关于x轴对称点的坐标是解题的关键.15.反比例函数y=的图象与正比例函数y=6x的图象交于点P〔m,12〕,那么反比例函数的关系式是y=.【分析】把点P〔m,12〕代入正比例函数 y=6x得到关于m的一元一次方程,解之求得m的值,把P的坐标代入反比例函数y=,得到关于k的一元一次方程,解之,求得k的值,代入即可得到答案.【解答】解:把点P〔m,12〕代入正比例函数y=6x得:12=6m,解得:m=2,把点P〔2,12〕代入反比例函数y=得:12=,解得:k=24,即反比例函数得关系式是y=,故答案为:y=.【点评】此题考查了反比例函数和一次函数的交点问题,正确掌握代入法是解题的关键.16.如图、点P在反比例函数 y=的图象上,PM⊥y轴于M,S△POM=4,那么k=﹣8.【分析】此题可从反比例函数系数k的几何意义入手,△PMO的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=|k|再结合反比例函数所在的象限确定出k的值即可.【解答】解:由题意知:S△PMO=|k|=4,所以|k|=8,即k=±8.又反比例函数是第二象限的图象,k<0,所以k=﹣8,故答案为:﹣8.【点评】此题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里表达了数形结合的思想,做此类题一定要正确理解k的几何意义.17.如图,在平面直角坐标系xOy中,函数y=〔x>0〕的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.假设点B在x轴上,点A的坐标为〔6,4〕,那么△BOC的面积为3.【分析】由于点A的坐标为〔6,4〕,而点D为OA的中点,那么D点坐标为〔3,2〕,利用待定系数法科得到k=6,然后利用k的几何意义即可得到△BOC的面积=|k|=×6=3.【解答】解:∵点A的坐标为〔6,4〕,而点D为OA的中点,∴D点坐标为〔3,2〕,把D〔3,2〕代入y=得k=3×2=6,∴反比例函数的解析式为y=,∴△BOC的面积=×|6|=3.|k|=故答案为:3;【点评】此题考查了反比例y=〔k≠0〕数k的几何意义:过反比例函数图象上任意一点分别作x|k|.轴、y轴的垂线,那么垂线与坐标轴所围成的矩形的面积为y1、y2、18.如果点〔﹣1,y1〕、B〔1,y2〕、C〔2,y3〕是反比例函数y=图象上的三个点,那么y3的大小关系是y2>y3>y1.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可【解答】解:∵1>0,∴反比例函数y=图象在一、三象限,并且在每一象限内y随x的增大而减小,∴∵﹣1<0,∴A点在第三象限,∴y1<0,∴2>1>0,∴B、C两点在第一象限,∴y2>y3>0,y 2>y 3>y 1.故答案是:y 2>y 3>y 1.【点评】此题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题〔共7小题〕19 .y =〔m 2+2m 〕x是关x 于的反比例函数,求 m 的值及函数的解析式.【分析】根据反比例函数的定义知m 2+2m =﹣1,且m 2+2m ≠0,据此可以求得m 的值,进而得出反比例函数的解析式.2是反比例函数,【解答】解:∵y =〔m+2m 〕x22∴m+2m =﹣1,且m+2m ≠0,∴〔m+1 〕〔m+1〕=0,∴ m+1= 0,即m =﹣ 1;∴反比例函数的解析式y =﹣x﹣1.【点评】此题考查了反比例函数的定义,重点是将一般式y =〔k ≠0〕转化为y =kx﹣1〔k ≠0〕的形式.20 .反比例函数 y =〔m ﹣2〕〔 1〕假设它的图象位于第一、三象限,求m 的值;〔 2〕假设它的图象在每一象限内y 的值随x 值的增大而增大,求 m 的值.【分析】〔1〕根据反比例函数的定义与性质,得出,进而求解即可;〔2〕根据反比例函数的定义与性质,得出 ,进而求解即可.【解答】解:〔1〕由题意,可得,解得m =3;〔2〕由题意,可得,解得m =﹣2.【点评】此题考查了反比例函数的性质;用到的知识点为:反比例函数y=kx〔k≠0〕的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.也考查了反比例函数的定义.21.双曲线y=如下图,点A〔﹣1,m〕,B〔n,2△AOB.〕.求S【分析】根据点A、B两点在反比例函数图象上得其坐标,再根据S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE可得答案.【解答】解:将点A〔﹣1,m〕、B〔n,2〕代入y=,得:m=6、n=﹣3,如图,过点A作x轴的平行线,交y轴于点C,过点B作y轴的平行线,交x轴于点D,交CA于点E,那么DE=OC=6、BD=2、BE=4、OD=3,AC=1、AE=2,S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE3×6﹣×1×6﹣×3×2﹣×2×48.【点评】此题主要考查反比例函数系数k的几何意义,熟练掌握割补法求三角形的面积是解题的关键.22.如图,在平面直角坐标系中,Rt△ABC的边AB⊥x轴,垂足为A,C的坐标为〔1,0〕,反比例函数y=〔x>0〕的图象经过BC的中点D,交AB于点E.AB=4,BC=5.求k的值.【分析】根据勾股定理可求AC=3,那么可求点A〔4,0〕,可得点B〔4,4〕,根据中点坐标公式可求点D坐标,把点D坐标代入解析式可求k的值.【解答】解:∵在Rt△ABC中,AB=4,BC=5∴AC===3∵点C坐标〔1,0〕OC=1OA=OC+AC=4∴点A坐标〔4,0〕∴点B〔4,4〕∵点C〔1,0〕,点B〔4,4〕∴BC的中点D〔,2〕∵反比例函数y=〔x>0〕的图象经过BC的中点D∴2=∴k=5【点评】此题考查了反比例函数图象上点的坐标特征,勾股定理,中点坐标公式,熟练运用反比例函数图象性质是解决问题的关键.23.如图,直线y=﹣2x经过点P〔﹣2,a〕,点P关于y轴的对称点P′在反比例函数y=〔k≠0〕的图象上.〔1〕求反比例函数的解析式;〔2〕直接写出当y<4时x的取值范围.【分析】〔1〕把P的坐标代入直线解析式求出a的值,确定出P′的坐标,即可求出反比例解析式;〔2〕结合图象确定出所求x的范围即可.【解答】解:〔1〕把P〔﹣2,a〕代入直线y=﹣2x解析式得:a=4,即P〔﹣2,4〕,∴点P关于y轴对称点P′为〔2,4〕,代入反比例解析式得:k=8,那么反比例解析式y=;为x>﹣2.〔2〕当y<4时,反比例函数自变量x的范围为x>2或x<0;一次函数自变量x的范围是【点评】此题考查了待定系数法求反比例函数解析式,以及一次函数、反比例函数的性质,熟练掌握待定系数法是解此题的关键.24.如图,一次函数y=kx+b与反比例函数y=〔x<0〕的图象相交于点A、点B,与X轴交于点C,其中点A〔﹣1,3〕和点B〔﹣3,n〕.〔1〕填空:m=﹣3,n=1.〔2〕求一次函数的解析式和△AOB的面积.〔3〕根据图象答复:当x为何值时,kx+b≥〔请直接写出答案〕﹣3≤x≤﹣1.【分析】〔1〕将A点坐标,B点坐标代入解析式可求m,n的值〔2〕用待定系数法可求一次函数解析式,根据S△AOB=S△AOC﹣S△BOC可求△AOB的面积.〔3〕由图象直接可得【解答】解:〔1〕∵反比例函数y=过点A〔﹣1,3〕,B〔﹣3,n〕m=3×〔﹣1〕=﹣3,m=﹣3nn=1故答案为﹣3,1〔2〕设一次函数解析式y=kx+b,且过〔﹣1,3〕,B〔﹣3,1〕∴解得:∴解析式y=x+4∵一次函数图象与x轴交点为C0=x+4x=﹣4C〔﹣4,0〕S△AOB=S△AOC﹣S△BOC∴S△AOB=×4×3﹣×4×1=43〕∵kx+b≥∴一次函数图象在反比例函数图象上方∴﹣3≤x≤﹣1故答案为﹣3≤x≤﹣1【点评】此题考查了反比例函数与一次函数的交点问题,待定系数法,利用函数图象上的点满足函数关系式解决问题是此题关键.25.如图,在平面直角坐标系中,一次函数y=kx+b〔k≠0〕与反比例函数y=〔m≠0〕的图象交于点A〔3,1〕,且过点B〔0,﹣2〕.1〕求反比例函数和一次函数的表达式;2〕如果点P是x轴上的一点,且△ABP的面积是3,求点P的坐标;〔3〕假设P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【分析】〔1〕将点A 〔3,1〕代入y =,利用待定系数法求得反比例函数的解析式,再将点A 〔3,1〕和B 〔0,﹣2〕代入y =kx+b ,利用待定系数法求得一次函数的解析式;〔2〕首先求得 AB 与x 轴的交点 C 的坐标,然后根据 S △ABP =S △ACP +S △BCP 即可列方程求得P 的横坐标;〔3〕分两种情况进行讨论: ①点P 在x 轴上;②点P 在y 轴上.根据 PA =OA ,利用等腰三角形的对称性求解.【解答】解:〔1〕∵反比例函数y = 〔m ≠0〕的图象过点 A 〔3,1〕,∴3=,解得m =3.∴反比例函数的表达式为 y = .∵一次函数 y =kx+b 的图象过点 A 〔3,1〕和B 〔0,﹣2〕,∴ ,解得:,∴一次函数的表达式为y =x ﹣2;2〕如图,设一次函数y =x ﹣2的图象与x 轴的交点为C .令y =0,那么x ﹣2=0,x =2, ∴点C 的坐标为〔2,0〕. ∵S △ABP =S△ACP +S △BCP =3, ∴PC ×1+PC ×2=3,PC =2,∴点P 的坐标为〔0,0〕、〔4,0〕;〔3〕假设P是坐标轴上一点,且满足PA=OA,那么P点的位置可分两种情况:①如果点P在x轴上,那么O与P关于直线x=3对称,所以点P的坐标为〔6,0〕;②如果点P在y轴上,那么O与P关于直线y=1对称,所以点P的坐标为〔0,2〕.综上可知,点P的坐标为〔6,0〕或〔0,2〕.【点评】此题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,三角形面积的计算以及等腰三角形的性质,正确求出函数的解析式是关键.。
人教版九年级数学下册第二十六章 反比例函数练习(含答案)

第二十六章 反比例函数一、单选题1.下列函数中,y 是x 的反比例函数的是( )A .y =2xB .y =23-x ﹣1C .y =221x --D .y =﹣x2.若点A (-2,1)在反比例函数y=k x的图像上,则k 的值是( ) A .2 B .-2 C .12 D .-123.在函数2y x=-的图象上有三点(﹣3,y 1),(1,y 2),(2,y 3)则函数值y 1,y 2,y 3的大小关系是( )A .y 2<y 3<y 1B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 2<y 3 4.关于反比例函数y=3x,下列说法不正确的是( ) A .点(3,1)在它的图象上 B .它的图象分别位于第一、三象限C .当y >﹣1时,x <﹣3D .当x >0时,y 随x 的增大而减小 5.如图,过反比例函数(0)k y x x=>的图像上一点A 作AB x ⊥轴于点B ,连接AO ,若4AOB S =△,则k 的值为( ).A .2B .4C .6D .86.点(,)a b 是反比例函数2y x=-的图象上一点,若2a <,则b 的值不可能是( )A .-2B .13- C .2 D .37.已知0ab <,一次函数y ax b =-与反比例函数a y x=在同一直角坐标系中的图象可能( ) A . B .C .D .8.如图,已知矩形OABC 面积为1003,它的对角线OB 与双曲线k y x=相交于D 且OB :OD =5:3,则k =( )A .6B .12C .24D .36 9.如图,直线1122y x =+与双曲线26y x=交于()2A m ,、()6B n -,两点,则当12y y <时,x 的取值范围是( )A .6x <-或2x >B .60x -<<或2x >C .6x <-或02x <<D .62x -<<10.如图,在x 轴的正半轴上依次截取1122320172018OA A A A A A A ====,过点12320172018A A A A A 分别作x 轴的垂线与反比例函数()20y x x =≠的图象相交于点12320172018P P P P P 、、、、、,得直角三角形11122233201720182018OP A A P A A P A A P A 、、、、,并设其面积分别为12320172018S S S S S 、、、、、,则2018S 的值为( )A .12018 B .12017 C .11009 D .22017二、填空题11.已知函数()43m y m x -=+是反比例函数,则m =______.12.反比例函数y=32009kx-图象的每一条曲线上,y随x的增大而减小,则k的取值范围是_____.13.如图,已知在平面直角坐标系xOy中,反比例函数y=kx(x>0)的图象分别交矩形OABC的边AB、BC于点D、E,且BE=2CE,若四边形ODBE的面积为7,则k的值为_____.14.如图,点P(3a,a)是反比例函kyx=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.三、解答题15.函数y=(m﹣1)21m mx--是反比例函数(1)求m的值(2)判断点(12,2)是否在这个函数的图象上.16.如图,Rt△ABO的顶点A是双曲线y=kx与直线y=﹣x+(k+1)在第四象限的交点,AB⊥x轴于点B,且S△ABO=32.(1)求这两个函数的表达式;(2)求直线与双曲线的交点A和C的坐标及△AOC的面积.(3)写出反比例函数y=kx的值大于一次函数y=﹣x+(k+1)时的x的取值范围.17.如图,在平面直角坐标系中,O 为坐标原点,点C 在x 轴的正半轴上,菱形OCBA的面积为20,周长为20,反比例函数kyx=经过点A,与BC 交于点D.(1)求点B 的坐标及k 的值(直接写出结果).(2)设直线AD 的解析式为y=ax+b,结合图象,求关于x 的不等式kax bx+<x的解集.18.制作一种产品,需先将材料加热到达60、后,再进行操作.设该材料温度为y(、),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图所示).已知该材料在操作加工前的温度为15、,加热5分钟后温度达到60、.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(写出自变量的取值范围)(2)根据工艺要求,当材料的温度低于15、时,须停止操作,那么从开始加热到停止操作,共经历了多少时间答案1.B2.B3.A4.C5.D6.B7.A8.B9.C10.A11.3.12.k >2009313.7214.y=12x15.(1) m=0;(2)点(12,2)不在这个函数图象上. 16.(1)y=3x-和y=-x -2;(2)交点A 为(1,-3),C 为(-3,1);4;(3)-3<x <0或x >1.17.(1)()8,4B ,k =12;(2)k ax b x +<的解集为03x <<或52x +> 18.(1)()91505y x x =+≤≤,300y x =(x >5);(2)20分钟。
人教版九年级下册数学第二十六章 反比例函数 含答案

人教版九年级下册数学第二十六章反比例函数含答案一、单选题(共15题,共计45分)1、已知点P(1,-3)在反比例函数(k≠0)的图象上,则k的值是()A.3B.C.-3D.2、若双曲线y= 在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k<3B.k≥3C.k>3D.k≠33、下列各点中,在函数y=-图象上的是()A.(﹣2,4)B.(2,4)C.(﹣2,﹣4)D.(8,1)4、如图,若双曲线与它的一条对称轴交于A、B两点,则线段AB称为双曲线的“对径”.若双曲线的对径长是,则 k的值为()A.2B.4C.6D.5、如图,直角坐标系中,A是反比例函数y= (x>0)图象上一点,B是y轴正半轴上一点,以OA,AB为邻边作□ABCO,若点C及BC中点D都在反比例函数y= (k<0,x<0)图象上,则k的值为 ( )A.-3B.-4C.-6D.-86、下列各点中,在函数y=-图象上的是( )A. B. C. D.7、已知点(-1,y1),(2,y2),(3,y3)在反比例函数y=的图象上,下列结论中正确的是()A.y1>y2>y3; B.y1>y3>y2; C.y3>y1>y2; D.y2>y3>y1.8、关于函数y= ,下列说法中错误的是()A.当x>0时,y随x的增大而增大B.当x<0时,y随x的增大而增大 C.当x=1时的函数值大于x=﹣1时的函数值 D.在函数图象所在的每个象限内,y都随x的增大而增大9、已知反比例函数y=(a﹣2)的图象位于第二、四象限,则a的值为()A.1B.3C.﹣1D.﹣310、如图,直线x=t(t>0)与反比例函数y=(x>0)、y=(x>0)的图象分别交于B、C两点,A为y轴上任意一点,△ABC的面积为3,则k的值为()A.2B.3C.4D.511、已知一次函数y=kx﹣k与反比例函数在同一直角坐标系中的大致图象是()A. B. C.D.12、直线y=ax+b经过第二、三、四象限,那么下列结论正确的是()A. =a+bB.点(a,b)在第一象限内C.反比例函数,当x>0时,函数值y随x增大而减小 D.抛物线y=ax 2+bx+c的对称轴过二、三象限13、已知反比例函数 y=的图象如图所示,则二次函数 y =a x 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是()A. B. C. D.14、如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=(x>0)和y=(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是( )A.∠POQ不可能等于90°B. =C.这两个函数的图象一定关于轴对称 D.△POQ的面积是(|k1|+|k2|)15、如图,已知在平面直角坐标系中,的顶点,,,函数的图象经过点,则的长为()A. B. C. D.二、填空题(共10题,共计30分)16、已知点A在反比例函数的图象上,AB⊥y轴,点C在x轴上,S△=2,则反比例函数的解析式为________.ABC17、已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为________.18、如图,一次函数与反比例的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是________.19、如图,点A是双曲线y= 在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为________.20、某水池容积为300m3,原有水100m3,现以xm3/min的速度匀速向水池中注水,注满水需要y min,则y关于x的函数表达式为________.21、如图,点A是反比例函数y= 图象上一点,AB⊥y轴于点B,那么△AOB 的面积是________.22、在“2011年北京郁金香文化节”中,北京国际鲜花港的3×106株郁金香为京城增添了亮丽的色彩.若这些郁金香平均每平方米种植的数量为n(单位:株/平方米),总种植面积为S(单位:平方米),则n与S的函数关系式为________ .(不要求写出自变量S的取值范围)23、如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=(k≠0)的图象经过A、D两点,则k值为________.24、如图,B(2,-2),C(3,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为________。
第二十六章反比例函数 达标测试卷(含答案)

第二十六章反比例函数一、选择题(每小题3分,共30分)1.下列函数中,属于反比例函数的是( )A .y =3xB .y =-2x C .y =x 2+3 D .x +y =522.已知双曲线y =kx 经过点(-2,5),则下列各点在该双曲线上的是( )A .(-5,-2)B .(1,10)C .(5,2)D .(10,-1) 3.对于反比例函数y =2x ,下列说法正确的是( )A .点(-2,1)在它的图象上B .它的图象位于第一、三象限C .它的图象经过原点D .当x >0时,y 随x 的增大而增大4.已知反比例函数y =k -3x ,当x >0时,y 随x 的增大而增大,则k 的取值范围是( )A .k <3B .k ≤3C .k >3D .k ≥35.如图是反比例函数y 1=kx 和一次函数y 2=mx +n 的图象,若y 1<y 2,则相应的x的取值范围是( )A .1<x <6B .x <1C .x <6D .x >1(第5题) (第7题)6.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后汽缸内气体的体积和气体对汽缸壁所产生的压强,如下表:体积x /mL 100 80 60 40 20 压强y /kPa6075100150300则可以反映y 与x 之间的关系的式子是( )A.y=3 000x B.y=6 000xC.y=3 000x D.y=6 000x7.如图,反比例函数y=4x和y=2x在第一象限内的图象分别是C1和C2,设点P在C1上,P A⊥x轴于点A,交C2于点B,则△POB的面积为() A.1 B.2 C.4 D.无法计算8.函数y=kx(k≠0)与y=-kx2+k(k≠0)在同一直角坐标系中的图象可能是() 9.如图,O为坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过顶点B,则k的值为() A.-12 B.-27 C.-32 D.-36(第9题) (第10题)10.如图,一次函数y=ax+b的图象与x轴,y轴交于A,B两点,与反比例函数y=kx的图象交于C,D两点,过点C作CE⊥y轴于点E,过点D作DF⊥x 轴于点F,连接CF,DE,有下列结论:①△CEF与△DEF的面积相等;②EF∥CD;③△DCE≌△CDF;④AC=BD;⑤△CEF的面积等于k2,其中正确的有()A.2个B.3个C.4个D.5个二、填空题(每小题3分,共15分)3 11.已知函数y =(m -1)x |m |-2是反比例函数,则m =________.12.已知点A (1,y 1),B (2,y 2)是双曲线y =5x 上的点,则y 1________y 2(填“>”“<”或“=”).13.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为________________.14.反比例函数y =kx 的图象经过点A (2,1),若y ≤1,则x 的取值范围为________________.15.如图,点A 在反比例函数y =6 2x (x >0)的图象上,以OA 为直径的圆交该双曲线于点C ,交y 轴于点B ,若CB ︵=CO ︵,则点A 的坐标为__________.三、解答题(一)(每小题8分,共24分)16.已知反比例函数y =kx 的图象经过点P (1,6). (1)求k 的值;(2)若点M (-2,m ),N (-1,n )都在该反比例函数的图象上,试比较m ,n 的大小.17.如图,直线y =x +m 与双曲线y =kx 相交于A (2,1)和B 两点.(1)求m与k的值;(2)求点B的坐标;(3)直线y=-2x+4m经过点B吗?请说明理由.18.已知y是x+1的反比例函数,且当x=-2时,y=-3.(1)求y与x的函数关系式;(2)当x=12时,求y的值.四、解答题(二)(每小题9分,共27分)19.如图,一次函数y=kx+b与反比例函数y=6x(x>0)的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b-6x<0中的x的取值范围;(3)求△AOB的面积.20.制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800 ℃,然后停止煅烧进行锻造操作.操作8 min时,材料温度降为600 ℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时温度y(℃)与时间x(min)成反比例函数关系(如图),已知某材料初始温度是26 ℃.(1)分别求出该材料煅烧和锻造时y关于x的函数解析式,并写出自变量x的取值范围.(2)根据工艺要求,当材料温度低于400 ℃时,须停止操作,那么锻造的操作时间有多长?21.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=mx(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n-4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的解析5式.五、解答题(三)(每小题12分,共24分)22.如图,正比例函数y=2x的图象与反比例函数y=kx的图象交于A,B两点,过点A作AC⊥x轴于点C,连接BC.若△ABC的面积为2.(1)求k的值;(2)①点A的坐标为________,点B的坐标为________;②当kx≤2x时,x的取值范围为________________;(3)在x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.23.如图,已知一次函数y=32x-3的图象与反比例函数y=kx的图象交于点A(4,n),与x轴交于点B.(1) 填空:n的值为________,k的值为________;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=kx的图象,当y≥-2时,请直接写出自变量x的取值范围.7答案一、1.B 2.D 3.B 4.A 5.A 6.D 7.A 8.B 9.C 点拨:∵A (-3,4),∴OA =32+42=5.∵四边形OABC 是菱形,∴AB =OA =5,AB ∥OC , 则点B 的横坐标为-3-5=-8,纵坐标为4, 即点B 的坐标为(-8,4),将点B (-8,4)的坐标代入y =k x ,得4=k-8,解得k =-32.故选C.10.C二、11.-1 12.> 13.y =100x 14.x <0或x ≥2 15.(3,2 6)三、16.解:(1)∵反比例函数y =k x 的图象经过点P (1,6), ∴6=k1,解得k =6.(2)∵k =6>0,∴当x <0时,y 随x 的增大而减小, ∵-2<-1,∴m >n .17.解:(1)将A (2,1)的坐标代入y =x +m ,得1=2+m ,解得m =-1.将A (2,1)的坐标代入y =k x ,得1=k2,解得k =2. (2)由(1)知m =-1,k =2,联立⎩⎪⎨⎪⎧y =x -1,y =2x ,解得⎩⎨⎧x 1=2,y 1=1,⎩⎨⎧x 2=-1,y 2=-2, ∴点B 的坐标为(-1,-2). (3)经过,理由略. 18.解:(1)设y =kx +1(k ≠0). 把x =-2,y =-3代入,得-3=k-2+1,解得k =3,故y 与x 的函数关系式为y =3x +1.9 (2)把x =12代入y =3x +1,得y =312+1=2.四、19.解:(1)分别把A (m ,6),B (3,n )的坐标代入y =6x (x >0)得6=6m ,n =63,解得m =1,n =2, 所以A 点坐标为(1,6),B 点坐标为(3,2), 把A (1,6),B (3,2)的坐标代入y =kx +b ,得 ⎩⎨⎧k +b =6,3k +b =2,解得⎩⎨⎧k =-2,b =8,所以一次函数的解析式为y =-2x +8. (2)当0<x <1或x >3时,kx +b -6x <0.(3)设一次函数y =-2x +8的图象与x 轴,y 轴分别交于点D ,C, 当x =0时,y =8,则C 点坐标为(0,8), 当y =0时,-2x +8=0,解得x =4, 则D 点坐标为(4,0),所以S △AOB =S △COD -S △AOC -S △BOD =12×4×8-12×8×1-12×4×2=8.20.解:(1)设该材料锻造时y 关于x 的函数解析式为y =k x (k ≠0),则600=k8,∴k=4 800,∴y =4 800x .当y =800时,800=4 800x ,解得x =6, ∴点B 的坐标为(6,800).设该材料煅烧时y 关于x 的函数解析式为y =ax +b (a ≠0),将点A (0,26),B (6,800)的坐标代入得⎩⎨⎧b =26,6a +b =800,解得⎩⎨⎧a =129,b =26,∴y =129x +26.∴该材料锻造时y 关于x 的函数解析式为y =4 800x (x ≥6),煅烧时y 关于x 的函数解析式为y =129x +26(0≤x <6).(2)把y =400代入y =4 800x ,得x =12,12-6=6(min),∴锻造的操作时间有6 min.21.解:∵点B (2,n ),P (3n -4,1)在反比例函数y =mx (x >0)的图象上,∴⎩⎨⎧2n =m ,3n -4=m ,解得⎩⎨⎧m =8,n =4,∴反比例函数的解析式为y =8x ,B (2,4),P (8,1). 如图,过点P 作PD ⊥BC 于D ,并延长交AB 于点P ′.在△BDP 和△BDP ′中,⎩⎨⎧∠PBD =∠P ′BD ,BD =BD ,∠BDP =∠BDP ′=90°,∴△BDP ≌△BDP ′,∴DP ′=DP .易知DP =8-2=6,∴DP ′=6.∵BC ⊥x 轴,PP ′⊥BC , ∴PP ′∥x 轴,∴易得P ′(-4,1).将B (2,4),P ′(-4,1)的坐标代入y =kx +b ,得⎩⎨⎧2k +b =4,-4k +b =1,解得⎩⎪⎨⎪⎧k =12,b =3,∴一次函数的解析式为y =12x +3.五、22.解:(1)由题意知点A 与点B 关于原点对称,∴OA =OB ,∴S △AOC =S △BOC =12S △ABC =12×2=1, ∴12|k |=1,∵k >0,∴k =2. (2)①(1,2);(-1,-2) ②x ≥1或-1≤x <0(3)存在.由(2)可得AB 2=(-1-1)2+(-2-2)2=20.设D (m ,0),则AD 2=22+(1-m )2=m 2-2m +5, BD 2=22+(m +1)2=m 2+2m +5,当△ABD 为直角三角形时,可分以下三种情况:11当∠BAD =90°时,AB 2+AD 2=BD 2,即20+m 2-2m +5=m 2+2m +5,解得m =5;当∠ABD =90°时,AB 2+BD 2=AD 2,即20+m 2+2m +5=m 2-2m +5,解得m =-5, 当∠BDA =90°时,AD 2+BD 2=AB 2,即m 2-2m +5+m 2+2m +5=20,解得m =±5. ∴点D 的坐标为(-5,0),(-5,0),(5,0)或(5,0).23.解:(1)3;12(2)对于y =32x -3,令y =0,则32x -3=0,解得x =2,∴B (2,0). 如图,过点A 作AE ⊥x 轴于E ,过点D 作DF ⊥x 轴于F .∵A (4,3),B (2,0),∴OE =4,AE =3,OB =2, ∴BE =OE -OB =4-2=2.∴在Rt △ABE 中,AB =AE 2+BE 2=32+22=13.∵四边形ABCD 是菱形,∴AB =CD =BC =13,AB ∥CD ,∴∠ABE =∠DCF , ∵AE ⊥x 轴,DF ⊥x 轴,∴∠AEB =∠DFC =90°,在△ABE 与△DCF 中,⎩⎨⎧∠AEB =∠DFC ,∠ABE =∠DCF ,AB =DC ,∴△ABE ≌△DCF ,∴CF =BE =2,DF =AE =3, ∴OF =OB +BC +CF =2+13+2=4+13,∴点D 的坐标为(4+13,3).(3)当y ≥-2时,自变量x 的取值范围是x ≤-6或x >0.。
人教版数学 第二十六章 反比例函数 26.1 反比例函数 (附答案)

人教版数学第二十六章反比例函数 26.1 反比例函数(附答案)一、选择题1.三角形的面积一定,则它的底和高所成的函数关系是()A.正比例函数B.一次函数C.反比例函数D.不确定2.计划修建铁路l km,铺轨天数为t(d),每日铺轨量s(km/d),则在下列三个结论中,正确的是()①当l一定时,t是s的反比例函数;②当l一定时,l是s的反比例函数;③当s一定时,l是t的反比例函数.A.仅①B.仅②C.仅③D.①,②,③3.已知反比例函数y=kx ,当x=2时,y=-12,那么k等于()A. 1B.-1C.-4D.-144.若当x=3时,正比例函数y=k1x(k1≠0)与反比例函数y=k2x(k2≠0)的值相等,则k1与k2的比是()A. 9∶1B. 3∶1C. 1∶3D. 1∶95.若函数y=x2m+1为反比例函数,则m的值是()A. 1B. 0C. 0.5D.-16.下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系7.已知y=y1+y2,其中y1与1成反比例且比例系数为k1,y2与x成正比例且比例系数为k2.若x=-x1时,y=0,则k1,k2的关系为()A.k1+k2=0B.k1k2=1C.k1k2=-1D.k1=k28.函数y=m(m−3)是反比例函数,则m必须满足()xA.m≠3B.m≠0或m≠3C.m≠0D.m≠0且m≠3二、填空题9.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12 000元,首付4 000元,以后每月付y元,x个月全部付清,则y与x的关系式为________,是________函数.(2)某种灯的使用寿命为1 000小时,它的使用天数y与平均每天使用的小时数x之间的关系式________,是______函数.10.已知y与x成反比例,且当x=-3时,y=4,则当x=6时,y的值为_______..对于同一个物体,当F值保持不变时,P 11.已知压力F,压强P与受力面积S之间的关系是P=FS是S的____函数;当S=3时,P的值为180,那么当S=9时,P的值为____.三、解答题12.请判断下列问题中,哪些是反比例函数,并说明你的依据.(1)三角形的底边一定时,它的面积和这个底边上的高;(2)梯形的面积一定时,它的中位线与高;(3)当矩形的周长一定时,该矩形的长与宽.13.y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.14.已知y=(k2+k)x k2−k−1中,请问:k为何值,y是x的反比例函数.15.已知变量x,y满足(x-2y)2=(x+2y)2+10,问:x,y是否成反比例函数关系?如果不是,请说明理由;如果是,请求出比例系数.答案解析1.【答案】C【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.三角形的底×高=面积×2(一定),是乘积一定,它的底和高成反比例. 故选C.2.【答案】A【解析】根据工作总量=工作效率×时间,整理为反比例函数的一般形式:y =k x (k ≠0),根据k 是常数,y 是x 的反比例函数判断正确选项即可.∵l =ts ,∴t =l s ,或s =l t, ∵反比例函数解析式的一般形式y =k x (k ≠0,k 为常数), ∴当l 一定时,t 是s 的反比例函数;只有①正确,故选A.3.【答案】B【解析】∵当x =2时,y =-12,∴-12=k 2, 解得k =-1.故选B.4.【答案】D【解析】把x =3分别代入y =k 1x (k 1≠0),和反比例函数y =k 2x (k 2≠0)得y =3k 1和y =k 23,根据题意,得3k 1=k 23,所以k 1∶k 2=1∶9.故选D.5.【答案】D【解析】根据反比例函数的定义.即y =k x (k ≠0),只需令2m +1=-1即可.根据题意,得2m +1=-1,解得m =-1.故选D.6.【答案】C【解析】A.一个人的体重与他的年龄成正比例关系,错误;B .正方形的面积和它的边长是二次函数关系,故此选项错误;C .车辆所行驶的路程S 一定时,车轮的半径r 和车轮旋转的周数m 成反比例关系,正确;D .水管每分钟流出的水量Q 一定时,流出的总水量y 和放水的时间x 成正比例关系,故此选项错误;故选C.7.【答案】A【解析】根据y 1与1x 成反比例且比例系数为k 1,y 2与x 成正比例且比例系数为k 2,可得k 1的表示,k 2的表示,根据y =y 1+y 2,若x =-1时,y =0,可得答案.k 1=y 1·1x,y 2=k 2x , y 1=k 1x ,y =y 1+y 2,x =-1时,-k 1-k 2=0,k 1+k 2=0,故选A.8.【答案】D【解析】根据反比例函数定义:反比例函数的概念形如y =k x (k 为常数,k ≠0)的函数称为反比例函数可得m (m -3)≠0,再解即可.由题意,得m (m -3)≠0,解得m ≠0且m ≠3,故选D.9.【答案】(1)y =8000x , 反比例 (2)y =1000x 反比例【解析】(1)由题意,得y 与x 的函数关系式为y =12000−4000x =8000x , 故答案为y =8000x ,反比例;(2)由题意,得y =1000x ,故答案为y =1000x ,反比例.10.【答案】-2【解析】设反比例函数为y =k x ,当x =-3,y =4时,4=k −3,解得k =-12.反比例函数为y =−12x . 当x =6时,y =−126=-2, 故答案为-2.11.【答案】反比例 60【解析】∵压力F ,压强P 与受力面积S 之间的关系是P =F S ,∴当F 值保持不变时,P 是S 的反比例函数,∵当S =3时,P 的值为180,∴F =SP =3×180=540,当S =9时,P =5409=60.故答案为反比例,60.12.【答案】解 (1)设三角形的面积为S ,底边为a ,底边上的高为h ,则S =12ah ,当a 一定,即a =2S ℎ一定,S 是h 的正比例函数;(2)设梯形的面积为S ,它的中位线与高分别为m ,h ,S =12mh 符合y =k x,所以是反比例函数; (3)设矩形的周长C ,该矩形的长与宽分别为a ,b ,则C =2(a +b ),当矩形的周长一定时,该矩形的长与宽不成任何比例关系.【解析】根据实际问题分别列出函数关系式,然后结合反比例函数的定义得出答案. 13.【答案】解 (1)设反比例函数的表达式为y =k x ,把x =-1,y =2代入,得k =-2,所以反比例函数表达式为y =-2x .(2)将y =23代入,得x =-3; 将x =-2代入,得y =1;将x =-12代入,得y =4;将x =12代入,得y =-4,将x =1代入,得y =-2;将y =-1代入,得x =2,将x =3代入,得y =-23.【解析】(1)设反比例函数的表达式为y=kx,找出函数图象上一个点的坐标,然后代入求解即可;(2)将x或y的值代入函数解析式求得对应的y或x的值即可.14.【答案】解∵y=(k2+k)x k2−k−1中,y是x的反比例函数,∴{k2+k≠0,k2−k−1=−1,解得k=0(舍去)或k=1.∴k=1时,y是x的反比例函数.【解析】根据反比例函数的定义列出关于k的不等式组,求出k的值即可.15.【答案】解∵(x-2y)2=(x+2y)2+10,∴x2-4xy+4y2=x2+4xy+4y2+10,整理得出8xy=-10,∴y=−54x,∴x,y成反比例关系,比例系数为-54.【解析】直接去括号,进而合并同类项得出y与x的函数关系式,并根据定义判定即可.。
九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果反比例函数的图象经过点P (﹣3,﹣1),那么这个反比例函数的表达式为( ) A .y =3xB .y =﹣3xC .y =13xD .y =﹣13x2.若反比例函数2y x=的图像经过(),n n ,则n 的值是( )A .2±B .CD .3.如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x的图象经过点C和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)4.对于反比例函数4y x=,下列说法错误的是( ) A .它的图象与坐标轴永远不相交 B .它的图象绕原点旋转180°能和本身重合 C .它的图象关于直线y x =±对称D .它的图象与直线y x =-有两个交点5.如图是同一直角坐标系中函数12y x =和22y x=的图象.观察图象可得不等式22x x >的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >6.如图,在平面直角坐标系中直线y mx =(0m ≠,m 为常数)与双曲线ky x=(0k ≠,k 为常数)交于点A ,B ,若()1,A a -和(),3B b -,过点A 作AM x ⊥轴,垂足为M ,连接BM ,则ABM ∆的面积是( )A .2B .1m -C .3D .67.如图,在平面直角坐标系中函数()0ky x x=>的图象经过点P 、Q 、R ,分别过这个三个点作x 轴、y 轴的平行线,阴影部分图形的面积从左到右依次为若OE ED DC ==,1310S S +=则k 的值为( )A .6B .12C .18D .24二、填空题8.平面直角坐标系xOy 中已知点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x =≠图象上的三点.若2ABC S =△,则k 的值为___________.9.如图,△AOB 中AO =AB ,OB 在x 轴上C ,D 分别为AB ,OB 的中点,连接CD ,E 为CD 上任意一点,连接AE ,OE ,反比例函数y k x=(x >0)的图象经过点A .若△AOE 的面积为2,则k 的值是___.10.在平面直角坐标系xOy 中过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长的值与面积的值相等,则这个点叫做“和谐点”.已知直线y =﹣2x +k 1与y 轴交于点A ,与反比例函数y 2k x=的图象交于点P (52-,m ),且点P 是“和谐点”,则△OAP 的面积为___.11.不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有-1,2,3,4四个数,从袋子中随机抽取一个小球,记标号为k ,不放回,将袋子摇匀,再随机抽取一个小球,记标号为b ,两次抽取完毕后,则直线y kx =与反比例函数by x=的图象经过的象限相同的概率为______. 12.如图,点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴,作AC x ⊥轴于点C ,交OB 于点D .若2OD BD =,则k 的值是______.13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =﹣6x(x <0)和y=8x(x >0)的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为__.14.一定质量的二氧化碳,其密度()3kg /m ρ=是体积()3m V 的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式___________,当33m V =时,则ρ=_______3kg /m .三、解答题15.如图1,反比例函数()0my x x=>的图象过点()4,3M .(1)求反比例函数my x=的表达式,判断点()2,8在不在该函数图象上,并说明理由; (2)反比例函数()16my x x=≤≤的图象向左平移2个单位长度,平移过程中图象所扫过的面积是______; (3)如图2,直线:8l y x =-+与x 轴、y 轴分别交于点A 、点B ,点P 是直线l 下方反比例函数my x=图象上一个动点,过点P 分别作PC x ∥轴交直线l 于点C ,作PD y ∥轴交直线l 于点D ,请判断AC BD ⋅的值是否发生变化,并说明理由,如果不变化,求出这个值. 16.阅读下列材料定义运算min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a =.例如:min 1,31-=-与min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4--=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,则()()2min,213kx b x x x x-+=+--.求这两个函数的解析式. 17.在如图平面直角坐标系中矩形OABC 的顶点B 的坐标为(4,2),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将△OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到△ODE ,OD 与CB 相交于点F ,反比例函数y =kx(x >0)的图象经过点F ,交AB 于点G .(1)求k 的值和点G 的坐标;(2)连接FG ,则图中是否存在与△BFG 相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA 上存在这样的点P ,使得△PFG 是等腰三角形.请直接写出点P 的坐标.18.我们不妨约定:在平面直角坐标系中若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则把该函数称之为“()X n 函数”.(1)在下列关于x 的函数中是“()X n 函数”的是________(填序号); ①6y x=,②4y x =,③225y x x =-- (2)若关于x 的函数y x h =-(h 为常数)是“()3X 函数”,与my x=(m 为常数,0m >)相交于A (A x ,A y )、B (B x ,B y )两点,A 在B 的左边,5B A x x -=,求m 的值;(3)若关于x 的“()X n 函数”24y ax bx =++(a ,b 为常数)经过点(1-,1),且1n =,当1t x t -≤≤时,则函数的最大值为1y ,最小值为2y ,且1212y y -=,求t 的值. 19.如图,在平面直角坐标系中四边形ABCD 为正方形,已知点A (0,﹣6)、D (﹣3,﹣7),点B 、C 在第三象限内.(1)求点B 的坐标;(2)在y 轴上是否存在一点P ,使ABP 是AB 为腰的等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.(3)将正方形ABCD 沿y 轴向上平移,若存在某一位置,使在第二象限内点B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上,求该反比例函数的解析式.参考答案与解析1.【答案】A【分析】根据点P 的坐标,利用待定系数法即可得.【详解】解:设这个反比例函数的表达式为(0)ky k x =≠ 由题意,将点(3,1)P --代入得:3(1)3k =-⨯-= 则这个反比例函数的表达式为3y x =故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键. 2.【答案】B【分析】将(),n n 代入解析式中即可求出n 的值. 【详解】解:将(),n n 代入2y x =中得2n n=解得:n =故选B.【点睛】此题考查的是根据点所在的图像求点的坐标,将点的坐标代入解析式求点的坐标是解决此题的关键.3.【答案】B【分析】作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标. 【详解】解:作CE ⊥OA 于E ,如图∵B(5,4),四边形AOCB为平行四边形∴CE=4∵反比例函数y=8x的图象经过点C∴S△COE=12OE•CE=12×8∵CE=4∴OE=2∴C(2,4),OA=BC=5-2=3 ∴A(3,0)∵点D是AB的中点∴点D的坐标为(3+50+422,),即D(4,2)故选:B.【点睛】本题考查了平行四边形的性质,反比例函数系数k的几何意义等,求得点C和点A的坐标是解题的关键.4.【答案】D【分析】当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A.∵反比例函数4yx=中4>0,∴此函数图象在一、三象限,故本选项正确;B.∵反比例函数4yx=的图象双曲线关于原点对称,故本选项正确;C.反比例函数的图象可知,图象关于直线y x=±对称,故本选项正确;D.∵反比例函数4yx=的图象位于第一、三象限,直线y x=-经过第二、四象限,所以直线y x=-与双曲线4yx=无交点,故本选项错误;故选D.【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 5.D【分析】根据图象进行分析即可得结果; 【详解】解:∵22x x> ∴12y y >由图象可知,函数12y x=和22y x =分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-, 由图象可以看出当10x -<<或1x >时,则函数12y x=在22y x =上方,即12y y >故选:D .【点睛】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质是解本题的关键. 6.【答案】C【分析】根据直线y mx =与双曲线k y x =都经过点A ,得出1a mk a =-⎧⎪⎨=⎪⎩-,进而得到k m =,再由直线y mx =与双曲线k y x =都经过点B ,得到33k b bm ⎧-=⎪⎨⎪-=⎩,进而得到2b m k =,进而求出b 的值,得到点A 的坐标,即可得到答案.【详解】由题,直线y mx =与双曲线ky x=都经过点A ∴1a m k a =-⎧⎪⎨=⎪⎩- ,得:k m =直线y mx =与双曲线ky x=都经过点B 33bm k b -=⎧⎪∴⎨-=⎪⎩,得:2b m k = 21b ∴=0b >1b ∴=13B ∴-(,)将点B 代入y mx =,得:3m -=3y x ∴=-13A ∴-(,)111313322ABM S ∆∴=⨯⨯+⨯⨯=故选:C【点睛】本题考查一次函数与反比例函数的图像问题,根据两者的交点结合解析式求出点的坐标是解题关键.7.【答案】B【分析】设未知数,表示出点P 、Q 、R 的坐标,进而表示S 1、S 2、S 3,由S 1+S 3=10列方程求解即可. 【详解】解:设OE =ED =DC =a ∵函数ykx =(x >0)的图象经过点P 、Q 、R∴点P (3k a ,3a ),Q (2k a ,2a ),R (ka ,a )∴OF 3k a =,OG 2k a =,OA k a =∴S 1=OF •CD 3k a =⨯a 3k =S 3=AG •OE =(2k k a a -)×a 2k =又∵S 1+S 3=10 ∴32k k +=10 解得k =12 故选:B .【点睛】本题考查反比例函数系数k 的几何意义以及反比例函数图象上点的坐标特征,用坐标表示线段的长是解决问题的关键. 8.【答案】34##0.75 【分析】由点A 、B 、C 的坐标可知260k m =>,m =n ,点B 、C 关于原点对称,求出直线BC 的解析式,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,根据2ABC S =△列式求出2m ,进而可得k 的值. 【详解】解:∵点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x=≠图象上的三点 ∴260k m => 6k mn = ∴m =n∴(3,2)B m m (3,2)C m m -- ∴点B 、C 关于原点对称∴设直线BC 的解析式为()0y kx k =≠ 代入(3,2)B m m 得:23m mk = 解得:23k =∴直线BC 的解析式为23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D 把x =m 代入23y x =得:23y m =∴D (m ,23m )∴AD =216633m m m -=∴()11633223ABCSm m m =⨯⋅+= ∴218m =∴2136684k m ==⨯=而当m <0时,则同样可得34k =故答案为:34【点睛】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.9.【答案】4【分析】根据等腰△AOB,中位线CD得出AD⊥OB,S△AOE=S△AOD=2,应用|k|的几何意义求k.【详解】解:如图:连接AD△AOB中AO=AB,OB在x轴上,C、D分别为AB,OB的中点∴AD⊥OB,AO∥CD∴S△AOE=S△AOD=2∴k=4.故答案为:4.【点睛】本题考查了反比例函数图象、等腰三角形以及中位线的性质、三角形面积,解题的关键是灵活运用等腰三角形的性质.10.【答案】254或754【分析】先根据“和谐点”的定义求出m的值,进而可求出点A的坐标,根据三角形的面积可求出△OAP的面积.【详解】解:∵点P(52-,m)是“和谐点”∴5+2|m|52=|m|,解得m=±10当m=10时,则P(52-,10)把点P的坐标代入一次函数和反比例的解析式得:k1=5,k2=﹣25∴A(0,5)∴S△OAP15255224=⨯⨯=.当m =﹣10时,则P (52-,﹣10)∴k 1=﹣15,k 2=25 ∴A (0,﹣15) ∴S △OAP 12=⨯1557524⨯=. 故答案为:254或754. 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |,读懂题意,明确和谐点的定义是解题的关键. 11.【答案】12【分析】画树状图,共有12个等可能的结果,直线y kx =与反比例函数by x=的图象经过的象限相同的结果有6个,再由概率公式求解即可. 【详解】解:画树状图如图:∵从袋子中随机抽取一个小球,记标号为k ,不放回后将袋子摇匀,再随机抽取一个小球,记标号为b ,共有12个数组∴直线y kx =与反比例函数by x=的图象经过的象限相同的数组有(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),共有6组∴k ,b 直线y kx =与反比例函数b y x=的图象经过的象限相同的概率为61122=.故答案为:12【点睛】此题考查了用列表法或树状图法求概率及一次函数与反比例函数的性质,熟练掌握利用列表法或树状图列出所有等可能的结果以及一次函数与反比例函数的性质是解题的关键. 12.【答案】9【分析】先求解A 的坐标,再表示B 的坐标,再证明,ABD COD ∽利用相似三角形的性质列方程求解即可.【详解】解: 点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴 63,,3,23kmB2,3,AAC x ⊥轴2,0,CAB x ∥轴,ABD COD ∽,ABBDOC OD而2OD BD = 213,22k 解得:9,k = 故答案为:9【点睛】本题考查的是反比例函数的性质,相似三角形的判定与性质,掌握“反比例函数的图像与性质”是解本题的关键. 13.【答案】7【分析】连接OA ,OB ,利用同底等高的两三角形面积相等得到三角形AOB 面积等于三角形ACB 面积,再利用反比例函数k 的几何意义求出三角形AOP 面积与三角形BOP 面积,即可得到结果. 【详解】解:如图,连接OA ,OB∵△AOB 与△ACB 同底等高 ∴S △AOB =S △ACB ∵AB ∥x 轴∴AB ⊥y 轴∵A 、B 分别在反比例函数y =﹣6x (x <0)和y =8x (x >0)的图象上∴S △AOP =3,S △BOP =4∴S △ABC =S △AOB =S △AOP +S △BOP =3+4=7. 故答案为:7.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数y =kx的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.也考查了三角形的面积. 14.【答案】10V ρ=103【分析】由函数图像信息可得反比例函数过点(5,2),根据待定系数法求解析式;将3V =代入即可求得ρ. 【详解】反比例函数过点(5,2) 设反比例函数解析式为kVρ= 则10k =∴反比例函数解析式为10Vρ=当3V =时,则103ρ= 故答案为:10V ρ=103【点睛】本题考查了反比例函数的应用,待定系数法求反比例函数的解析式,根据解析式求函数值,从图像获取信息是解题的关键.15.【答案】(1)不在,理由见解析 (2)20 (3)不变化,24【分析】对于(1),利用待定系数法求出函数关系式,再代入判断即可;对于(2),设点E 的横坐标和点F 的横坐标,再分别表示出点E ,F ,G ,H 的坐标,进而得出线段的长度,再根据平行四边形面积公式得出答案;对于(3),设点P 的横坐标为t ,分别表示点C ,点D 的坐标,再根据两点之间的距离公式得出AC 和BD 的长,进而得出答案.(1)将点()4,3M 代入m y x =得34m= 12m =∴12y x=;当2x =时,则6y = ∵68≠∴点()2,8不在函数图象上;(2)设点E 的横坐标是1,点F 的横坐标是6,点G ,H 分别对应点E ,F ,如图所示.图形扫过的面积即为平行四边形EFHG 的面积.令12y x=中1x =,则12y = 所以(112)E , -1,12G ()令12y x=中6x =,则2y = 所以(62)F ,,(4,2)H . 因为EG FH ∥,且EM FH = 所以四边形EGHF 为平行四边形所以=()2(122)20E F S EG y y ⋅-=⨯-=. 故答案为:20;(3)不变化,理由如下:因为直线l :8y x =-+与x 轴,y 轴分别交于点A ,点B 所以点A (8,0),B (0,8). 设点P 的横坐标是t 所以12(,)P t t.因为PC x ∥轴交直线l 于点C ,PD y ∥轴交直线l 于点D 所以1212(8,)C tt-+ (,8)D t t -+所以AC =BD =即24AC BD ⋅=⋅=所以AC BD ⋅为定值,为24..【点睛】本题主要考查了反比例函数图象上点的坐标特征,待定系数法求函数关系式,求平行四边形面积等,掌握数形结合思想是解题的关键.16.【答案】(1)①1;②4- (2)12y x=- 223y x =--【分析】(1)根据材料中的定义进行计算,即可求出答案; (2)由函数图像可知当20x -<<时,则2kx bx ,则min ,22k x b x b x-+=-+,结合已知可得()()2213x b x x x -+=+--,即可求出b ,得到一次函数解析式,求出点A 的坐标,再利用待定系数法求出反比例函数解析式. (1)解:根据题意∵min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a = ∴①()0min 3,21-=;∵4-∴②min 44-=-; 故答案为:①1;②4-;(2)解:由函数图像可知当20x -<<时,则2k x bx∴min,22kx b x b x-+=-+ 又∵()()2min,213kx b x x x x-+=+-- ∴()()2213x b x x x -+=+-- ∴3b =-∴一次函数223y x =-- 当x =-2时21y = ∴A (-2,1) 将A (-2,1)代入1ky x=得212k =-⨯=-∴反比例函数12y x=-.【点睛】本题考查了新定义的运算法则,零次幂,反比例函数与一次函数的综合问题,解题的关键是掌握题意,正确的运用数形结合的思想求解.17.【答案】(1)k =2,点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG ,证明详见解析;(3)点P 的坐标为(40)或(158,00). 【分析】(1)证明△COF ∽△AOB ,则CF OCAB OA=,求得:点F 的坐标为(1,2),即可求解; (2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG .证△OAB ∽△BFG :43AO BF = 24332AB BG ==即可求解.(3)分GF =PF 、PF =PG 、GF =PG 三种情况,分别求解即可. 【详解】解:(1)∵四边形OABC 为矩形,点B 的坐标为(4,2) ∴∠OCB =∠OAB =∠ABC =90°,OC =AB =2,OA =BC =4 ∵△ODE 是△OAB 旋转得到的,即:△ODE ≌△OAB ∴∠COF =∠AOB ,∴△COF ∽△AOB ∴CF OC AB OA =,∴2CF =24,∴CF =1∴点F 的坐标为(1,2) ∵y =kx(x >0)的图象经过点F∴2=1k ,得k =2 ∵点G 在AB 上 ∴点G 的横坐标为4对于y =2x ,当x =4,得y =12∴点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG . 下面对△OAB ∽△BFG 进行证明: ∵点G 的坐标为(4,12),∴AG =12 ∵BC =OA =4,CF =1,AB =2∴BF=BC﹣CF=3BG=AB﹣AG=32.∴43AOBF=24332ABBG==∴AO AB BF BG=∵∠OAB=∠FBG=90°∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,12)则FG2=9+94=454,PF2=(m﹣1)2+4,PG2=(m﹣4)2+14当GF=PF时,则即454=(m﹣1)2+4,解得:m;当PF=PG时,则同理可得:m=158;当GF=PG时,则同理可得:m=4综上,点P的坐标为(40)或(158,00).【点睛】本题考查的是反比例函数综合运用,涉及到旋转的性质、三角形相似、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.18.【答案】(1)②③( 2)4 (3)t=2或t=1【分析】(1)根据定义分析判断即可;(2)作出图形,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点,由xB﹣xA=5,设CN=x,则MC=5﹣x,则B(3+x,x),A(x﹣2,5﹣x),根据轴对称的性质以及反比例函数的性质可得(3+x)x+(x﹣2)(5﹣x)=0,继而求得x的值,即可求得B的坐标,根据反比例函数的意义即可求得m的值;(3)根据题意以及二次函数的性质,待定系数求二次函数解析式,进而分类讨论,根据121 2y y-=,即可求得t的值.(1)解:根据定义,函数关于直线x n=(n为常数)对称,即该函数图象是轴对称图形①6yx=的图象是中心对称图象,不符合题意;②4y x=,③225y x x=--的图象是轴对称图形,符合题意故答案为:②③(2)∵y=|x-h|是“X(3)”函数∴h=3如图,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点∴C(3,0),D(0,﹣3)∴∠BCN=∠OCD=45°由对称性可知,∠ACM=∠OCD=45°∴AM=CM,BN=CN∵xB﹣xA=5∴MN=5设CN=x,则MC=5﹣x∴B(3+x,x),A(x﹣2,5﹣x)∴(3+x)x+(x﹣2)(5﹣x)=0∴x=1∴B(4,1)∴m=4;(3)由题意得4112a bba-+=⎧⎪⎨-=⎪⎩解得12 ab=-⎧⎨=⎩∴此“X(n)函数”为y=﹣x2+2x+4①当t<1时x=t时,则y1=﹣t2+2t+4x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=(﹣t2+2t+4)﹣[﹣(t﹣1)2+2(t﹣1)+4]=﹣2t+3=12∴t=54(舍);②当t﹣1≥1,即t≥2时x=t﹣1时,则y1=﹣(t﹣1)2十2(t﹣1)+4x=t时,则y2=﹣t2+2t+4y1-y2=﹣(t﹣1)2+2(t﹣1)+4﹣(﹣t2+2t+4)=2t﹣3=12∴t=74(舍);③当1≤t<32时x=1时,则y1=5x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=5﹣[﹣(t﹣1)2+2(t﹣1)+4]=t2﹣4t+4=12∴t=2±,又因为1≤t<3 2∴t=2-④32≤t<2时x=1时,则y1=5x=t时,则y2=﹣t2十2t+4y1﹣y2=5﹣(﹣t2+2t+4)=t2﹣4t+4=12∴t=1,又因为32≤t<2∴t=1综上所述:t=2-t=1【点睛】本题考查了新定义,一次函数的性质,反比例函数的性质,二次函数的性质,根据新定义以及轴对称的性质求解是解题的关键.19.【答案】(1)B (-1,-3)(2)存在,(06-,或(06-,或()00,(3)6y x =-【分析】(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,证明ADF BAE ≅得出BE 与OE 的长度便可求得B 点坐标;(2)先求出AB 的值,再根据题意可得分类讨论,分为当AB =AP 时有两种情况和当AB =BP 时有一种情况进行求解即可;(3)先设向上平移了m 表示B '和D 的坐标,再根据B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上得B '和D 点的横、纵坐标的积相等,列出关于m 的方程即可求解.(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,如下图则90AFD AEB ∠=∠=︒∵点A (0,-6),D (-3,-7)∴DF =3,AF =1∵四边形ABCD 是正方形∴AB =AD 90BAD ∠=︒∴90DAF BAE DAF ADF ∠+∠=∠+∠=︒∴ADF BAE =∠∠∵ADF BAE F EAD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADF BAE ≅∴DF =AE =3,AF =BE =1∴OE=OA-AE=6-3=3∴B(-1,-3).(2)存在3种情况由(1)得ADF BAE≅且在Rt AFD中AB=AD①当AB=AP时的等腰三角形,如图则AP∵A为(0,-6)∴P点的坐标为(0,);②当AB=AP时,则如下图则AP∵A 为(0,-6)∴P 点的坐标为(0,);③当AB =BP 时,则如下图则BP ,且过B 作BE ⊥AP 于点E∵AB BP BE AP =⊥,∴3PE AE ==∴P 点在原点上则P 为(0,0).综上所述点P 的坐标为(06-,或(06-,或()00,. (3)设向上平移了m 可得B '为(-1,-3+m ),D 为(-3,-7+m ) 反比例函数关系式为k y x=()0k ≠ ∴()()1337k m m =-⨯-+=-⨯-+解得m =9∴k =()13166m -⨯-+=-⨯=- ∴反比例函数解析式为:6y x=- 【点睛】此题是反比例函数与正方形结合的综合体,主要考查了反比例函数的性质、待定系数法、全等三角形的性质和判定和等腰三角形的性质和判定,解决本题的关键是证明全等三角形和分类讨论.。
九年级数学下册第二十六章反比例函数基本知识过关训练(带答案)

九年级数学下册第二十六章反比例函数基本知识过关训练单选题1、函数y=kx﹣k与y=mx在同一坐标系中的图象如图所示,下列结论正确的是()A.k<0B.m>0C.km>0D.km<0答案:D分析:根据一次函数与反比例函数图象的特点与系数的关系解答即可.解:由图象可知双曲线过二、四象限,m<0;一次函数过一、三,四象限,所以k>0.故选:D.小提示:本题主要考查了反比例函数的图象性质和一次函数的图象性质,解题的关键是熟练掌握一次函数和反比例函数的性质.2、如图,在同一平面直角坐标系中,直线y=t(t为常数)与反比例函数y1=4x ,y2=−1x的图象分别交于点A,B,连接OA,OB,则△OAB的面积为()A.5t B.5t2C.52D.5答案:C分析:由反比例函数y =k x 中的k 的几何意义直接可得特定的三角形的面积,从而可得答案.解:如图,记直线y =t 与y 轴交于点M,由反比例函数的系数k 的几何意义可得:S △OBM =12×|−1|=12,S △OAM =12×|4|=2,∴S △AOB =12+2=52, 故选:C.小提示:本题考查的是反比例函数的系数k 的几何意义,掌握反比例函数的系数k 与特定的图形的面积之间的关系是解题的关键.3、如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x 的图象经过点C 和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)答案:B分析:作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标.解:作CE ⊥OA 于E ,如图,∵B (5,4),四边形AOCB 为平行四边形,∴CE =4,∵反比例函数y =8x 的图象经过点C , ∴S △COE =12OE •CE =12×8,∵CE =4∴OE =2,∴C (2,4),OA =BC =5-2=3,∴A (3,0),∵点D 是AB 的中点∴点D 的坐标为(3+52,0+42),即D (4,2),故选:B .小提示:本题考查了平行四边形的性质,反比例函数系数k 的几何意义等,求得点C 和点A 的坐标是解题的关键.4、已知反比例函数y =k x (k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为( )A .(2,3)B .(-2,3)C .(3,0)D .(-3,0)答案:B分析:根据反比例函数性质求出k <0,再根据k =xy ,逐项判定即可.解:∵反比例函数y =k x (k ≠0),且在各自象限内,y 随x 的增大而增大,,∴k =xy <0,A 、∵2×3>0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;B 、∵-2×3<0,∴点(2,3)可能在这个函数图象上,故此选项符合题意;C 、∵3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;D 、∵-3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;故选:B .小提示:本题考查反比例函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.5、反比例函数y =−3x (x <0)的图象如图所示,则△ABC 的面积为( )A .12B .32C .3D .6答案:B分析:根据反比例函数系数k 的几何意义可得S △AOB =12|k |=12×3=32,再根据同底等高的三角形面积相等,可求出答案.解:连接OA ,由反比例函数系数k 的几何意义得S △AOB =12|k |=12×3=32,又∵AB ⊥x 轴,∴S △ABC =S △AOB =3,故选:B.小提示:本题考查反比例函数系数k的几何意义,理解反比例函数系数k的几何意义是正确解答的前提,掌握同底等高的三角形面积相等是解决问题的关键.6、下列函数中,y与x之间是反比例函数关系的是()A.xy=√2B.3x+2y=0C.y=kx D.y=2x+1答案:A分析:根据反比例函数定义判定即可.A、xy=√2属于反比例函数,故此选项正确;B、3x+2y=0是一次函数,故此选项错误;C、y=kx(k≠0),故该项不属于反比例函数,此选项错误;D、y=2x+1,是y与x+1成反比例,故此选项错误.故选A.小提示:此题考查反比例函数的定义,注意反比例函数的三种形式,y=kx,xy=k,y=kx−1,熟记这三种形式即可正确判断.7、如图,点A为函数y=kx(x>0)图象上的一点,过点A作x轴的平行线交y轴于点B,连接OA,如果△AOB的面积为2,那么k的值为()A.1B.2C.3D.4答案:D设点A坐标为(m,n),则有AB=m,OB=n,由题意可得:12mn=2,所以mn=4,又点A在双曲线y=k上,所以k=mn=4,故选D.8、对于反比例函数y=﹣5,下列说法错误的是()xA.图象经过点(1,﹣5)B.图象位于第二、第四象限C.当x<0时,y随x的增大而减小D.当x>0时,y随x的增大而增大答案:C分析:根据题目中的函数解析式和反比例函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.,解:反比例函数y=﹣5xA、当x=1时,y=﹣5=﹣5,图像经过点(1,-5),故选项A不符合题意;1B、∵k=﹣5<0,故该函数图象位于第二、四象限,故选项B不符合题意;C、当x<0时,y随x的增大而增大,故选项C符合题意;D、当x>0时,y随x的增大而增大,故选项D不符合题意;故选C.小提示:本题考查的是反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.9、列车从甲地驶往乙地,行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的反比例函数关系如图所示.若列车要在2.5h内到达,则速度至少需要提高到()km/h.A.180B.240C.280D.300答案:B分析:】依据行程问题中的关系:时间=路程÷速度,即可得到汽车行驶完全程所需的时间t (h )与行驶的平均速度v (km/h )之间的关系式,把t =2.5h 代入即可得到答案.解:∵从甲地驶往乙地的路程为200×3=600(km ),∴汽车行驶完全程所需的时间t (h )与行驶的平均速度v (km/h )之间的关系式为t =600v 当t =2.5h 时,即2.5=600v∴v =240,答:列车要在2.5h 内到达,则速度至少需要提高到240km/h .故选:B .【小提示】本题考查了反比例函数的应用,找出等量关系是解决此题的关键.10、下列函数中,图象经过点(1,﹣2)的反比例函数关系式是( )A .y =−1xB .y =1xC .y =2xD .y =−2x答案:D分析:设反比例函数解析式为y =k x (k ≠0),将点(1,2)代入进行求解即可得.设反比例函数解析式为y =k x (k ≠0),把(1,﹣2)代入得:k =﹣2,则反比例函数解析式为y =﹣2x , 故选D .小提示:本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上的点的坐标一定符合该函数的解析式是解题的关键.填空题11、在一个可以改变容积的密闭容器内,装有一定质量的某种气体,当改变容积V 时,气体的密度ρ也随之改变.在一定范围内,密度ρ是容积V 的反比例函数.当容积为5 m 3时,密度是1.4 kg/m 3,则ρ与V 的函数关系式为_________________.答案:ρ=7V分析:根据等量关系“密度=质量÷体积”,故先求得质量,再列出P与V的函数关系式.解:∵密度ρ是容积V的反比例函数,∴设ρ=kv,由于(5,1.4)在此函数解析式上,∴k=1.4×5=7,∴ρ=7v.故本题答案为:ρ=7v.小提示:本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.12、如图,直线l1:y=13x+72交反比例函数y=kx(x>0)的图象于点A,交y轴于点B,将直线l1向下平移52个单位后得到直线l2,l2交反比例函数y=kx (x>0)的图象于点C.若△ABC的面积为158,则k的值为____.答案:6分析:l1向下平移52个单位后得到直线l2,可得到l2的函数表达式,将点A和点C的坐标分别表示出来.过点A和点C分别作y轴得垂线,与y轴交于点P和点Q,则S△ABC=S梯形PQCA−S△APB−S△BQC,即可求出点A的坐标,最后将点A的坐标代入反比例函数的表达式,求出k即可.∵l1向下平移52个单位后得到直线l2∴直线l2:y=13x+1把x=0代入l1得;y=72∴B(0,72)令点A的横坐标为m,则A(m,1m+7)令点B 的横坐标为n ,则B (n ,13n +1)AP =m ,CQ =n ,PQ =13m +72-(13n +1)=13m −13n +52PB =13m +72−72=13m ,BQ =72−(13n +1)=52−13nS △ABC =S 梯形PQCA −S △APB −S △BQCS 梯形PQCA =(AP +CQ)×PQ ×12=(m +n )(13m −13n +52)×12=16m 2−16n 2+54m +54n S △APB =12AP ×BP =16m 2 S △BQC =12BQ ×CQ =54n −16n 2∵△ABC 的面积为158∴S △ABC =S 梯形PQCA −S △APB −S △BQC =54m =158解得m =32∴A (32,4) 把A (32,4)代入y =k x解得:k =6所以答案是:6小提示:本题主要考查了与一次函数和反比例函数相关的几何面积问题,用割补法将三角形的面积表示出来以及引入参数表示未知点的坐标是解题的关键.13、在平面直角坐标系xOy中,点A(2,m),B(m,n)在反比例函数y=k(k≠0)的图象上,则n的值为x____________.答案:2分析:把点A(2,m)代入函数表达式即可求得k,从而得到含m的函数表达,再将B(m,n)代入含m的函数表达中即可求得答案.得,解:把点A(2,m)代入y=kx,即k=2m,m=k2,∴y=2mx将B(m,n)代入y=k得,x,解得n=2,n=2mm所以答案是:2.小提示:本题考查了待定系数法求函数的解析式,代入点求得含参数的函数解析式是解题的关键.14、已知函数y=(m+2)x|m|−3是关于x的反比例函数,则实数m的值是________.答案:2分析:根据反比函数的定义得出|m|−3=−1且m+2≠0,计算即可得出结论.解:∵函数y=(m+2)x|m|−3是关于x的反比例函数,∴|m|−3=−1且m+2≠0,∴m=2或﹣2,且m≠−2,∴m=2.所以答案是:2小提示:本题考查了反比例函数的定义,判断一个函数是否是反比例函数,首先看看两个变量是否具有反比(k为常数,k≠0)或y=kx−1(k为常数,例关系,然后根据反比例函数的意义去判断,其形式为y=kxk≠0).15、如图,点B为反比例函数y=k(k<0,x<0)上的一点,点A为x轴负半轴上一点,连接AB,将线段AB绕点xA逆时针旋转90°,点B的对应点为点C,若点C恰好也在反比例y=k的图象上,已知B、C纵坐标分别为3,1,x则k=______________.答案:-6分析:如图过点C作CE⊥x轴于E,过点B作BF⊥x轴于F,求得∠BAF+∠ABF=90°,根据旋转的性质得到AB=AC,∠BAC=90°,根据全等三角形的性质得到AF=CE,BF=AE,设B(x,3)则C(x-4,1),根据点B、点C在反比例函数y=k的图象上,得到3x=x-4,于是得到结论.x解:如图,过点C作CE⊥x轴于E,过点B作BF⊥x轴于F,∴∠AEC=∠BFA=90°,∴∠BAF+∠ABF=90°,由旋转知,AB=AC,∠BAC=90°,∴∠CAE+∠BAF=90°,∴∠ABF=∠CAE,∴△ABF≌△CAE(AAS),∴AF=CE,BF=AE,∵B、C的纵坐标分别为3、1,∴CE=1,BF=3,∴AF=1,AE=3,设B(x,3)则C(x-4,1),∵点B、点C在反比例函数y=k的图象上,x∴3x=x-4,∴x=-2,∴B(-2,3),∴k=-6,所以答案是:-6.小提示:此题主要考查了反比例函数图象上点的坐标特征,全等三角形的判定和性质,构造出△ABF≌△CAE是解本题的关键.解答题16、将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y=kx-7的图像与x、y轴分别交于点A、B,那么△ABO为此一次函数的坐标三角形(也称为直线AB的坐标三角形).(1)如果点C在x轴上,将△ABC沿着直线AB翻折,使点C落在点D(0,18)上,求直线BC的坐标三角形的面积;(2)如果一次函数y=kx-7的坐标三角形的周长是21,求k值;(3)在(1)(2)条件下,如果点E的坐标是(0,8),直线AB上有一点P,使得△PDE周长最小,且点P正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.答案:(1)84(2)k=−43(3)y =−45x 分析:(1)先求出点B 坐标,继而可得OB ,由翻折性质可得:BC =BD =25,根据勾股定理可得OC 的长,根据三角形面积公式即可求解;(2)设OA =x ,AB =14−x ,在Rt △AOB 中,由勾股定理可得OA 的长,从而得到点A 坐标,将点A (−214,0)代入y =kx −7可得k 的值;(3)连接CE 交AB 于点P ,由轴对称的性质可得当点P 、C 、E 在一条直线上时,△DPE 的周长最小,将直线AB 和直线CE 的解析式联立可得点P ,继而即可求得反比例函数解析式.(1)∵将x =0代入y =kx −7,得:y =−7,∴点B (0,-7),∴OB =7,又∵点D (0,18),即OD =18,∴BD =OB +OD =7+18=25,由翻折的性质可得:BC =BD =25,在Rt △BOC 中,由勾股定理可得:OC =√BC 2−OB 2=√252−72=24,∴直线BC 的坐标三角形的面积12OC ·OB =12×24×7=84;(2)设OA =x ,AB =14−x ,∵在Rt △AOB 中,由勾股定理可得:AB 2=OA 2+OB 2,即(14−x )2=x 2+72,解得:x =214, ∴点A (−214,0),∵将点A (−214,0)代入y =kx −7,得:−214k −7=0,∴k =−43,(3)如图,连接CE 交AB 于点P ,∵点C 与点D 关于直线AB 对称,∴PC =PD ,∴PC +PE =PD +PE ,∴当点P 、C 、E 在一条直线上时,PC +PE 有最小值,又∵DE 的长度不变,∴当点P 、C 、E 在一条直线上时,△DPE 的周长最小,设直线CE 的解析式y =kx +b ,将点C (-24,0)、E (0,8)代入上式,得:{0=−24k +b 8=b, 解得:{k =13b =8, ∴直线CE 的解析式y =13x +8,联立{y =13x +8y =−43x −7, 解得:{x =−9y =5, ∴点P (-9,5),设反比例函数解析式为y =k x ,∴k =xy =−9×5=−45,∴反比例函数解析式为y=−45.x小提示:本题考查一次函数的综合运用,涉及到翻折的性质、勾股定理、待定系数法求解析式、方程组与交点坐标、轴对称路径最短等知识点,解题的关键是求得各直线解析式,明确当点P、C、E在一条直线上时,△DPE的周长最小.(k为常数,k≠1);17、已知反比例函数y=k−1x(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围.答案:(1)k=3(2)k<1分析:(1)根据题意,把A(1,2)代入到反比例函数y=k−1中,进而求解;x(2)根据这个函数图象的每一分支上,y随x的增大而增大,可知k−1<0,进而求出k的取值范围.(1)∵点A(1,2)在这个函数的图象上,∴k−1=2,1解得k=3.故答案是k=3.(2)图象的每一分支上,y随x的增大而增大,在函数y=k−1x∴k−1<0,∴k<1.故答案是:k<1.小提示:本题考查的是反比例函数图象的性质,会灵活运用反比例函数图象的性质是解本题的关键.18、如图,一次函数y=kx+2(k≠0)的图像与反比例函数y=m(m≠0,x>0)的图像交于点A(2,n),与yx轴交于点B,与x轴交于点C(−4,0).(1)求k与m的值;时,求a的值.(2)P(a,0)为x轴上的一动点,当△APB的面积为72,m的值为6答案:(1)k的值为12(2)a=3或a=−11分析:(1)把C(−4,0)代入y=kx+2,先求解k的值,再求解A的坐标,再代入反比例函数的解析式可得答案;(2)先求解B(0,2).由P(a,0)为x轴上的一动点,可得PC=|a+4|.由S△CAP=S△ABP+S△CBP,建立方程求解即可.(1)解:把C(−4,0)代入y=kx+2,.得k=12∴y=1x+2.2把A(2,n)代入y=1x+2,2得n=3.∴A(2,3).,把A(2,3)代入y=mx得m=6.∴k的值为1,m的值为6.2(2)当x=0时,y=2.∴B(0,2).∵P(a,0)为x轴上的一动点,∴PC=|a+4|.∴S△CBP=12PC⋅OB=12×|a+4|×2=|a+4|,S△CAP=12PC⋅y A=12×|a+4|×3=32|a+4|.∵S△CAP=S△ABP+S△CBP,∴32|a+4|=72+|a+4|.∴a=3或a=−11.小提示:本题考查的是利用待定系数法求解反比例函数与一次函数的解析式,坐标与图形面积,利用数形结合的思想,建立方程都是解本题的关键.。
人教版九年级数学下册《第二十六章 反比例函数》测试题-带参考答案

人教版九年级数学下册《第二十六章反比例函数》测试题-带参考答案一、选择题1.已知y与x成反比例函数,且x=2时,y=3,则该函数表达式是()A.y=6x B.y= C.y= 6x D.y= 6x−12.若点(−2,−6)在反比例函数y=kx上,则k的值是()A.3B.−3C.12D.−123.已知反比例函数y=k−2x的图象位于第一、第三象限,则k的取值范围是()A.k>2 B.k≥2 C.k≤2 D.k<25.在同一平面直角坐标系中,函数y=mx+n与y=mnx(mn≠0)的图象可能是()A.B.C.D.6.若正比例函数y=-4x与反比例函数y=kx的图像相交于A,B两点,其中点A的横坐标为2,则k的值为()A.-16 B.-8 C.16 D.87.如图,函数y=6x与函数y=kx(k>0)的图象相交于A、B两点,AC//y轴,BC∥x轴,则△ABC的面积等于()A.18 B.12 C.6 D.38.如图,在平面直角坐标系中,A是反比例函数y=1x图象上第三象限上的点,连结AO并延长交该函数第一象限的图象于点B,过点B作BC//x轴交函数y=kx(k>1)的图象于点C,连结AC.若ΔABC的面积为3,则k的值为()A.3 B.52C.4 D.7二、填空题9.当m= 时,y=(m−3)x m2−10是反比例函数.10.一批零件300个,一个工人每小时做15个,用关系式表示人数x与完成任务所需的时间y之间的函数关系式为.11.若点(2,1)是反比例函数y= m2+2m−1x的图象上一点,当y=6时,则x= .12.如图,已知点P(1,2)在反比例函数y=kx的图象上,观察图象可知,当x>1时,y的取值范围是.13.如图,点A在双曲线y=5x 上,点B在双曲线y=7x上,且AB//x轴,C、D在x轴上,若四边形ABCD为平行四边形,则它的面积为.三、解答题14.如图,直线AB交双曲线y=kx(x>0)于A、B两点,交x轴于点C(4a,0),AB=2BC,过点B作BM⊥x 轴于点M,连接OA,若OM=3MC,S△OAC=8求k的值.15.如图,在平面直角坐标系中,一次函数y =x +b 的图象与x 轴交于点B(1,0),与y 轴交于点C ,与反比例y =kx(k >0,x >0)的图象交于点A.点B 为AC 的中点.求一次函数y =x +b 和反比例y =kx的解析式.16.某市政府计划建设一项水利工程,工程需要运送的土石方总量为106立方米,某运输公司承担了运送土石方的任务.(1)设该公司平均每天运送土石方总量为y 立方米,完成运送任务所需时间为t 天. ①求y 关于t 的函数表达式; ②当0<t ≤80时,求y 的取值范围.(2)若1辆卡车每天可运送土石方102立方米,工期要求在80天内完成,则公司至少要安排多少辆相同型号的卡车运送?17.如图,正比例函数112y x =和反比例函数2(0)ky x x=>的图像交于点(),2A m .(1)求反比例函数的解析式;(2)将直线OA 向上平移3个单位后,与y 轴交于点B ,与2(0)ky x x =>的图像交于点C ,连接AB,AC ,求ABC 的面积.18.如图,在平面直角坐标系xOy 中,点A (a ,﹣)在直线y =﹣上,AB ∥y 轴,且点B 的纵坐标为1,双曲线y=经过点B.(1)求a的值及双曲线y=的解析式;(2)经过点B的直线与双曲线y=的另一个交点为点C,且△ABC的面积为.①求直线BC的解析式;②过点B作BD∥x轴交直线y=﹣于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.参考答案 1.C 2.C 3.A 4.D 5.D 6.A 7.B 8.C 9.﹣3 10.y =20x11.13 12.0<y <2 13.214.解:连接OB ,设B(a ,b).∵点B 在函数y =k x 上∴ab =k ,且OM =a ,BM =b ∵OM =3MC ∴MC =13a ∴S △BOM =12ab =12k ,S △BMC =12×13ab =16ab =16k ∴S △BOC =S △BOM +S △BMC =12k +16k =23k ∵AB =2BC 设点O 到AC 的距离为h 则S △BOCS△AOB=12BC·h 12AB·h =BC AB =12∴S △AOB =2S △BOC =43k ∴S △AOC =S △AOB +S △BOC =43k +23k =2k ∵S △AOC =8∴2k =8∴k =4.15.解:把点B(1,0)代入y =x +b 得:0=1+b 解得:b =−1∴一次函数的解析式y =x −1当x =0时,y =−1∴C(0,−1)如图,作AD ⊥x 轴,垂足为D在△OBC 和△DBA 中{∠OBC =∠ABD∠BOC =∠ADB AB =CB∴△OBC ≌△DBA(AAS)∴BD =OB =1,AD =OC =1∴A(2,1)∵点A(2,1)在反比例函数y =kx ∴k =2×1=2∴反比例的解析式y =2x . 16.(1)①由题意得y=106t∴y 关于t 的函数表达式为y=106t.②当0<t ≤80时,y 随t 的增大而减小 ∴当t=80时,y 有最小值,为10680=12 500当t 逐渐接近0时,y 值趋于无穷大 ∴y 的取值范围为y ≥12 500. (2)设安排x 辆相同型号的卡车运送 依题意得102x ×80≥106,解得x ≥125∴公司至少要安排125辆相同型号的卡车运送.17.(1)解:把(),2A m 代入112y x =中,122m =解得4m =∴()4,2A 把()4,2A 代入2(0)ky x x=>中,24k =解得8k ∴反比例函数解析式为28y x=; (2)解:将直线OA 向上平移3个单位后,其函数解析式为132y x =+当0x =时,3y =∴点B 的坐标为()0,3设直线AB 的函数解析式为AB y mx n =+将()4,2A,()0,3B 代入可得423m n n +=⎧⎨=⎩解得143m n ⎧=-⎪⎨⎪=⎩∴直线AB 的函数解析式为134AB y x =-+联立方程组1328y x y x⎧=+⎪⎪⎨⎪=⎪⎩,解得1181x y =-⎧⎨=-⎩ 2224x y =⎧⎨=⎩∴C 点坐标为()2,4过点C 作CM x ⊥轴,交AB 于点N在134BC y x =-+中,当2x =时52y =∴53422CN =-=∴134322ABC S =⨯⨯=△.18.解:(1)∵点A (a ,)在直线y =﹣上∴﹣a ﹣=,解得a =2则A (2,﹣)∵AB∥y 轴,且点B 的纵坐标为1∴点B 的坐标为(2,1).∵双曲线y =经过点B (2,1)∴m =2×1=2∴反比例函数的解析式为y =; (2)①设C (t ,)∵A (2,﹣),B (2,1)∴×(2﹣t )×(1+)=解得t =﹣1∴点C 的坐标为(﹣1,﹣2)设直线BC 的解析式为y =kx+b 把B (2,1),C (﹣1,﹣2)代入得解得∴直线BC 的解析式为y =x ﹣1; ②当y =1时,﹣=1,解得x =﹣1,则D (﹣1,1)∵直线BCy =x ﹣1为直线y =x 向下平移1个单位得到∴直线BC 与x 轴的夹角为45°而BD ∥x 轴∴∠DBC =45°当△PBD 为等腰直角三角形时,以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形若∠BPD =90°,则点P 在BD 的垂直平分线上,P 点的横坐标为,当x =时,y =x ﹣1=﹣,此时P (,﹣)若∠BDP =90°,则PD ∥y 轴,P 点的横坐标为﹣1,当x =﹣1时,y =x ﹣1=﹣2,此时P (﹣1,﹣2)综上所述,满足条件的P 点坐标为(﹣1,﹣2)或(,).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
k y -=
1)
0(≠+=k b kx y 第二十六章反比例函数习题
1.下列函数中,是反比例函数的是( )
A.
32x y =
B.x y 32= C x
y -=32 D.x
y 32=
2.下列数表中分别给出了变量y 与x 之间的对应关系,其中是反比例函数关系的是( )
A B C D 3.在反比例函数的图像的每一条曲线上,y 都随x 的增大而增大,则k 的取值可
以是( )
A.-1
B.0
C.1
D.2 4.一次函数与反比例函
数的图像在同一直角坐标系中的大致图像如图所示,则k ,b
A.k >0,b>0
B.k<0,b>0
C.k<0,b<0
D.k>0,b<0
5.一个直角三角形的两直角边长为X,Y ,其面积为2,则其y ,x 之间的关系用图像表示大致为( )
)0(≠=
k x
k
y
6.如图,菱形OABC 的顶点C 的坐标为(3,4)。
顶点A 在x
的图像经过顶点B ,则k 的值为( ) A.12 B.20 C.24 D.32
7.在-1,3,-2这三个数中,任选两个数的积作为k 的值,使反比例函数
的图像在第一、三象限的概率是_______
8.学校食堂现存1000千克大米,每天用去x 千克,可以维持y 天 (1)写出y 与x 的函数关系_______ (2)若每天用去100千克可维持________天
(3)若要至少维持20天,每天之多可用去________千克。
9.菱形面积为10,两条对角线的长分别为x,y ,则y 与x 的函数关系式为__________________。
10.反比例函数中,比例系数k=_________,当x=2时,y=_________。
11.已知反比例函数的图像经过点A (2,3)
(1)求这个函数的解析式
(2)判断点B(-1,6),C(3,2)是否在这个函数的图像上,并说明理由。
(3)当-3<X<-1时,求y 的取值范围
)0(≠=
k x
k
y x
k y =
x
y 32-
=)0(≠=
k k x k
y 为常数,
12.已知反比例函数的图像过点(1,-2)
(1)求这个函数解析式,并画出图像
(2)若点A(-5,m)在图像上,则点A关于两坐标轴和原点的对称点是否还在图像上?。