2011届高三数学填空题专练(1)
2011南通市高三三模数学试题及答案

江苏南通市2011届高三第三次调研测试数学试题一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.若集合A={x|x>2},B={x|x≤3},则A∩B= .答案:(2,3]2.函数yx+cos2x的最小正周期是.答案:π3.已知(a+i)2=2i,其中i是虚数单位,那么实数a= .答案:14.已知向量a与b的夹角为60º,且|a|=1,|b|=2,那么2()+a b的值为.答案:75.底面边长为2m,高为1m的正三棱锥的全面积为m2.答案:6.若双曲线221yxk-=的焦点到渐近线的距离为k的值是.答案:87.若实数x,y满足10,0,0,x yx yx-+⎧⎪+⎨⎪⎩≥≥≤则z=x+2y的最大值是.答案:28.对于定义在R上的函数f(x),给出三个命题:①若(2)(2)f f-=,则f(x)为偶函数;②若(2)(2)f f-≠,则f(x)不是偶函数;③若(2)(2)f f-=,则f(x)一定不是奇函数.其中正确命题的序号为.答案:②9答案:1110.已知三数x +log 272,x +log 92,x +log 32成等比数列,则公比为 .答案:3 11.已知5×5数字方阵:11121314152122232425313233343541424344455152535455a a a a a a a a a a a a a a a a a a a a a a a a a ⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭中,11ij j i a j i ⎧=⎨-⎩(是的整数倍),(不是的整数倍). 则543422j i j i a a ==+∑∑= .答案:-112. 已知函数f (x )=2cos x x -,x ∈ππ[]22-,,则满足f (x 0)>f (3π)的x 0的取值范围为 .答案:[,)23ππ--∪(,]32ππ13.甲地与乙地相距250公里.某天小袁从上午7∶50由甲地出发开车前往乙地办事.在上午9∶00,10∶00,11∶00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有1小时到达乙地”.假设导航仪提示语都是正确的,那么在上午11∶00时,小袁距乙地还有 公里. 答案:60 14.定义在[1,)+∞上的函数f (x )满足:①f (2x )=cf (x )(c 为正常数);②当2≤x ≤4时,f (x )=1-|x -3|.若函数的所有极大值点均落在同一条直线上,则c = .答案:1或2二、解答题:本大题共6小题,共计90分.请把答案写在答题卡相应的位置上.解答时应写出文字说明,证明过程或演算步骤. 15.(本题满分14分)某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率(1)写出表中①②位置的数据;(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第1 (第16题图)四组的概率.解:(1) ①②位置的数据分别为12、0.3; ………………………………………………4分(2) 第三、四、五组参加考核人数分别为3、2、1; …………………………………8分 (3) 设上述6人为abcdef (其中第四组的两人分别为d ,e ),则从6人中任取2人的所有情形为:{ab ,ac ,ad ,ae ,af ,bc ,bd ,be ,bf ,cd ,ce ,cf ,de ,df ,ef }共有15种.…………………………………………………………………………10分 记“2人中至少有一名是第四组”为事件A ,则事件A 所含的基本事件的种数有9种. …………………………………………………………………………………12分所以93()155P A ==,故2人中至少有一名是第四组的概率为35. ……………14分16.(本题满分14分)如图,在三棱柱ABC -A 1B 1C 1中. (1)若BB 1=BC ,B 1C ⊥A 1B ,证明:平面AB 1C ⊥平面A 1BC 1;(2)设D 是BC 的中点,E 是A 1C 1上的一点,且A 1B ∥平面B 1DE ,求11A EEC 的值.解:(1)因为BB 1=BC ,所以侧面BCC 1B 1是菱形,所以B 1C ⊥BC 1.……3分 又因为B 1C ⊥A 1B ,且A 1B ∩BC 1=B ,所以BC 1⊥平面A 1BC 1, …………………5分又B 1C ⊂平面AB 1C ,所以平面AB 1C ⊥平面A 1BC 1 .……………………………7分 (2)设B 1D 交BC 1于点F ,连结EF ,则平面A 1BC 1∩平面B 1DE =EF .因为A 1B //平面B 1DE , A 1B ⊂平面A 1BC 1,所以A 1B //EF . …………………11分所以11A E EC =1BF FC .又因为1BF FC =1112BD B C =,所以11A E EC =12. ………………………………………14分 17.(本题满分14分)在△ABC 中,a 2+c 2=2b 2,其中a ,b ,c 分别为角A ,B ,C 所对的边长.(1)求证:B ≤3π; (2)若4B π=,且A 为钝角,求A . 解:(1)由余弦定理,得222cos 24a c b a c B ac ac+-+==22. ……………………………………3分因22a c ac +2≥,1cos 2B ∴≥.………………………………………………………6分 由0<B <π,得 3B π≤,命题得证. ……………………………………………7分 (2)由正弦定理,得222sin +sin =2sin A C B . …………………………………………10分因4B π=,故22sin B =1,于是22sin =cos A C .……………………………………12分因为A 为钝角,所以3sin =cos =cos()=sin()44A C A A ππ--.所以()4A A π+-=π(=4A A π-,不合,舍) .解得5=8A π. …………………14分18.(本题满分16分)在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(a >b >0),其焦点在圆x 2+y 2=1上.(1)求椭圆的方程;(2)设A ,B ,M 是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使 cos sin OM OA OB θθ=+ .(i)求证:直线OA 与OB 的斜率之积为定值;(ii)求OA 2+OB 2. 解:(1)依题意,得 c =1.于是,ab =1. ……………………………………2分所以所求椭圆的方程为2212x y +=. ………………………………………………4分(2) (i)设A (x 1,y 1),B (x 2,y 2),则221112x y +=①,222212x y +=②. 又设M (x ,y ),因cos sin OM OA OB θθ=+ ,故1212cos sin ,cos sin .x x x y y y θθθθ=+⎧⎨=+⎩ …………7分因M 在椭圆上,故221212(cos sin )(cos sin )12x x y y θθθθ+++=. 整理得22222212121212()cos ()sin 2()cos sin 1222x x x x y y y y θθθθ+++++=. 将①②代入上式,并注意cos sin 0θθ≠,得 121202x xy y +=.所以,121212OA OB y y k k x x ==-为定值. ………………………………………………10分(ii)2222222222121212121212()()(1)(1)1()222x x x x y y y y y y y y =-=⋅=--=-++,故22121y y +=. 又22221212()()222x x y y +++=,故22122x x +=.所以,OA 2+OB 2=22221122x y x y +++=3. …………………………………………16分19.(本题满分16分)已知数列{a n }满足:a 1=a 2=a 3=2,a n +1=a 1a 2…a n -1(n ≥3),记22221212n n n b a a a a a a -=+++- (n ≥3).(1)求证数列{b n }为等差数列,并求其通项公式;(2)设221111n n n c b b +=++,数列的前n 项和为S n ,求证:n <S n <n +1.解:(1)方法一 当n ≥3时,因22221212n n n b a a a a a a -=+++- ①, 故22221121121n n n n n b a a a a a a a a -++=++++- ②. ……………………………………2分 ②-①,得 b n -1-b n -2=21121(1)n n n a a a a a ++-- =2111(1)(1)n n n a a a +++-+-=1,为常数, 所以,数列{b n }为等差数列. …………………………………………………………5分因 b 1=222123123a a a a a a ++-=4,故 b n =n +3. ……………………………………8分 方法二 当n ≥3时,a 1a 2…a n =1+a n +1,a 1a 2…a n a n +1=1+a n +2,将上两式相除并变形,得 21211n n n a a a +++=-+.……………………………………2分于是,当n ∈N *时,222122122n n n b a a a a a a ++=+++-2221235432122(1)(1)n n n a a a a a a a a a a +++=+++-+++-+- 222123343(1)(1)n n a a a a a n a ++=+++-+--+410n a =+-.又a 4=a 1a 2a 3-1=7,故b n =n +3(n ∈N *).所以数列{b n }为等差数列,且b n =n +3. ………………………………………………8分(2) 方法一 因 n c 22111(3)(4)n n =++++222((3)(4)1)(3)(4)n n n n +++=++,…………………12分故 (3)(4)1(3)(4)n n n n +++=++11(3)(4)n n =+++11134n n =+-++. 所以 111111(1)(1)(1)455634n S n n =+-++-+++-++ 1144n n =+-+, ………15分 即 n <S n <n +1. ………………………………………………………………………16分方法二 因221111(3)(4)n c n n =++>++,n S n >.……………………10分 22111111(3)(4)(2)(3)(3)(4)n c n n n n n n =++<++++++++=11124n n +-++<112n ++<21(1)2n ++,112n ++,于是1(1)12n S n n n <+<++.……………………………………16分20.(本题满分16分) 设函数f (x )=ax 3-(a +b )x 2+bx +c ,其中a >0,b ,c ∈R .(1)若1()3f '=0,求函数f (x )的单调增区间;(2)求证:当0≤x ≤1时,|()f x '|≤max{(0),(1)}f f ''.(注:max{a ,b }表示a ,b 中的最大值)解:(1)由1()3f '=0,得a =b . …………………………………………………………1分故f (x )= ax 3-2ax 2+ax +c .由()f x '=a (3x 2-4x +1)=0,得x 1=13,x 2=1.…………………………………………2分列表:由表可得,函数f (x )的单调增区间是(-∞,3)及(1,+∞) .…………………………4分(2)()f x '=3ax 2-2(a +b )x +b =3222()33a b a b ab a x a a++---. ①当1,033a b a b a a++≥或≤时,则()f x '在[0,1]上是单调函数,所以(1)f '≤()f x '≤(0)f ',或(0)f '≤()f x '≤(1)f ',且(0)f '+(1)f '=a >0.所以|()f x '|≤max{(0),(1)}f f ''.………………………………………………………8分(第21-A 题图) A B POED C · ②当013a ba+<<,即-a <b <2a ,则223a b ab a +--≤()f x '≤max{(0),(1)}f f ''. (i) 当-a <b ≤2a 时,则0<a +b ≤32a. 所以 (1)f '223a b ab a +--=22223a b ab a --=223()3a a b a-+≥214a >0.所以 |()f x '|≤max{(0),(1)}f f ''. ……………………………………………………12分(ii) 当2a <b <2a 时,则(2)2a b b a --<0,即a 2+b 2-52ab <0. 所以223a b ab b a +--=2243ab a b a-->22523ab a b a -->0,即(0)f '>223a b ab a +-.所以 |()f x '|≤max{(0),(1)}f f ''.综上所述:当0≤x ≤1时,|()f x '|≤max{(0),(1)}f f ''.……………………………16分数学Ⅱ(附加题)21.【选做题】本题包括A ,B ,C ,D 共4小题,请从这4题中选做2小题,每小题10分,共20分.请在答题卡上准确填涂题目标记,解答时应写出文字说明、证明过程或演算步骤.A .选修4-1:几何证明选讲 如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O 上一点,AE =AC ,求证:∠PDE =∠POC .证明:因AE =AC ,AB 为直径, 故∠OAC =∠OAE .…3分所以∠POC =∠OAC+∠OCA=∠OAC+∠OAC=∠EAC . 又∠EAC =∠PDE , 所以,∠PDE =∠POC .…10分B .选修4-2:矩阵与变换已知圆C :221x y +=在矩阵0=(0,0)0a a b b ⎡⎤>>⎢⎥⎣⎦A 对应的变换作用下变为椭圆22194x y +=,求a ,b 的值.解:设(,)P x y 为圆C 上的任意一点,在矩阵A 对应的变换下变为另一个点(,)P x y ''',则 00x a x y b y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,即,.x a x y b y '=⎧⎨'=⎩ …………………………………………………4分 又因为点(,)P x y '''在椭圆22194x y +=上,所以 2222194a xb y +=.由已知条件可知,221x y += ,所以 a 2=9,b 2=4.因为 a >0 ,b >0,所以 a =3,b =2. …………………………………………………10分(第21-C 题图)C .选修4-4:坐标系与参数方程在极坐标系中,求经过三点O (0,0),A (2,2π),B(4π)的圆的极坐标方程.解:设(,)P ρθ是所求圆上的任意一点,…3分则cos()4OP OB θπ=-,故所求的圆的极坐标方程为)4ρθπ=-. …………………………………10分注:cos()4ρθπ=-亦正确.D .选修4-5:不等式选讲已知x ,y ,z 均为正数.求证:111yx z yz zx xy x y z≥++++.证明:因为x ,y ,z 都是为正数,所以12()x y x y yz zx z y x z+=+≥. …………………3分同理可得22y z z x zx xy x xy yz y++≥,≥. 将上述三个不等式两边分别相加,并除以2,得111x y z yz zx xy x y z+++≥.………10分 22.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.已知函数1()ln(1),01xf x ax x x-=+++≥,其中a >0. (1)若()f x 在x =1处取得极值,求a 的值;(2)若()f x 的最小值为1,求a 的取值范围.解:(1)22222()1(1)(1)(1)a ax a f x ax x ax x +-'=-=++++ . 因()f x 在1x =处取得极值,故(1)0f '=,解得a =1 (经检验).……………………4分 (2)222()(1)(1)ax a f x ax x +-'=++,因0,0x a >≥ ,故ax +1>0,1+x >0.当a ≥2时,在区间(0,)+∞上()0f x '≥,()f x 递增,()f x 的最小值为f (0)=1.当0<a <2时,由()0f x '>,解得x >()0f x '<,解得x < ∴f (x )的单调减区间为,单调增区间为)+∞. 于是,f (x )在x =(0)1f f <=,不合. 综上可知,若f (x )得最小值为1,则a 的取值范围是[2,).+∞ ……………………10分注:不检验不扣分.(第21-C 题答图)(第23题图) 23.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.过抛物线y 2=4x 上一点A (1,2)作抛物线的切线,分别交x 轴于点B ,交y 轴于点D ,点C (异于点A )在抛物线上,点E 在线段AC 上,满足AE =λ1EC ;点F 在线段BC 上,满足BF =λ2FC,且λ1+λ2=1,线段CD 与EF 交于点P . (1)设DP PC λ= ,求λ; (2)当点C 在抛物线上移动时,求点P 的轨迹方程.解:(1)过点A 的切线方程为y =x +1.……1分 切线交x 轴于点B (-1,0),交y 轴交于点D (0,1),则D 是AB 的中点.所以1()2CD CA CB =+. (1) ………………………3分由DP PC λ= ⇒DP PC + =(1+λ)PC ⇒(1)CD CP λ=+. (2)同理由 AE =λ1EC , 得CA =(1+λ1)CE, (3)BF =λ2FC , 得CB =(1+λ2)CF. (4)将(2)、(3)、(4)式代入(1)得 121[(1)(1)]2(1)CP CE CF λλλ=++++ .因为E 、P 、F 三点共线,所以1+λ12(1+λ)+ 1+λ22(1+λ)=1, 再由λ1+λ2=1,解之得λ=12.……………………………………………………………6分(2)由(1)得CP =2PD ,D 是AB 的中点,所以点P 为△ABC 的重心. 所以,x =1-1+x 03,y =2+0+y 03.解得x 0=3x ,y 0=3y -2,代入y 02=4x 0得,(3y -2)2=12x .由于x 0≠1,故x ≠3.所求轨迹方程为(3y -2)2=12x (x ≠3). ………………………………………………10分。
广东省2011届高三数学一轮复习夯实基础练习题(1)

高三数学夯实基础练习题(选择题、填空题专项训练 1)(时间:40分钟,满分:70分)班级 学号 姓名 成绩 .注意事项:1.选择题选出答案后,必须用2B 铅笔把答题区域上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试题后.不按要求填涂的答案无效.2.填空题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题区域各题目指定位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.3.答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效. 答题区域:一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.设集合}23|{<<-∈=m m M Z ,}31|{≤≤-∈=m n N Z ,则N M 等于A .}1,0{B .}1,0,1{-C .}2,1,0{D .}2,1,0,1{-2.已知135cos =α,且α是第四象限的角,则)2tan(α-π等于 A .512- B .512 C .512± D .125± 3.若一系列函数的解析式和值域相同,但定义域不相同,则称这些函数为“同族函数”,例如函数2x y =,]2,1[∈x 与函数2x y =,]1,2[--∈x 即为“同族函数”.下面四个函数中能够被用来构造“同族函数”的是A .x y sin =B .x y =C .x y 2=D .x y 2log =4.如图,一个空间几何体的正视图、侧视图、俯视图均为全等的等腰直角三角形,如果直角三角形的斜边长为2,那么这个几何体的体积为 A .1 B .21 C .31 D .61 5.设→a 、→b 、→c 是平面上的单位向量,且0=⋅→→b a ,则)()(→→→→-⋅-c b c a 的最小值为 A .2- B .22- C .1- D .21-6.设函数ax x x f m +=)(的导数为12)(+='x x f ,则数列⎭⎬⎫⎩⎨⎧)(1n f (*N ∈n )的前n 项和是正视图俯视图侧视图第4题图A .1+n n B .12++n n C .1-n n D .nn 1+ 7.若连续投掷两枚骰子分别得到的点数m 、n 作为点P 的坐标),(n m ,则点P 落在圆1622=+y x 内的概率为A .21B .41C .61D .92 8.已知点1F 、2F 分别是椭圆12222=+by a x 的左、右焦点,过1F 且垂直于x 轴的直线与椭 圆交于A 、B 两点,若△2ABF 为正三角形,则该椭圆的离心率e 是A .21B .22C .31D .33 二、填空题:本大题共7小题,每小题5分,满分30分.(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须做答9.61⎪⎭⎫ ⎝⎛-x x 的展开式中的常数项是 (用数字作答). 10.已知x x x 5i 26i 2+=++(其中i 为虚数单位).若R ∈x ,则=x .11.过原点作曲线x y e =的切线,切点坐标为 .12.将棱长相等的正方体按图所示方式固定摆放,其中第1堆只有一层,就一个正方体;第2,3,…,n堆分别有二层,三层,…,n 层,每堆最顶层都只有一个正方体,以)(n f 表示第n 堆的正方体总数,则=)3(f ;=)(n f (答案用n 表示).13.等比数列}{n a 的公比为q ,前n 项和为n S ,若1+n S ,n S ,2+n S 成等差数列,则q 的值为 .(二)选做题:第14、15题为选做题,考生只能选做一题.14.(坐标系与参数方程选做题)极坐标系中,曲线1C :3cos =θρ与2C :θ=ρcos 4(其中0≥ρ,20π<θ≤)交点的极坐标为 . 15.(几何证明选讲选做题)如图,从圆O 外一点P 作圆O的割线PAB 、PCD ,AB 是圆O 的直径,若4=PA , 5=PC ,3=CD ,则=∠CBD.第12题图∙O D C B A P 第15题图参考答案:部分试题略解:5.由条件可设)0,1(=a ,)1,0(=b ,)sin ,(cos αα=c ,则)4sin(21)()(π+α-==-⋅- c b c a . 6.12)(1+≡+='-x a mx x f m ,所以2=m ,1=a ,x x x f +=2)(,111)(1+-=n n n f . 7.总共有36个基本事件.当1=x 时,符合题意的y 有3种;当2=x 时,符合题意的y 有3种;当3=x 时,符合题意的y 有2种.所以9236233=++=p . 8.由已知得⎪⎪⎭⎫ ⎝⎛-=c c a e c 232,03232=-+e e ,解得3-=e (舍去)或33=e . 11.设切点坐标为)e ,(00x x ,由00e |x x x y ='=,得切线方程为)(e e000x x y x x -=-, 因为切线过原点,所以)0(e e 0000x x x -=-,解得10=x ,所以切点坐标为)e ,1(.12.显然,1)1(=f ,)(21)1()321()1()(2k k k f k k f k f ++-=+++++-= , 从而[][][])1()()2()3()1()2()1()(--++-+-+=n f n f f f f f f n f()()()n n +++++++=22221332122211 ()()n n +++++++++= 32121321212222 )1(2121)12)(1(6121+⨯+++⨯=n n n n n )2)(1(61++=n n n . 注:本题亦可以通过归纳猜想,得出结论. 14.由⎩⎨⎧θ=ρ=θρcos 43cos 得3cos 42=θ,212cos =θ,而π<θ≤20,所以6π=θ. 15.由PD PC PB PA ⋅=⋅得3=R ,所以△OCD 为正三角形,︒=∠=∠3021COD CBD .。
2011届高三数学月考、联考、模拟试题汇编 直线和圆

直线和圆题组一一、选择题1.(北京龙门育才学校2011届高三上学期第三次月考)直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A .相切 B .直线过圆心 C .直线不过圆心但与圆相交 D .相离 答案 B.2.(北京五中2011届高三上学期期中考试试题理)若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是( ))(A 50<<k )(B 05<<-k )(C 130<<k )(D 50<<k答案 A.3、(福建省三明一中2011届高三上学期第三次月考理)两圆042222=-+++a ax y x 和0414222=+--+b by y x 恰有三条公切线,若R b R a ∈∈,,且0≠ab ,则2211b a +的最小值为 ( )A .91B .94C .1D .3答案 C.3.(福建省厦门双十中学2011届高三12月月考题理)已知点P 是曲线C:321y x x =++上的一点,过点P 与此曲线相切的直线l 平行于直线23y x =-,则切线l 的方程是( ) A .12+=x y B .y=121+-xC .2y x =D .21y x =+或2y x =答案 A.4. (福建省厦门双十中学2011届高三12月月考题理)设斜率为1的直线l 与椭圆124:22=+y x C 相交于不同的两点A 、B ,则使||AB 为整数的直线l 共有( ) A .4条 B .5条 C .6条 D .7条 答案 C.5.(福建省厦门外国语学校2011届高三11月月考理) 已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p = ( ▲ )A 、1B 、2C 、3D 、4答案 B.6.(甘肃省天水一中2011届高三上学期第三次月考试题理)过点M(1,5)-作圆22(1)(2)4x y -+-=的切线,则切线方程为( ) A .1x =-B .512550x y +-=C .1512550x x y =-+-=或D .15550x x y =-+-=或12答案 C.7.(甘肃省天水一中2011届高三上学期第三次月考试题理)已知圆222410x y x y ++-+=关于直线220ax by -+=41(0,0),a b a b>>+对称则的最小值是( )A .4B .6C .8D .9答案 D.8.(广东省惠州三中2011届高三上学期第三次考试理)已知直线x y a +=与圆224x y +=交于A 、B 两点,O 是坐标原点,向量OA 、OB满足||||OA OB OA OB +=-,则实数a 的值是( )(A )2 (B )2- (C 或 (D )2或2- 答案 D.9. (广东省清远市清城区2011届高三第一次模拟考试理)曲线321y x x x =-=-在处的切线方程为( A .20x y -+= B .20x y +-= C . 20x y ++= D .20x y --=答案 C.10.(贵州省遵义四中2011届高三第四次月考理)若直线02=+-c y x 按向量)1,1(-=a 平移后与圆522=+y x 相切,则c 的值为( )A .8或-2B .6或-4C .4或-6D .2或-8邪恶少女漫画/wuyiniao/ 奀莒哂答案 A.11.(黑龙江大庆实验中学2011届高三上学期期中考试理) 若直线y x =是曲线322y x x ax =-+的切线,则a =( ).1A .2B .1C - .1D 或2 答案 D.邪恶少女漫画/wuyiniao/ 奀莒哂12.(黑龙江哈九中2011届高三12月月考理)“3=a ”是“直线012=--y ax ”与“直线046=+-c y x 平行”的 ( )A .充分不必要条件 C .必要不充分条件D .充要条件D .既不充分也不必要条件答案 B.13.(湖北省南漳县一中2010年高三第四次月考文)已知α∥β,a ⊂α,B ∈β,则在β内过点B 的所有直线中A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一一条与a 平行的直线 答案 D.14.(重庆市南开中学2011届高三12月月考文)已知圆C 与直线040x y x y -=--=及都相切,圆心在直线0x y +=上,则圆C 的方程为( )A .22(1)(1)2x y ++-=B .22(1)(1)2x y -++=C .22(1)(1)2x y -+-=D .22(1)(1)2x y +++=答案 B. 二、填空题14.(湖北省南漳县一中2010年高三第四次月考文)已知两点(4,9)(2,3)P Q --,,则直线PQ 与y 轴的交点分有向线段PQ的比为 .答案 2.15. (福建省厦门外国语学校2011届高三11月月考理)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A 、B 两点,)1,3(-=+与共线,求椭圆的离心率▲▲.答案 36=e . 16.(甘肃省天水一中2011届高三上学期第三次月考试题理)设直线30ax y -+=与圆22(1)(2)4x y -+-=相交于A 、B 两点,且弦AB 的长为a = 答案 0.17. (广东省中山市桂山中学2011届高三第二次模拟考试文) 在极坐标中,圆4cos ρθ=的圆心C 到直线sin()4πρθ+=的距离为 .18.(河南省郑州市四十七中2011届高三第三次月考文)如下图,直线PC 与圆O 相切于点C ,割线PAB 经过圆心O ,弦CD ⊥AB 于点E , 4PC =,8PB =,则CE = .答案12519.(黑龙江省哈尔滨市第162中学2011届高三第三次模拟理)已知函数()x f 的图象关于直线2=x 和4=x 都对称,且当10≤≤x 时,()x x f =.求()5.19f =_____________。
2011届高三数学一轮复习测试:集合与函数第一卷

2011届高三数学一轮复习测试:集合与函数命题人:刘军超本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1、设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是 ( )A .1B .3C .4D .82、函数f (x )=lg 1-x 2的定义域为( )A .[0,1]B .(-1,1)C .[-1,1]D .(-∞,-1)∪(1,+∞)3、在下列四组函数中,f (x )与g (x )表示同一函数的是( )A .x xy y ==,1 B .1,112-=+⨯-=x y x x yC .55,x y x y ==D .2)(|,|x y x y ==4、函数x x xy +=的图象是( )5、设的大小关系是、、,则,,c b a c b a 243.03.03log 4log -===( )A .a <b <cB .a <c <bC .c <b <aD .b <a <c6、如果函数f (x )=x 2+bx +c 对于任意实数t 都有f (2+t )=f (2-t ),那么( )。
(A )f (4)<f (2)<f (1) (B )f (1)<f (2)<f (4) (C )f (2)<f (4)<f (1) (D )f (2)<f (1)<f (4)7、函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f (f (5))= ( )A .-5B .-15 C.15 D .58、已知f (x )=⎩⎪⎨⎪⎧ a x , x <0,(a -3)x +4a , x ≥0.对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值是 () A .(0,3) B .(1,3) C .(0,14] D .(-∞,3)9、已知函数f (x )=(x -1)(x -2)(x -3)……(x -100),则f ′(1)=( )A .-99!B .-100!C .-98!D .010、在同一坐标系中某三次函数及其导函数的图象,其中一定不正确.....的序号是( )A .①②B .③④C .①③D .②④11、为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4.a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A .7,6,1,4B .6,4,1,7C .4,6,1,7D .1,6,4,712、已知函数f (x )=x 3-ax 2+1在区间(0,2)内单调递减,则实数a 的取值范围是( )A .a ≥3B .a =3C .a ≤3D .0<a <3第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13、过点(0,-4)与曲线y =x 3+x -2相切的直线方程是 .14、已知函数f (x )是定义在区间(-1,1)上的奇函数,且对于x ∈(-1,1)恒有f ’(x )<0成立, 若f (-2a 2+2)+f (a 2+2a +1)<0,则实数a 的取值范围是 .15、函数)2(log 221x x y -=的单调递减区间是________________________. 16、关于函数),0(||1lg )(2R x x x x x f ∈≠+=有下列命题:①函数)(x f y =的图象关于y 轴对称;②在区间)0,(-∞上,函数)(x f y =是减函数; ③函数)(x f 的最小值为2lg ;④在区间),1(∞上,函数)(x f 是增函数.其中正确命题序号为_______________.。
重庆市南开中学2011届高三期中考试数学试题(理)及答案

重庆市南开中学2011届高三期中考试数学试题(理)第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10小题,每小题5分,共50分)备题答案必须答在答题卡上。
1.点P 是P 1P 2的中点,则点P 2分有向线段1PP的比为( )A .-2B .12-C .12D .2 2.设向量(1,1),(1,3)a x b x =-=+,则"2""//"x a b = 是的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.下列各选项中,与sin 2011︒最接近的数是 ( )A .12BC .-12D .4.下列命题中,真命题是( )A .,ac bc a b >>若那么B .若,a b a b c c>>则C .若22,a b ac bc >>则D .若,a b a c b c >->-则5.已知非零向量|2|,0,|2|a b a b a b a b -⋅=+满足则= ( )A .14B .2C .12D .1 6.由下面的条件能得出ABC ∆为锐角三角形的是( )A .1sin cos 5A BaA +=B .0AB BC ⋅<C .tan tan tan 0A B C ++>D.3,30b c B ===︒7.如果数列{}n a 满足11121112,1,(2)n n n n n n n n a a a aa a n a a a a -+-++===≥-且,则100a =( )A .10012 B .9912 C .1100D .1508.已知函数(),()xxf x ag x b ==的图象与直线y=3的交点分别为12,x x ,且12x x >,且a 与b 的大小关系不可能...成立的是( )A .1b a >>B .10a b >>>C .10b a >>>D .10b a >>>9.函数()sin ,'()()f x x f x f x =是的导函数,若将()f x 的图象按向量(,)a m k = 平移可得到'(),f x则当||a最小时,2111lim(1)n x m m m→∞++++ = ( )A .2ππ-B .2ππ+C .1ππ- D .1ππ+10.设ABC ∆的内角A 、B 、C 所对的边a 、b 、c 成等比数列,则sin cot cos sin cot cos A C AB C B+⋅+的取值范围为( )A.1(0,)2B.11(,)22C.1(,)2+∞ D .(0,)+∞ 第Ⅱ卷(非选择题,共100分)二、填空题:(本大题5个小题,每小题5分,共25分) 11.设11()42,(0)x x f x f +-=-则= 。
2011三角函数的概念、同角三角函数的关系和诱导公式(专练1)

2011三角函数的概念、同角三角函数的关系和诱导公式(专练1)一、选择题1、(安徽省百校论坛2011届高三第三次联合考试理)已知3cos()||,tan 22ππϕϕϕ-=<且则等于( )A .BCD 2、(浙江省金丽衢十二校2011届高三第一次联考文) 函数()sin sin(60)f x x x =++ 的最大值是( )A B .2C .2D .13、(山东省莱阳市2011届高三上学期期末数学模拟6理)已知)2,2(,31sin ππθθ-∈-=,则)23sin()sin(θππθ--的值是( ) A 、922 B 、922- C 、91- D 、914、(湖南省嘉禾一中2011届高三上学期1月高考押题卷)在区间[1,1]-上随机取一个数,cos 2xx π的值介于0到12之间的概率为( )A .13B .2πC .12D .235、(湖北省补习学校2011届高三联合体大联考试题理) 已知cos()0,cos()0,2πθθπ+<->下列不等式中必成立的是( )A.tancot22θθ> B.sincos22θθ> C.tancot22θθ< D.sincos22θθ<6、(河南省鹿邑县五校2011届高三12月联考理)函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图像为C,如下结论中正确的是( )A .图像C 关于直线6x π=对称; B .图像C 关于点,06π⎛⎫⎪⎝⎭对称; C .函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是增函数; D .由3sin 2y x =的图像向右平移3π个单位长度可以得到图像C 。
7、(河南省辉县市第一高级中学2011届高三12月月考理)若cos 2sin αα+=则tan α=( )A.1-B.2C.1D.-28、(北京四中2011届高三上学期开学测试理科试题) 已知53sin ,,2=⎪⎭⎫⎝⎛∈αππα,则⎪⎭⎫ ⎝⎛+4tan πα等于( )A .7B .7-C .71 D .71- 9、(福建省三明一中2011届高三上学期第三次月考理) 已知函数)(sin cos )(R x x x x f ∈=,给出下列四个命题:①若;),()(2121x x x f x f -=-=则 ②)(x f 的最小正周期是π2; ③)(x f 在区间]4,4[ππ-上是增函数; ④)(x f 的图象关于直线43π=x 对称; ⑤当⎥⎦⎤⎢⎣⎡-∈3,6ππx 时,)(x f 的值域为.43,43⎥⎦⎤⎢⎣⎡-其中正确的命题为( ) A .①②④ B .③④⑤ C .②③ D .③④10、(浙江省温州市啸秋中学2010学年第一学期高三会考模拟试卷)函数()sin cos f x x x =⋅的最小值是( ) A .1- B .12-C .12D .1 11、(浙江省嵊州二中2011届高三12月月考试题文) 函数()2cos sin cos y x x x =+的最大值为( )(A )2 (B 1(C(D 112、(山东省日照市2011届高三第一次调研考试文)已知4sin ,sin cos 0,5θθθ=<则θ2sin 的值为( ) (A)2524-(B)2512- (C)54- (D)2524 13、(福建省四地六校2011届高三上学期第三次联考试题理) 已知22ππθ-<<,且s i n c o s ,a θθ+=其中()0,1a ∈,则关于tan θ的值,在以下四个答案中,可能正确的是 ( )A .3-B .3 或13C .13-D .3-或13- 14、(甘肃省甘谷三中2011届高三第三次检测试题)tan 690°的值为( )A.D.15、(甘肃省甘谷三中2011届高三第三次检测试题)若sin([0,])2θθπ=∈,则tan θ=( )A. 4-B. 4C. 0D. 0或4-选择题参考答案:1—5:D 、A 、B 、D 、A ; 6—10:C 、B 、C 、D 、B ; 11—15:B 、A 、C 、A 、D ;二、填空题16、(重庆市重庆八中2011届高三第四次月考文)在ABC ∆中,如果sin :A sin :B sin C =5:6:8,则此三角形最大角的余弦值是 .17、(重庆市南开中学高2011级高三1月月考文)若3(0,),cos(),sin 5θππθθ∈+==则 。
2011届高三数学《排列与组合》单元检测题

2010届高三数学单元检测:统计一、选择题1.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[)85.4,8.4( g )范围内的概率是( )A .0.62B .0.38C .0.02D .0.682.某产品分为甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为03.0,出现丙级品的概率为01.0,则对产品抽查一次抽得正品的概率是( ) A .09.0 B .98.0 C .97.0 D .96.03.某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现抽取30人进行分层抽样,则各职称人数分别为( )A .5,10,15B .3,9,18C .3,10,17D .5,9,16 4.在画两个变量的散点图时,下面哪个叙述是正确的( ) (A)预报变量在x 轴上,解释变量在y 轴上 (B)解释变量在x 轴上,预报变量在y 轴上 (C)可以选择两个变量中任意一个变量在x 轴上 (D)可以选择两个变量中任意一个变量在y 轴上5.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4;则样本在[25,25.9)上的频率为( )A .203B .101C .21D .416.A .14和0.14B .0.14和14C .141和0.14 D . 31和141 7.对于两个变量之间的相关系数,下列说法中正确的是( ) A .r 越大,相关程度越大B .()0,r ∈+∞,r 越大,相关程度越小,r 越小,相关程度越大C .1r ≤且r 越接近于1,相关程度越大;r 越接近于0,相关程度越小D .以上说法都不对8.三维柱形图中柱的高度表示的是( )A .各分类变量的频数B .分类变量的百分比C .分类变量的样本数D .分类变量的具体值 9.下列关于三维柱形图和二维条形图的叙述正确的是: ( ) A .从三维柱形图可以精确地看出两个分类变量是否有关系B .从二维条形图中可以看出两个变量频数的相对大小,从三维柱形图中无法看出相对频数的大小C .从三维柱形图和二维条形图可以粗略地看出两个分类变量是否有关系D .以上说法都不对10.设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=,则(|| 1.96)P ξ<=A .0.025B .0.050C .0.950D .0.975二、填空题( 5 小题,每小题 5 分)11.实施简单抽样的方法有________、____________12.采用简单随机抽样从含10个个体的总体中抽取一个容量为4的样本,个体 a 前两次未被抽到,第三次被抽到的概率为____________________13.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样考虑用系统抽样,则分段的间隔k 为_______________ 14.若一组观测值(x 1,y 1)(x 2,y 2)…(x n ,y n )之间满足y i =bx i +a+e i (i=1、2. …n)若e i 恒为0,则R 2为_____15.统计推断,当______时,有95 %的把握说事件A 与B 有关;当______时,认为没有充分的证据显示事件A 与B 是有关的. 三、解答题( 6 小题,共 75 分)16.(12分)一个总体中含有4个个体,从中抽取一个容量为2的样本,说明为什么在抽取过程中每个个体被抽取的概率都相等.17.(12分)在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。
江西省南昌一中2011届高三上学期第一次月考(数学理)

第6题江西省南昌一中10-11学年高三上学期第一次月考数 学 试 题(理)一、选择题:本大题共10小题,每小题5分,共50分.请将各小题中惟一正确的答案的代号填入答题卡相应的格子中. 1.1i-的共轭复数是 ( )A.+BC.D2.若函数1(),10()44,01xx x f x x ⎧-≤<⎪=⎨⎪≤≤⎩,则4(log 3)f =( )A .13B .43C .3D .43.若由一个2⨯2列联表中的数据计算得2K 的观测值 4.103k ≈,那么认为两个变量有关系的把握程度为( )A .95%B .97.5%C .99%D .99.9%4.已知则y 与x 的线性回归方程为ˆy=bx + ∧a 必过( )A .点()2,2B .点()0,5.1C .点()2,1D .点()4,5.15.直线0x y m -+=与圆22210x y x +--=有两个不同交点的一个充分不必要条件是( )A .31m -<<B .42m -<<C .01m <<D .1m <6.函数)(x f 的图像是两条直线的一部份,如上图所示,其定义域为]1,0()0,1[⋃-,则不等式1)()(->--x f x f 的解集为( A .{x|-1≤x ≤1,且x ≠0}B .{x|-1≤x ≤0}C .{x|-1≤x <0或21<x ≤1=D .{x|-1≤x <21-或0<x ≤1= 7. 若222230,,sin a x dx b x dx c xdx ===⎰⎰⎰,则,,a b c 大小关系是( )A .a <c <bB .a <b<cC .c<b<aD .c<a <b8.已知函数()()y f x x R =∈满足()()31f x f x +=+,且x ∈[-1,1]时,()f x x =,则函数()()5log ,0y f x x x =->的零点个数是 ( )A .3B .4C .5D .69. 设()f x 是定义在R 上的偶函数,且在(,0)-∞上是增函数,已知120,0x x ><,且12()()f x f x <,那么一定有( )A .120x x +<B .120x x +>C .12()()f x f x ->-D .12()()0f x f x -⋅-<10.如图,天花板上挂着三串小玻璃球,第一串挂着2个小球,第二串挂着3个小球,第三串挂着4个小球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011届高三数学填空题专练(1)
1. 若平面向量b a 与)2,1(-=的夹角是180°,且b b 则,53||=等于 (-3,6)
2.某地教育部门为了了解学生在数学答卷中的有关信息,从上次考试的10000名考生的数学试卷中,用分层抽样的方法抽取500人,并根据这500人的数学成绩画出样本的频率分布直方图(如图). 则这10000
3.右图程序运行结果是 34
4如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是
5.若复数z 满足i z iz 212+=+,则=z i -1________
6.右图的矩形,长为5cm ,宽为2cm ,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆
数为138颗,则我们可以估计出阴影部分面积约为4.62cm _______(精确到0.1)
7. 设集合{}
22,A x x x R =-∈≤,{}2|,12B y y x x ==--≤≤,则A B 等于 {}0 . 8.已知椭圆)0(122
22>>=+b a b
y a x 的两个焦点为F 1、F 2,过F 2作垂直于x 轴的直线与椭圆相交,一个交点为P ,若∠PF 1F 2=30°,那么椭圆的离心率是________.
9.在坐标平面上,不等式组⎩⎨⎧+-≤-≥1
||31x y x y 所表示的平面区域的面积 3/2 .
10. 已知等差数列{n a }中,0n a ≠,若1m >且211210,38m m m m a a a S -+--+==,则m= 10 .
11.已知f (x)=(x –a )(x –b )–2(其中a <b ),且α、β是方程f (x )=0的两根(α<β),则实数a 、b 、α、β的大小关系为 βα<<<b a
12. 若点P 是曲线y=x 2
-ln x 上任意一点,则点P 到直线y=x -213. 在△ABC 中,若有A >B ,则下列不等式中
① sinA>sinB; ② cosA<cosB; ③ sin2A>sin2B; ④ cos2A<cos2B
你认为正确的序号为____①②④__________. 14、已知函数()()3122--+=x a ax x f (a ≠0)在区间⎥⎦
⎤⎢⎣⎡-2,23上的最大值为1,则实数 a 的值是__34__________________. ′。