全国名校高考数学优质填空题120道(附详解)
高三数学填空题专项练习(含答案解析)

1.O是锐角△ABC所在平面内的一定点,动点P满足:,λ∈(0,+∞),则动点P的轨迹一定通过△ABC的心.2.对于使﹣x2+2x≤M成立的所有常数M中,我们把M的最小值l做﹣x2+2x的上确界,若a,b∈R+,且a+b=1,则﹣﹣的上确界为.3.如图,正方体ABCD﹣A1B1C1D1的棱长为1,点M在AB上,且AM=,点P在平面ABCD上,且动点P到直线A1D1的距离的平方与P到点M的距离的平方差为1,在平面直角坐标系xoy中,动点P的轨迹方程是.4.设函数f(x)=a1+a2x+a3x2+…+a n x n﹣1,f(0)=,数列{a n}满足f(1)=n2•a n,则数列{a n}的通项=.5.函数f(x)是奇函数,且在[﹣1,1]是单调增函数,又f(﹣1)=﹣1,则满足f(x)≤t2+2at+1对所有的x∈[﹣1,1]及a∈[﹣1,1]都成立的t的范围是.6.已知O为坐标原点,,,=(0,a),,记、、中的最大值为M,当a取遍一切实数时,M的取值范围是.7.已知三数x+log272,x+log92,x+log32成等比数列,则公比为.8.(5分)已知5×5数字方阵:中,,则=.9.(5分)已知函数f(x)=x2﹣cosx,x∈,则满足f(x0)>f()的x0的取值范围为.10.(5分)甲地与乙地相距250公里.某天小袁从上午7:50由甲地出发开车前往乙地办事.在上午9:00,10:00,11:00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有1小时到达乙地”.假设导航仪提示语都是正确的,那么在上午11:00时,小袁距乙地还有公里.11.(5分)定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1﹣|x ﹣3|.若函数的所有极大值点均落在同一条直线上,则c=.12.(5分)设F1,F2分别是双曲线=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点M,使=0,O为坐标原点,且|MF1|=|MF2|,则该双曲线的离心率为.13.(5分)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若+=6cosC,则+的值是.14.(5分)设⊙O为不等边△ABC的外接圆,△ABC内角A,B,C所对边的长分别为a,b,c,P是△ABC所在平面内的一点,且满足=•+(P与A不重合).Q为△ABC所在平面外一点,QA=QB=QC.有下列命题:①若QA=QP,∠BAC=90°,则点Q在平面ABC上的射影恰在直线AP上;②若QA=QP,则;③若QA>QP,∠BAC=90°,则;④若QA>QP,则P在△ABC内部的概率为(S△ABC,S⊙O分别表示△ABC与⊙O的面积).其中不正确的命题有(写出所有不正确命题的序号).参考答案解:∵=∴=+)++﹣=a=时取等号.﹣的上确界是﹣]=x,x=,=××…××,=××…××,,.解:∵,,),M22,∴2∴∴,在公里,时,函数取极大值≤4,共线,∴=0|=a=e==+1解:∵+∴+=== =解:∵=•+∴﹣=•),∴|c•cos的中点,∴∴,故②。
全国名校高中数学优质试题(附详解)高一数学第一次月考试题及答案

高一数学单元测试题一、选择题:(每小题5分,共50分)1.如果全集U ={x |x 是小于9的正整数},集合A ={1,2,3,4},B ={3,4,5,6},则(U A )(U B )为( )A .{1,2}B .{3,4}C .{5,6}D .{7,8} 2.已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1或x >4},那么集合A ∩(∁U B )等于( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}3.设全集U =Z ,集合A ={1,3,5,7,9},B ={1,2,3,4,5},则图中阴影部分表示的集合是( )A .{1,3,5}B .{1,2,3,4,5}C .{7,9}D .{2,4} 4.下列各组函数表示同一函数的是( )A .f (x )g (x )=2 B .f (x )=1,g (x )=x 0C .,0,(),0,x x f x x x ≥⎧=⎨-<⎩g (t )=|t | D .f (x )=x +1,g (x )=211x x --5.已知函数221,2,()3,2,x x f x x x x -≥⎧=⎨-+<⎩则f (-1)+f (4)的值为( )A .-7B .3C .-8D .46.若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( ) A .f (x )=9x +8 B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -47.函数f (x )91x+是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数 8.设集合A ={x |1<x <2},B ={x |x <a },满足A B ,则实数a 的取值范围是( ) A .{a |a ≥2} B.{a |a ≤1} C.{a |a ≥1} D.{a |a ≤2}9.设集合A ={x |0≤x ≤2},B ={y |1≤y ≤2},若对于函数y =f (x ),其定义域为A ,值域为B ,则这个函数的图象可能是()10.若函数y =f (x )为偶函数,且在(0,+∞)上是减函数,又f (3)=0,则02)()(<-+xx f x f 的解集为( )A .(-3, 3)B .(-∞,-3)∪(3,+∞)C .(-3,0)∪(3,+∞)D .(-∞,-3)∪(0,3)二、填空题:(每小题5分,共25分)11.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a 的值______.12.函数y =的定义域为__________(用区间表示). 13.若函数f (x )=(1)(2)xx x a +-为奇函数,则a =_____.14.函数y =f (x )是R 上的偶函数,且当x >0时,f (x )=x 3+1,则当x <0时,f (x )=________.15.某城市出租车按如下方法收费:起步价8元,可行3 k m(含3 k m),3 k m 后到10 k m(含10 k m)每走1 k m 加价1.5元,10 k m 后每走1 k m 加价0.8元,某人坐该城市的出租车走了20 k m ,他应交费________元.三、解答题:(共75分)16.(10分)已知全集U =R ,若集合A ={}310x x ≤<,B ={x |2<x ≤7}. (1)求A B ,A B ,(U A )(U B );(2)若集合C ={x |x >a },A ⊆C ,求a 的取值范围.(结果用区间或集合表示)17.(12分)已知函数35,0,()5,01,28, 1.x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩(1)求32f ⎛⎫ ⎪⎝⎭,1πf ⎛⎫⎪⎝⎭,f (-1)的值;(2)画出这个函数的图象; (3)求f (x )的最大值.18.(12分)奇函数f (x )是定义在区间(-2,2)上的减函数,且满足f (m -1)+f (2m -1)>0,求实数m 的取值范围.19.(12分)利用函数的单调性定义证明函数f (x )=1xx -,x ∈[2,4]是单调递减函数,并求该函数的值域.20.(12分)已知函数f (x )=x +1x, (1)判断函数f (x )的奇偶性;(2)判断函数f (x )在区间(0,1)和(1,+∞)上的单调性,并用定义证明;(3)当x ∈(-∞,0)时,写出函数f (x )=x +1x的单调区间(不必证明).21.(12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求实数a 的取值范围;(3)在区间[-1,1]上,y =f (x )的图象恒在y =2x +2m +1的图象上方,试确定实数m 的取值范围.。
高考数学填空题专练附部分精选解答题(含答案)

一、填空题:1、(理)设满足不等式23)2(<+-x x a 的解集为A ,且A ∉1,则实数a 的取值范围是 .]8,(--∞; (文)不等式232<+-x x 的解集是 . ),3()8,(+∞---∞ 2、已知21,x x 是关于x 的方程04122=+-+-a a ax x 的两个实根,那么2121x x x x +的最小值为 ,最大值为 . 0,413、若关于x 的不等式|1||2|x x a -++≤有解,则实数a 的取值范围是________.3a ≥4、当01x ≤≤时,3112ax x -≤恒成立,则实数a 的取值范围为 。
[13,22-]5. 对任意正数x 1,x 2,若函数f(x)=lgx ,试比较A=2)()(21x f x f +与B=)2(21x x f +的大小,答A________B < 6. 函数x x y cos 21+=在]2,2[ππ-∈x 上的最大值为_____________236+π 7. a 、b 、c 、d 均为实数,使不等式0a cb d>>和ad bc <都成立的一组值(a ,b ,c ,d )是 .(只要写出适合条件的一组值即可)解析:本题为开放题,只要写出一个正确的即可,如(2,1,-3,2). 评析:本题为开放题,考察学生对知识灵活处理问题的能力.8.如果2log 3log 2121ππ≥-x 那么x sin 的取值范围是_______。
答案:⎥⎦⎤⎢⎣⎡-1,21 解析:因⎥⎦⎤⎝⎛⋃⎪⎭⎫⎢⎣⎡-⇒≤-<⇒≥-65,33,62|3|02log 3log 2121ππππππππx x故x sin ⎥⎦⎤⎢⎣⎡-∈1,21 易错警示:利用真数大于零得x 不等于3π ,从而正弦值就不等于23.其实x 等于32π时可取得该值。
9. 设M 是△ABC 内一点,且23AB AC =BAC =30º,定义f (M )=(m ,n ,p ),其中m 、n 、p 分别是△MBC 、△MCA 、△MAB 的面积,若f (M )=(12,x ,y ),则14x y +的最小值为 18 .10. 若实数12,,32,2-=+≤x yx y x y y x 则且满足的取值范围是 。
高三数学填空题练习试题集

高三数学填空题练习试题答案及解析1.函数的定义域为_____________.【答案】(0,1]【解析】有,可得0<x≤1【考点】函数的定义域2.设f(x)是定义在R上的奇函数,当x<0时,f(x)=x+e x(e为自然对数的底数),则f(ln 6)的值为________.【答案】ln 6-【解析】由f(x)是奇函数得f(ln 6)=-f(-ln 6)=-(-ln 6)-e-ln 6=ln 6-.3.函数的最大值为 .【答案】【解析】函数的定义域为,设,,则,所以,当时,.【考点】函数最值.4.若x,y满足约束条件,则的最大值为 .【答案】【解析】画出可行域,如图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,即将直线经过可行域,尽可能向上移动到点时,.【考点】线性规划.5.如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动,且总是平行于轴,,则的周长的取值范围是_______________.【答案】.【解析】易知圆的圆心坐标为,则圆心为抛物线的焦点,圆与抛物线在第一象限交于点,作抛物线的准线,过点作垂直于直线,垂足为点,由抛物线的定义可知,则,当点位于圆与轴的交点时,取最大值,由于点在实线上运动,因此当点与点重合时,取最小值为,此时与重合,由于、、构成三角形,因此,所以,因此的周长的取值范围是.6.设,向量且,则.【答案】【解析】因为a⊥c,b∥c,所以有2x-4=0且2y+4=0,解得x=2,y=-2,即,所以,则.7.甲、乙两地都位于长江下游,根据天气预报记录知,一年中下雨天甲市占20%,乙市占18%,假定在这段时间内两市是否降雨相互之间没有影响,则甲、乙两市同时下雨的概率为________.【答案】0.036【解析】设甲市下雨为事件A,乙市下雨为事件B,由题设知,事件A与B相互独立,且P(A)=0.2,P(B)=0.18,则P(AB)=P(A)P(B)=0.2×0.18=0.036.8.某程序框图如右图所示,则输出的结果S为.【答案】【解析】第一次运行,,不满足;第二次运行,,不满足;第三次运行,,满足,输出S为.【考点】算法与程序框图9.设x>0,y>0,a=x+y,b=·,则a与b的大小关系是.【答案】b<a【解析】当sin θ=0时,cos2θ=1,∴b=x<x+y=a即b<a,当cos θ=0时,sin2θ=1,b=y<x+y=a,即b<a,当sin θ≠0且cos θ≠0时,∵x>0,y>0,∴x<x+y,y<x+y,∴<,<,∴b=·<·==x+y=a.综上b<a.10.已知G是△ABC的重心,O是空间与G不重合的任一点,若++=λ,则λ=.【答案】3【解析】因为+=,+=,+=,且++=0,所以++=3.11.设a>0,b>0,若lga和lgb的等差中项是0,则+的最小值是.【答案】2【解析】由已知得lga+lgb=0,即ab=1,于是+==a+b≥2=2,当且仅当a=b=1时取等号,故+的最小值是2.12.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的最小值为________.【答案】【解析】y′=2x-,令y′=1,得方程2x2-x-1=0,解得x=-(舍去)或x=1,故与直线y=x-2平行且与曲线y=x2-ln x相切的直线的切点坐标为(1,1),该点到直线y=x-2的距离d =即为所求13.若函数f(x)=-x2+4x-3ln x在[t,t+1]上不单调,则t的取值范围是______.【答案】(0,1)∪(2,3)【解析】对f(x)求导,得f′(x)=-x+4-=.由f′(x)=0得函数f(x)的两个极值点为1,3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间[t,t+1]上就不单调,所以t<1<t+1或t<3<t+1,解得0<t<1或2<t<3.14.在平面直角坐标系中,若中心在坐标原点上的双曲线的一条准线方程为,且它的一个顶点与抛物线的焦点重合,则该双曲线的渐进线方程为 .【答案】【解析】因为抛物线的焦点为所以又所以而双曲线的渐近线方程为即.解答本题需注意双曲线的焦点位置.【考点】双曲线的渐近线及准线,抛物线焦点.15.已知定义在上的偶函数满足:,且当时,单调递减,给出以下四个命题:①;②为函数图像的一条对称轴;③函数在单调递增;④若关于的方程在上的两根,则.以上命题中所有正确的命题的序号为_______________.【答案】①②④【解析】∵,∴当时,,∴,又∵函数是偶函数,∴,∴①正确;∵,,∴,∴,又是函数图像的对称轴,∴是函数图像的对称轴,∴②正确;∵函数的周期是4,∴在上的单调性与上的单调性相同,∴在上为减函数,∴③错误;∵是函数图像的对称轴,∴方程的两根关于对称,∴,∴④正确.【考点】1.函数的周期性;2.函数的奇偶性;3.函数的对称性;4.函数的单调性.16.已知点,过点的直线总与线段有公共点,则直线的斜率取值范围为______(用区间表示).【答案】【解析】如图,,根据斜率的定义可知,当直线逆时针转时,斜率增大,当直线顺时针转时,斜率减小,故直线的斜率取值范围为.【考点】直线斜率的计算、直线斜率的定义.17.函数的最小正周期为 .【答案】【解析】因为,,所以,函数的最小正周期为.【考点】三角函数的和差倍半公式,三角函数的性质.18.设与抛物线的准线围成的三角形区域(包含边界)为,为内的一个动点,则目标函数的最大值为 .【答案】3【解析】由题意,抛物线的准线,它和不等式共同围成的三角形区域为,目标函数为,作出可行域如下图,由图象可知当直线经过点时,直线的截距最小,此时最大,点的坐标为,此时,故答案为:3.【考点】简单线性规划.19.曲线与直线所围成的平面图形的面积为.【答案】【解析】画出图形可知,所求面积,而,,,故.【考点】定积分求面积.20.在正项等比数列中,,,则满足的最大正整数的值为 .【答案】12【解析】设正项等比数列首项为,公比为,由题意可得解得,,故其通项公式为.记,由,即化简得,,因此只须即,解得由于为正整数,因此最大为的整数部分,也就是12.故答案为12.【考点】等比数列的求和公式,一元二次不等式的解法.21.在中,分别是的对边,已知,若,则的面积等于 .【答案】【解析】因为,所以,,∴.由余弦定理得,∴.∴.【考点】1.余弦定理;2.三角形面积公式;3.平方关系.22.在处有极大值,则常数的值为________.【答案】6【解析】由题意知在处导数为零且时,,而,所以,解得,而当时,,不合题意,所以.【考点】利用导数求函数的极值、利用导数判断函数单调性.23.在展开式中的系数为,则实数的值为 .【答案】【解析】通项公式:,所以展开式中的系数为,解得:.【考点】1.二项式通项;2.二项式系数.24.设AB是椭圆的长轴,点C在上,且,若AB=4,,则的两个焦点之间的距离为________【答案】【解析】不妨设椭圆的标准方程为,于是可算得,得.【考点】考查椭圆的定义及运算,属容易题。
2022年全国新高考I卷数学试题(填空题与解答题)

代入椭圆方程 3x2 4y2 12c2 0 ,整理化简得到:13y2 6 3cy 9c2 0 ,利用弦长公式求得 c 13 , 8
得 a 2c 13 ,根据对称性将 4
ADE 的周长转化为△F2DE 的周长,利用椭圆的定义得到周长为 4a 13 .
【详解】∵椭圆的离心率为 e c 1 ,∴ a 2c ,∴ b2 a2 c2 3c2 ,∴椭圆的方程为 a2
(1)能否有 99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异? (2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的
人患有该疾病”. P(B | A) 与 P(B | A) 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标, P(B | A) P(B | A)
an an1
1 3 4 n n 1 nn 1 ,
2 3 n 2 n 1 2
显然对于 n 1也成立,
∴an 的通项公式
an
nn 1
2
;
【小问 2 详解】
1 an
2
nn 1
2
1 n
n
1
1
,
∴1 1 a1 a2
1 an
2
1
1 2
1 2
1 3
1 n
1 n
1
2 1
1 n 1
8
4
∵ DE 为线段 AF2 的垂直平分线,根据对称性, AD DF2,AE EF2 ,∴ ADE 的周长等于
△F2DE 的周长,利用椭圆的定义得到△F2DE 周长为
DF2 EF2 DE DF2 EF2 DF1 EF1 DF1 DF2 EF1 EF2 2a 2a 4a 13.
高三数学填空题练习试题集

高三数学填空题练习试题答案及解析1.如图,已知是⊙的切线,是切点,直线交⊙于两点,是的中点,连接并延长交⊙于点,若,则.【答案】【解析】因为是⊙的切线,所以,在中,,则,,连接,则是等边三角形,过点A作,垂足为M,则,在中,,又,故,则.【考点】1、切线的性质;2、相交弦定理.2.复数满足,则复数的模等于__________.【答案】【解析】因为,所以因此复数的模等于.【考点】复数的模3.已知双曲线-=1的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为.【答案】-=1【解析】圆x2+y2-10x=0的圆心坐标为(5,0),∴c=5,又e==,∴a=,b2=c2-a2=20,∴双曲线标准方程为-=1.4.已知数列{an }为等差数列,若a1=-3,11a5=5a8,则使前n项和Sn取最小值的n=________.【答案】2【解析】∵a1=-3,11a5=5a8,∴d=2,∴Sn=n2-4n=(n-2)2-4,∴当n=2时,Sn最小.5.曲线在点(1,0)处的切线与坐标轴所围三角形的面积等于 .【答案】【解析】∵,∴,所以切线方程为:,∴三角形面积为.【考点】1.利用导数求切线方程;2.三角形的面积公式.6.已知函数是上的奇函数,时,,若对于任意,都有,则的值为 .【答案】【解析】因为,,所以.【考点】函数的基本性质7.运行右面框图输出的S是254,则①应为 .【答案】【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加的值,并输出满足循环的条件.∵,故①中应填.故选C.【考点】程序框图.8.已知圆M:x2+y2-2x-4y+1=0,则圆心M到直线(t为参数)的距离为.【答案】2.【解析】由题意易知圆的圆心,由直线的参数方程化为一般方程为,所以圆心到直线的距离为.【考点】直线的参数方程及点到直线的距离公式.9.已知,,则.【答案】【解析】由,得,,.【考点】同角三角函数的关系、两角和的正切公式.10.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为的数据丢失,则依据此图可得:(1)年龄组对应小矩形的高度为;(2)据此估计该市“四城同创”活动中志愿者年龄在的人数 .【答案】(1);(2)【解析】(1)设年龄组对应小矩形的高度为,依题意,,解得.(2)据此估计该市“四城同创”活动中志愿者年龄在的人数为:人.【考点】频率分布直方图.11.若a、b、c、d均为实数,使不等式都成立的一组值(a、b、c、d)是。
高考数学填空题专项训练含详细答案

高考填空题提升训练1.已知函数()()sin f x a x b ωθ=+-的部分图象如下图,其中π0,,2ωθ><,a b 分别是ABC 的角,A B 所对的边, cos ()+12C C f =,则ABC ∆的面积S =. 2.在平面直角坐标系上,设不等式组00(4)x y y n x >⎧⎪>⎨⎪≤--⎩所表示的平面区域为n D ,记n D 内的整点(即横坐标和纵坐标均为整数的点)的个数为()n a n N *∈.则1a =,经猜想可得到n a =.3.若两个球的表面积之比为1:4,则这两个球的体积之比为.4.若不等式组20510080x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩所表示的平面区域被直线2y kx =+分为面积相等的两部分,则k 的值为;若该平面区域存在点00(,)x y 使0020x ay ++≤成立,则实数a 的取值X 围是.5.已知数列{}n a 满足11(2)n n n a a a n +-=-≥,121,3a a ==,记12n n S a a a =+++.则3a =,2015S =.6.已知,,a b c 为非零实数,(),ax b f x x R cx d+=∈+,且(2)2,(3)3f f ==.若当d x c ≠-时,对于任意实数x ,均有(())f f x x =,则()f x 值域中取不到的唯一的实数是.7.若ABC ∆的重心为G ,5,4,3===BC AC AB ,动点P 满足GC z GB y GA x GP ++=(1,,0≤≤z y x ),则点P 的轨迹所覆盖的平面区域的面积等于.8.如图,若6OFB π∠=,6OF FB ⋅=-,则以OA 为长半轴,OB 为短半轴,F 为左焦点的椭圆的标准方程为.9.如图所示,在确定的四面体ABCD 中,截面EFGH 平行于对棱AB 和CD .(1)若AB ⊥CD ,则截面EFGH 与侧面ABC 垂直;(2)当截面四边形EFGH 面积取得最大值时,E 为AD 中点;(3)截面四边形EFGH 的周长有最小值;(4)若AB ⊥CD ,AC BD ⊥,则在四面体内存在一点P 到四面体ABCD 六条棱的中点的距离相等.上述说法正确的是.10.阅读右边的程序框图,运行相应的程序,则输出i 的值为11.如图是导函数)(x f y '=的图象:①2x 处导函数)(x f y '=有极大值;②在41,x x 处导函数)(x f y '=有极小值;③在3x 处函数)(x f y =有极大值;④在5x 处函数)(x f y =有极小值;以上叙述正确的是____________。
高考数学填空120题(含答案)

高考数学基础训练题(1)1.设集合}4|||{<=x x A ,}034|{2>+-=x x x B ,则集合{A x x ∈|且B A x ∉}= 。
2.下列说法中:(1)若22y x =,则y x =;(2)等比数列是递增数列的一个必要条件是公比大于1;(3)2≥a 的否定是;(4)若3>+b a ,则1>a 或2>b 。
其中不正确的有 。
3.设集合}2|||{<-=a x x A ,}1212|{<+-=x x x B ,且B A ⊆,则实数a 的取值范围是 。
4.已知二次函数)0(3)(2≠-+=a bx ax x f 满足)4()2(f f =,则)6(f = 。
5.计算:3121log 24lg539--⎛⎫- ⎪⎝⎭= 。
6.已知函数1)(2++=x b ax x f 的值域是[-1,4 ],则b a 2的值是 。
7.若函数3)2(2+++=x a x y ,][b a x ,∈的图象关于直线1=x 对称,则=b 。
8.函数)(x f y =的图象与x x g )41()(=的图象关于直线y=x 对称,那么)2(2x x f -的单调减区间是 。
9.函数1)(---=a x xa x f 的反函数)(1x f -的图象的对称中心是(-1,3),则实数a = 。
10.)(x f y =是R 上的减函数,且)(x f y =的图象经过点A (0,1)和B (3,-1),则不等式1|)1(|<+x f 的解集为 。
11.已知函数⎩⎨⎧>≤+=0,log 0,1)(2x x x x x f ,若1))((0-=x f f ,则0x 的取值范围是 .12.已知函数),1,1(,5sin )(-∈+=x x x x f 如果,0)1()1(2<-+-a f a f 则a 的取值范围是____。
13.关于x 的方程aa x -+=535有负根,则a 的取值范围是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学基础训练题(1)1.设集合}4|||{<=x x A ,}034|{2>+-=x x x B ,则集合{Ax x ∈|且B A x ∉}=。
2.下列说法中:(1)若22y x =,则y x =;(2)等比数列是递增数列的一个必要条件是公比大于1;(3)2≥a 的否定是;(4)若3>+b a ,则1>a 或2>b 。
其中不正确的有 。
3.设集合}2|||{<-=a x x A ,}1212|{<+-=x x x B ,且B A ⊆,则实数a 的取值范围是 。
4.已知二次函数)0(3)(2≠-+=a bx ax x f 满足)4()2(f f =,则)6(f = 。
5.计算:3121log 24lg539--⎛⎫- ⎪⎝⎭=。
6.已知函数1)(2++=x b ax x f 的值域是[-1,4 ],则b a 2的值是 。
7.若函数3)2(2+++=x a x y ,][b a x ,∈的图象关于直线1=x 对称,则=b。
8.函数)(x f y =的图象与x x g )41()(=的图象关于直线y=x 对称,那么)2(2x x f -的单调减区间是 。
9.函数1)(---=a x xa x f 的反函数)(1x f -的图象的对称中心是(-1,3),则实数a = 。
10.)(x f y =是R 上的减函数,且)(x f y =的图象经过点A (0,1)和B (3,-1),则不等式1|)1(|<+x f的解集为 。
11.已知函数⎩⎨⎧>≤+=0,l o g,1)(2x x x x x f ,若1))((0-=x f f ,则x 的取值范围是 .12.已知函数),1,1(,5sin )(-∈+=x x x x f 如果,0)1()1(2<-+-a f a f 则a 的取值范围是____。
13.关于x 的方程aa x-+=535有负根,则a 的取值范围是 。
14.已知函数)(x f 满足:对任意实数21,x x ,当21x x <时,有)()(21x f x f <,且)()()(2121x f x f x x f ⋅=+写出满足上述条件的一个函数:。
15.定义在区间)1,1(-内的函数)(x f 满足)1l g ()()(2+=--x x f x f ,则)(x f =。
16.已知函数x x f 2log )(=,2)(y x y x F +=,,则)1),41((f F 等于 。
17.对任意]1,1[-∈a ,函数a x a x x f 24)4()(2-+-+=的值恒大于零,那么x 的取值范围是 。
18.若函数⎭⎬⎫⎩⎨⎧+=x x x f 241log ,log 3min )(,其中{}q p ,min 表示q p ,两者中的较小者,则2)(<x f 的解为 。
19.已知函数f (x )=l og 2(x +1),若-1<a <b <c ,且abc ≠0,则a a f )(、bb f )(、cc f )(的大小关系是 。
20.若方程042)4(4=+⋅++x x a 有解,则实数a 的取值范围是 . 21.等差数列{}n a 前n 项之和为nS ,若31710a a -=,则19S 的值为 。
22.已知数列{}n a 中,3,6011+=-=+n n a a a ,那么||||||3021a a a +++ 的值为 。
23.已知等差数列{}n a 前n 项的和n s ,若22,m n s m s n =则65a a 的值是 。
24.已知一个等差数列前五项的和是120,后五项的和是180,又各项之和是360,则此数列共有 项。
25.设等比数列{}n a 中,每项均是正数,且8165=a a ,则=+++1032313log log log a a a。
26.一个项数为偶数的等比数列,首项是1,且所有奇数项之和是85,所有偶数项之和是170,则此数列共有 项。
27.设331)(+=x x f ,利用课本中推导等差数列前n 项和的公式的方法,可求得:)13()12()11()0()10()11()12(f f f f f f f ++++++-+-+- 的值为28.已知数列{}n a 的通项12)12(-⋅+=n n n a ,前n 项和为nS ,则n S =。
29.数列,841,631,421,2112222++++前n 项的和等于 。
30.数列{}n a 中,)2(112,1,21121≥+===-+n a a a a a n n n ,则其通项公式为=n a。
高考数学基础训练题(2)31.函数x y 2sin =的图象按向量平移后,所得函数的解析式是12cos +=x y ,则=(只需写出满足条件的一个向量) 32.函数)632c o s (32s i n )(π-+=x x x f 的图象相邻的两条对称轴间的距离是 。
33.函数)42sin(π+-=x y 的单调增区间是 。
34.已知41)4tan(,52)tan(=-=+πββα,则=+)4tan(πα。
35. 42tan 18tan 342tan 18tan ++=_______________。
36.函数)10cos(5)20sin(300-++=x x y 的最大值是 。
37.已知,54cos ),0,2(=-∈x x π则=x 2tan 。
38.已知tan 2,α=则=+ααα2sin cos sin ____。
39.如果4π≤x ,那么函数x x x f sin cos )(2+=的最小值是 。
40.函数2cos sin +=x x y 的最大值为。
41.已知1||||||=+==,则||-= 。
42.若非零向量βα,满足||||βαβα-=+,则α与所成角的大小为 。
43.与向量(12,5)a =平行的单位向量是_____________。
44.在直角坐标平面上,向量)1,4(=OA ,向量)3,2(-=OB ,两向量在直线l 上的正射影长度相等,则直线l 的斜率为 45.设平面向量=(-2,1),b =(1,λ),若a 与b 的夹角为钝角,则λ的取值范围是 。
46.已知向量)sin 2,cos 2(),2,2(),0,2(αα===,则向量OB OA ,的夹角范围是。
47.将函数x y 2=的图象按向量 →a 平移后得到62+=x y 的图象,给出以下四个命题:①→a 的坐标可以是)0,3(-; ②→a 的坐标可以是)0,3(-和)6,0(; ③→a 的坐标可以是)6,0(; ④→a 的坐标可以有无数种情况。
上述说法正确的是 。
48.某人在静水中游泳的速度为4千米/时,水的流向是由西向东,水流速度为22千米/时,则此人必须朝与水流方向成__*___度角时,才能沿正北方向前进 。
49.在△ABC 中,BC =1,∠B =3π,当△ABC 的面积为3时,=∠C tan。
50.若△ABC 三边长AB =5,BC =7,AC =8,则⋅等于 。
51.函数)1(122)(2->+++=x x x x x f 的图象的最低点的坐标是。
52.已知正实数y x ,满足121=+yx ,则y x 2+的最小值为_________________。
53.设实数yx b a ,,,满足3,12222=+=+y x b a , 则byax +的取值范围为____________。
54.04<<-k 是函数12--=kx kx y 恒为负值的___________条件。
55.不等式)(062R x x x ∈<--的解集是 。
56.若不等式20x mx nx a++≥+的解集为{|31,2}x x x -≤<-≥或,则n m a ++=57.关于x 的不等式|log ||log |2121x x x x +<-的解集为。
58.若1>a ,10<<b ,且1)12(log >-x ba ,则实数x 的范围是 .59.若不等式na n n1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是60.实系数一元二次方程022=+-b ax x 的两根分别在区间()1,0和()2,1上,则b a 32+的取值范围是高考数学基础训练题(3)61.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有个。
(用数字作答)62.某小组有4个男同学和3个女同学,从这小组中选取4人去完成三项不同的工作,其中女同学至少二人,每项工作至少一人,则不同选派方法的种数为。
63.现有8名青年,其中有5名青年能胜任英语翻译工作,4名青年能胜任电脑软件设计工作,(其中有一人两项工作都能胜任),现要从中选派5名青年承担一项任务,其中3人从事英语翻译工作,2人从事软件设计工作,则不同的选法种数为。
64.6人站成一排照相,其中甲,乙,丙三人要站在一起,并且乙,丙要站在甲的两边,则不同的排法种数共有种。
65.现有6个参加兴趣小组的名额,分给4个班级,每班至少一个,则不同的分配方案共有_____种。
66.把6本书平均分给甲、乙、丙3个人,每人2本,有种分法,若平均分成3份,每份2本,有种分法。
67.从集合}20,,3,2,1{ 中选3个不同的数,使这3个数成递增的等差数列,则这样的数列共有_______组。
68.从6双不同的手套中任取4只,其中恰有一双配对的取法有_______种。
69.从6个正方形拼成的右图的12个顶点中任取3个顶点作为一组,其中可以构成三角形的组数为 。
70、某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则上楼梯的方法有 。
71.46)1()1(x x -+展开式中,3x 的系数是 。
72.设函数6)52()(+=x x f ,则导函数)(/x f 中的3x 的系数是73.42)2(-+x x 展开式中2x 项的系数是 。
74.55443322105)12(x a x a x a x a x a a x +++++=-,则||||||||||54321a a a a a ++++= 。
75.若1001002210100)1()1()1()12(-++-+-+=+x a x a x a a x ,则99531a a a a ++++ = 。
76.坛中有红球6个,白球4个,今从中任取3个,至少取到一个白球的概率为______.77.从1,2,…..,9这九个数中,随机取2个不同的数,则这两个数的和为偶数的概率是 。