各地名校高三物理试题分类汇编——动量、能量守恒(二)
高考物理动量守恒定律各地方试卷集合汇编

高考物理动量守恒定律各地方试卷集合汇编一、高考物理精讲专题动量守恒定律1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2m∆ 的压缩气体,每级总质量均为2M,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。
喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。
【答案】116.54m【解析】对模型甲: ()00M m v mv =-∆-∆甲21085=200.5629v h m m g =≈甲甲对模型乙第一级喷气: 10022m mM v v ∆∆⎛⎫=-- ⎪⎝⎭乙 解得: 130m v s=乙2s 末: ‘11=10m v v gt s-=乙乙22111'=402v v h m g-=乙乙乙对模型乙第一级喷气:‘120=)2222M M m m v v v ∆∆--乙乙( 解得: 2670=9mv s 乙 22222445=277.10281v h m m g =≈乙乙可得: 129440+=116.5481h h h h m m ∆=-≈乙乙甲。
2.匀强电场的方向沿x 轴正向,电场强度E 随x 的分布如图所示.图中E 0和d 均为已知量.将带正电的质点A 在O 点由能止释放.A 离开电场足够远后,再将另一带正电的质点B 放在O 点也由静止释放,当B 在电场中运动时,A 、B 间的相互作用力及相互作用能均为零;B 离开电场后,A 、B 间的相作用视为静电作用.已知A 的电荷量为Q ,A 和B 的质量分别为m和.不计重力.(1)求A在电场中的运动时间t,(2)若B的电荷量q =Q,求两质点相互作用能的最大值E pm(3)为使B离开电场后不改变运动方向,求B所带电荷量的最大值q m【答案】(1)(2)145QE0d (3)Q【解析】【分析】【详解】解:(1)由牛顿第二定律得,A在电场中的加速度 a ==A在电场中做匀变速直线运动,由d =a得运动时间 t ==(2)设A、B离开电场时的速度分别为v A0、v B0,由动能定理得QE0d =mqE0d =A、B相互作用过程中,动量和能量守恒.A、B相互作用为斥力,A受力与其运动方向相同,B受的力与其运动方向相反,相互作用力对A做正功,对B做负功.A、B靠近的过程中,B的路程大于A的路程,由于作用力大小相等,作用力对B做功的绝对值大于对A做功的绝对值,因此相互作用力做功之和为负,相互作用能增加.所以,当A、B最接近时相互作用能最大,此时两者速度相同,设为v,,由动量守恒定律得:(m +)v,= mv A0 +v B0由能量守恒定律得:E Pm= (m+)—)且 q =Q解得相互作用能的最大值 E Pm =145QE 0d (3)A 、B 在x>d 区间的运动,在初始状态和末态均无相互作用 根据动量守恒定律得:mv A +v B = mv A0 +v B0 根据能量守恒定律得:m +=m+解得:v B = -+因为B 不改变运动方向,所以v B = -+≥0解得: q≤Q则B 所带电荷量的最大值为:q m =Q3.(1)(5分)关于原子核的结合能,下列说法正确的是 (填正确答案标号。
高考物理动量守恒定律真题汇编(含答案)含解析

高考物理动量守恒定律真题汇编(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.3.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
物理动量守恒定律各地方试卷集合及解析

物理动量守恒定律各地方试卷集合及解析一、动量守恒定律选择题1.在光滑的水平桌面上有等大的质量分别为M=0.6kg,m=0.2kg的两个小球,中间夹着一个被压缩的具有E p=10.8J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态。
现突然释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R=0.425m的竖直放置的光滑半圆形轨道,如图所示。
g取10m/s2。
则下列说法正确的是()A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4N·sB.弹簧弹开过程,弹力对m的冲量大小为1.8N·sC.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D.M离开轻弹簧时获得的速度为9m/s2.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是()A.人在船上走动过程中,人的动能是船的动能的8倍B.人在船上走动过程中,人的位移是船的位移的9倍C.人走动时,它相对水面的速度大于小船相对水面的速度D.人突然停止走动后,船由于惯性还会继续运动一小段时间3.从高处跳到低处时,为了安全,一般都要屈腿(如图所示),这样做是为了()A.减小冲量B.减小动量的变化量C.增大与地面的冲击时间,从而减小冲力D.增大人对地面的压强,起到安全作用4.在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为pA=10 kg·m/s、pB=13 kg·m/s,碰后它们动量的变化分别为ΔpA、ΔpB.下列数值可能正确的是( )A.ΔpA=-3 kg·m/s、ΔpB=3 kg·m/sB.ΔpA=3 kg·m/s、ΔpB=-3 kg·m/sC.ΔpA=-20 kg·m/s、ΔpB=20 kg·m/sD.ΔpA=20kg·m/s、ΔpB=-20 kg·m/s5.3个质量分别为m1、m2、m3的小球,半径相同,并排悬挂在长度相同的3根竖直绳上,彼此恰好相互接触.现把质量为m1的小球拉开一些,如图中虚线所示,然后释放,经球1与球2、球2与球3相碰之后,3个球的动量相等.若各球间碰撞时均为弹性碰撞,且碰撞时间极短,不计空气阻力,则m1:m2:m3为()A.6:3:1 B.2:3:1 C.2:1:1 D.3:2:16.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a自由下落到b,再从b开始以恒力制动竖直下落到c停下.已知跳楼机和游客的总质量为m,ab 高度差为2h,bc高度差为h,重力加速度为g.则A.从a到b与从b到c的运动时间之比为2:1B.从a到b,跳楼机座椅对游客的作用力与游客的重力大小相等C.从a到b,跳楼机和游客总重力的冲量大小为m ghD.从b到c,跳楼机受到制动力的大小等于2mg7.如图,表面光滑的固定斜面顶端安装一定滑轮,小物块A.B用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A、B处于同一高度并恰好处于静止状态.剪断轻绳后A下落、B沿斜面下滑,则从剪断轻绳到物块着地,两物块A.落地时的速率相同B.重力的冲量相同C.重力势能的变化量相同D.重力做功的平均功率相同8.如图所示,在光滑的水平面上有体积相同、质量分别为m=0.1kg和M=0.3kg的两个小球A、B,两球之间夹着一根压缩的轻弹簧(弹簧与两球不相连),A、B两球原来处于静止状态.现突然释放弹簧,B球脱离弹簧时的速度为2m/s;A球进入与水平面相切、半径为0.5m的竖直面内的光滑半圆形轨道运动,PQ为半圆形轨道竖直的直径,不计空气阻力,g取10m/s2,下列说法正确的是()A.A、B两球离开弹簧的过程中,A球受到的冲量大小等于B球受到的冲量大小B.弹簧初始时具有的弹性势能为2.4JC.A球从P点运动到Q点过程中所受合外力的冲量大小为1N∙sD.若逐渐增大半圆形轨道半径,仍然释放该弹簧且A球能从Q点飞出,则落地的水平距离将不断增大9.如图所示,光滑的半圆槽置于光滑的地面上,且一定高度自由下落的小球m恰能沿半圆槽的边缘的切线方向滑入原先静止的槽内,对此情况,以下说法正确的是()A.小球第一次离开槽时,将向右上方做斜抛运动B.小球第一次离开槽时,将做竖直上抛运动C.小球离开槽后,仍能落回槽内,而槽将做往复运动D.槽一直向右运动10.如图所示,在粗糙水平面上,用水平轻绳相连的两个相同的物体A、B质量均为m,在水平恒力F作用下以速度v做匀速运动.在t=0时轻绳断开,A在F作用下继续前进,则下列说法正确的是()A.t=0至t=mvF时间内,A、B的总动量守恒B.t=2mvF至t=3mvF时间内,A、B的总动量守恒C.t=2mvF时,A的动量为2mvD.t=4mvF时,A的动量为4mv11.如图所示,滑块和小球的质量分别为M、m.滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O由一不可伸长的轻绳相连,轻绳长为l.开始时,轻绳处于水平拉直状态,小球和滑块均静止.现将小球由静止释放,当小球到达最低点时,下列说法正确的是( )A .滑块和小球组成的系统动量守恒B .滑块和小球组成的系统水平方向动量守恒C .滑块的最大速率为22()m gl M M m + D .滑块的最大速率为 2()m gl M M m + 12.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。
高考物理动量守恒定律各地方试卷集合汇编含解析

高考物理动量守恒定律各地方试卷集合汇编含解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.28.如图所示,质量为m a =2kg 的木块A 静止在光滑水平面上。
一质量为m b = lkg 的木块B 以初速度v 0=l0m/s 沿水平方向向右运动,与A 碰撞后都向右运动。
木块A 与挡板碰撞后立即反弹(设木块A 与挡板碰撞过程无机械能损失)。
后来木块A 与B 发生二次碰撞,碰后A 、B 同向运动,速度大小分别为1m/s 、4m/s 。
求:木块A 、B 第二次碰撞过程中系统损失的机械能。
【答案】9J【解析】试题分析:依题意,第二次碰撞后速度大的物体应该在前,由此可知第二次碰后A 、B 速度方向都向左。
第一次碰撞 ,规定向右为正向 m B v 0=m B v B +m A v A 第二次碰撞 ,规定向左为正向 m A v A -m B v B = m B v B ’+m A v A ’ 得到v A =4m/s v B =2m/sΔE=9J考点:动量守恒定律;能量守恒定律.视频3.[物理─选修3-5](1)天然放射性元素23994Pu经过次α衰变和次β衰变,最后变成铅的同位素。
(填入铅的三种同位素20682Pb、20782Pb、20882Pb中的一种)(2)某同学利用如图所示的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A、B两摆球均很小,质量之比为1∶2.当两摆均处于自由静止状态时,其侧面刚好接触.向右上方拉动B球使其摆线伸直并与竖直方向成45°角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成30°.若本实验允许的最大误差为±4%,此实验是否成功地验证了动量守恒定律?【答案】(1)8,4,20782Pb;(2)211P PP-≤4%【解析】【详解】(1)设发生了x次α衰变和y次β衰变,根据质量数和电荷数守恒可知,2x-y+82=94,239=207+4x;由数学知识可知,x=8,y=4.若是铅的同位素206,或208,不满足两数守恒,因此最后变成铅的同位素是20782Pb(2)设摆球A、B的质量分别为Am、Bm,摆长为l,B球的初始高度为h1,碰撞前B球的速度为v B.在不考虑摆线质量的情况下,根据题意及机械能守恒定律得1(1cos45)h l=-︒①2112B B Bm v m gh=②设碰撞前、后两摆球的总动量的大小分别为P1、P2.有P1=m B v B ③联立①②③式得12(1cos45)P m gl=-︒④同理可得2()2(1cos30)A B P m m gl =+-︒ ⑤联立④⑤式得211cos301cos 45A B B P m m P m +-︒=-︒ ⑥ 代入已知条件得221 1.03P P⎛⎫= ⎪⎝⎭⑦ 由此可以推出211P P P -≤4% ⑧ 所以,此实验在规定的范围内验证了动量守恒定律.4.卢瑟福用α粒子轰击氮核发现质子。
动量守恒能量守恒练习题

动量守恒能量守恒练习题动量守恒和能量守恒是物理学中两个重要的守恒定律。
它们在解决物理问题中起着关键的作用,尤其在力学和能量转化的问题中应用广泛。
下面是一些关于动量守恒和能量守恒的练习题,让我们来一起进行练习,加深对这两个定律的理解。
练习题1:碰撞问题两个相互靠近的物体质量分别为m1和m2,初始速度分别为v1和v2。
它们发生完全弹性碰撞,向相反方向运动后的速度分别为v1'和v2'。
根据动量守恒定律,我们可以得到以下式子:m1v1 + m2v2 = m1v1' + m2v2'对于给定的初始条件,求解碰撞后物体的速度。
练习题2:能量转化问题一物体从高处自由下落,其高度为h,质量为m。
忽略空气阻力的影响,我们可以应用能量守恒定律,得到以下式子:mgh = 1/2mv^2其中,g是重力加速度,v是物体的速度。
根据这个式子,给定初始条件,可以求解物体在到达地面时的速度v。
练习题3:弹簧振动问题一质量为m的物体挂在一个弹簧上,弹簧的劲度系数为k。
当物体受到外力F推动后,它绕平衡位置做简谐振动。
根据动量守恒和能量守恒定律,我们可以得到以下式子:mω^2A^2 = F^2其中,A是振幅,ω是振动的角频率。
根据这个式子,可以求解物体的运动参数。
练习题4:线性势能转化为动能一个弹簧压缩到长度为x,劲度系数为k。
当弹簧释放时,它将能量转化为物体的动能。
根据能量守恒定律,可以得到以下式子:1/2kx^2 = 1/2mv^2其中,x是弹簧的长度,v是物体的速度。
根据这个式子,可以求解物体的速度。
练习题5:球体滚动问题一个质量为m的球体从斜面上方的高度h滚动下来,斜面的倾角为θ。
忽略摩擦的影响,根据能量守恒定律,我们可以得到以下式子:mgh = 1/2mv^2 + 1/2Iω^2其中,g是重力加速度,v是球体的速度,I是球体关于通过球心的转动轴的转动惯量,ω是球体的角速度。
根据这个式子,可以求解球体在到达底部时的速度。
高中物理动量守恒定律真题汇编(含答案)

高中物理动量守恒定律真题汇编(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量为 M=2kg 的小车静止在光滑的水平地面上,其AB 局部为半径R=0.3m一一1 一的光滑一圆孤,BC 局部水平粗糙,BC 长为L=0.6m .一可看做质点的小物块从A 点由静止4(1)小物块与小车 BC 局部间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度.【答案】(1) 0.5 (2) 1m/s 【解析】解:(1)小物块滑到C 点的过程中,系统水平方向动量守恒那么有: (M m)v 0所以滑到C 点时小物块与小车速度都为 0由能量守恒得:mgR mgLR解得: R 0.5L(2)小物块滑到B 位置时速度最大,设为 必,此时小车获得的速度也最大,设为V 2由动量守恒得:mv 1 Mv 2121 2 由能重寸恒得:mgR — mv 1— Mv 2 22联立解得:v 2 1m / s2.如下图,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧 MN 的半径为R=3.2m,水平局部NP 长L=3.5m,物体B 静止在足够长的平板小车 C 上,B 与小车的接触 面光滑,小车的左端紧贴平台的右端.从 M 点由静止释放的物体 A 滑至轨道最右端P 点后 再滑上小车,物体 A 滑上小车后假设与物体 B 相碰必粘在一起,它们间无竖直作用力. A 与释放,滑到C 点刚好相对小车停止.小物块质量 m=1kg,取 g=10m/s 2.求:平台水平轨道和小车上外表的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相取 g=10m/s 2,求等.物体A 、B 和小车C 的质量均为1kg,K(1)物体A 进入N 点前瞬间对轨道的压力大小?考点:牛顿第二定律;动量守恒定律;能量守恒定律(2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ;(2)物体A 在NP 上运动的时间为 0.5s (3)物体A 最终离小车左端的距离为33m 16【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得: 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体 A 进入轨道前瞬间对轨道压力大小为:(2)物体A 在平台上运动过程中2m A gR=m A v NF N ' =3A g=30N(imAg=mAa 2 L=v N t-at 代入数据解得t=0.5s t=3.5s (不合题意,舍去)(3)物体A 刚滑上小车时速度 v 〔= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体 A 组成系统动量守恒,而物体 B 保持静止(m A + m C )v 2= m A v 1小车最终速度 v 2=3m/s此过程中A 相对小车的位移为 L 1,那么,1 2 129mgL 1 — mv 1 - 2mv 2 解得:L [=1m2 24物体A 与小车匀速运动直到 A 碰到物体B, A, B 相互作用的过程中动量守恒:(m A + m B )v 3= m A V 2此后A, B 组成的系统与小车发生相互作用,动量守恒,且到达共同速度V 4(m A + m B )v 3+m C v 2=" (m" A +m B +m C ) v 4此过程中A 相对小车的位移大小为L 2,那么mgL 2 1mv 22 1 2 22mv 3213mv 42解得:23 1_2= — m16物体A 最终离小车左端的距离为,33 x=L i -L 2=— m163.光滑水平轨道上有三个木块A 、B 、 C,质量分别为 m A 3m 、m Bmb m ,开始时B 、C 均静止,A 以初速度V o 向右运动, 起,此后A 与B 间的距离保持不变.求A 与B 相撞后分开,B 又与C 发生碰撞并粘在一 B 与C碰撞前B 的速度大小.239 _94PU 经过 次a 盘变和 次3盘变,取后变成铅的同位 素.(填入铅的三种同位素 206 Pb 、282Pb 、282Pb 中的一种)(2)某同学利用如下图的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为 1 :2.当两摆均处于自由静止状态时,其侧面刚好 接触.向右上方拉动 B 球使其摆线伸直并与竖直方向成 45.角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成 30..假设本实验允许的最大误差为土猊,此 实验是否成功地验证了动量守恒定律? 【解析】【详解】(1)设发生了 x 次“衰变和y 次3衰变,【解析】 【分析】设A 与B 碰撞后,A 的速度为V A , B 与C 碰撞前B 的速度为%, B 与C 碰撞后粘在一起的 速度为V,由动量守恒定律得: 对A 、B 木块:m A V o对B 、C 木块:M B由A 与B 间的距离保持不变可知 v A v 联立代入数据得:m A V A m B V Bmb4 .[物理出彳3—5] (1)天然放射性元素207【答案】(1) 8, 4, 82Pb ; (2)根据质量数和电荷数守恒可知,2x-y+82=94, 239=207+4x;由数学知识可知,x=8, y=4.假设是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是282Pb(2)设摆球A 、B 的质量分别为 m A 、m B,摆长为l, B 球的初始高度为h i,碰撞前B 球 的速度为V B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得h 1 l(1 cos45)①1 22m B V B m B ghi ②设碰撞前、后两摆球的总动量的大小分别为P i 、P 2.有 P i = m B V B ③所以,此实验在规定的范围内验证了动量守恒定律.5.氢是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氨气 会随气体进入肺脏,氢衰变时放出射线,这种射线像小 炸弹〞一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.假设有一静止的氢核222Rn 发生 衰变,放出一个速度为V .、质量为m 的 粒子和一个质量为 M 的反冲核针288 Po 此过程动量守恒,假设氢核发 生衰变时,释放的能量全部转化为粒子和针核的动能.(1)写衰变方程;联立①②③式得同理可得联立④⑤式得代人条件得由此可以推出 P m B J 2gl (1 cos45 ) ④F 2 (m A m B R2gl(1 cos30 )⑤P 2 m A m B 1 cos30 - - -------- J d P 1 m B . 1 cos452P2… —1.03⑦P(2)求出反冲核针的速度;(计算结果用题中字母表示相反;(3) m 【解析】 【分析】 【详解】(1)由质量数和核电荷数守恒定律可知,核反响方程式为222 218 4..86Rn 84 Po+2He (2)核反响过程动量守恒,以 a 离子的速度方向为正方向 由动量守恒定律得mv 0 Mv 0解得vmv 0■,负号表示方向与 a 离子速度方向相反 M(3)衰变过程产生的能量21 2 1 2M m mv oE -mv 2 - Mv 2-2 22M由爱因斯坦质能方程得2E mc解得M m mv 2m ------------ 5——2Mc 26.如下图,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕.点下摆,当摆到最低点 B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处 A.求男演员落地点 C 与O 点的水平距离s.男演员质量 m 1 和女演员质量 m 2之比m 1 :m 2=2,秋千的质量不计,秋千的摆长为R, C 点比.点低5R.【答案】8R 【解析】【分析】 【详解】两演员一起从从 A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为 m,那么12(3)求出这一衰变过程中的质量亏损.(计算结果用题中字母表示)2222184 ..【答木】(1) 86 Rn 84 Po 2 He ; (2) vmv o负号表示方向与“离子速度方向2M m mv 0 2Mc 2mgR -mv1 2女演员刚好能回到高处,机械能依然守恒:m2gR -m2v12女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:(m l m2) v m2v l m1v2③根据题意:m1 :m2 2有以上四式解得:v22 2gR1c 8R接下来男演员做平抛运动:由4R -gt2,得t —2 . g因而:s v2t 8R;【点睛】两演员一起从从A点摆到B点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;此题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.7.光滑水平面上质量为1kg的小球A,以2.0m/s的速度与同向运动的速度为 1.0m/s、质量为2kg的大小相同的小球B发生正碰,碰撞后小球B以1.5m/s的速度运动.求:I~~J S I(1)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能.【答案】V A 1.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:_1 2,1 2 _ 1 y 2 _ 1 ,2KE损一]山正且? /8 ①山尸A/㈤胪B代入数据解得:E 损=0.25J 答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为 0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.8 .如下图,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为科使木板与重物以共同的速度 v o 向右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹长,重物始终在木板上.重力加速度为g.求木板从第一次与墙碰撞到再次碰撞所经历的时间4V 0 3~g解:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次 撞墙. 木板第一次与墙碰撞后,重物与木板相互作用直到有共同速度V,动量守恒,有:2mv o - mv o = (2m+m) v, 解得: v=^-木板在第一个过程中,用动量定理,有: mv - m ( - v 0)=科2mgt…〜一 一 1? 1 2八用动能TE 理,有: -mv --IDV O =-科 2mgs木板在第二个过程中,匀速直线运动,有: s=vt 2,,一,…~、2v n 2v n I 4V n木板从第一次与墙碰撞到再次碰撞所经历的时间t=t l +t 2=—-+——-=一-3|Xg_ ……入……工……L,[W答:木板从第一次与墙碰撞到再次碰撞所经历的时间为34M【点评】此题是一道考查动量守恒和匀变速直线运动规律的过程复杂的好题,正确分析出 运动规律是关键.9 .如下图,带有 1光滑圆弧的小车 A 的半径为R,静止在光滑水平面上.滑块C 置于4木板B 的右端,A 、B 、C 的质量均为 m, A 、B 底面厚度相同.现 B 、C 以相同的速度向右 匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高.设木板足够处.那么:(重力加速度为 g)(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【解析】此题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为vo, AB 相碰过程中动量守恒,设碰后 AB 总体速度u,由12 1 2 12-mv 0 - 2mu - 3mu mgR 2 2 2解得 v o 2.3gR(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有 mv 0 2mu mv 1 2mv 210.如下图,在光滑的水平面上,质量为 4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁 不粘连.质量为 m 的小滑块(可视为质点)以水平速度 v 0滑上木板左端,滑到木板右端时 速度恰好为零.现小滑块以水平速度 v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求 一的值. 0v 1【答案]一二三 %- 【解析】1 2试题分析:小滑块以水平速度 v 0右滑时,有:fL =0- - mv 2 (2分)2mv o 2mu ,解得 uV2C 滑到最高点的过程mv o 2mu 3mu1 2—mv 0 2-2mu 21mv ; - 2mv 2 2 22 解得:v 1 mgR, 35,3gR31 o 1 o小滑块以速度v 滑上木板到运动至碰墙时速度为vi,那么有 fL = — mv 1-—mv (2分)2 2滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为 丫2,那么有 mv i =(m 4m)v 2(2 分)1 2 1 2由总能重寸恒可得:fL= —mv 1 -- (m 4m)v 2 (2分)2 2 v 3上述四式联立,解得 一一(1分)v o 2考点:动能定理,动量定理,能量守恒定律.11.如下图,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 m 的小 木块A, m 〈M,A 、B 间粗糙,现给 A 和B 以大小相等、方向相反的初速度 v0,使A 开始向 左运动,B 开始向右运动,最后 A 不会1t 离B,求:(1) A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.…… M m2Mm 2【答案】(1) ------------------------- v 0 (2) -------------- v 0M m 2 Mg【解析】试题分析:(1)由A 、B 系统动量守恒定律得:Mv0 —mv0= (M +m ) v ①一 M -w所以v=- ---------- v0 方向向右(2) A 向左运动速度减为零时,到达最远处,设此时速度为 Mv 0 mv 0Mv0 — mv0="Mv' v -------------------- 方 向向右M考点:动量守恒定律;点评:此题主要考查了动量守恒定律得直接应用,难度适中.12.如下图,粗细均匀的圆木棒 A 下端离地面高 H,上端套着一个细环 B. A 和B 的质 量均为m, A 和B间的滑动摩擦力为f,且fvmg.用手限制A 和B 使它们从静止开始自由 下落.当A 与地面碰撞后,A 以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时 间极短,空气阻力不计,运动过程中 A 始终呈竖直状态.求:假设 A 再次着地前B 不脱离A, A 的长度应满足什么条件?v'那么由动量守恒定律得:r~丘7 --------------(mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么也=\Z两木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mg ai = -解得:山,方向竖直向下对环:・_ mg-/解得上m方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变2 vo木棒在空中运动的时间为在这段时间内,环运动的位移为--■ . ■要使环不碰地面,那么要求木棒长度不小于x,即,兰冈L>...................解得:+考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。
高考物理动量守恒定律各地方试卷集合汇编含解析

高考物理动量守恒定律各地方试卷集合汇编含解析一、高考物理精讲专题动量守恒定律1.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
动量、动能定理、机械能守恒、能量守恒经典例题分析

图5-3-1动能、动量、机械能守恒 综合运用【例1】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. 【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G ==αsinαμc o s 1m g l W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-=对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ【例2】如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W 外=0,所以mgR -umgS -W AB =0 即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【例3】质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m.质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,并以v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ.解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段.所以本题必须分三个阶段列方程:子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0= mv +Mv 1……①木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2,图5-3-2Lhs图5-3-3有:22212121Mv Mv MgL -=μ……②木块离开台面后的平抛阶段,ghv s 22=……③ 由①、②、③可得μ=0.50【点悟】从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理. 机械能【例1】如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点 多高?通过轨道点最低点时球对轨道压力多大?【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列R v m m g c 2= 得 gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B 62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.【例2】质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图5-5-8所示.物块从钢板正对距离为3 x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物体质量也为m 时,它们恰能回到O 点,若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度,求物块向上运动到最高点与O 点的距离. 物块从3x 0位置自由落下,与地球构成的系统机械能守恒.则有200213.mv x mg =(1) v 0为物块与钢板碰撞时的的速度.因为碰撞板短,内力远大于外力,钢板与物块间动量守恒.设v 1为两者碰撞后共同速m v 0=2m v 1 (2)两者以v l 向下运动恰返回O 点,说明此位置速度为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量与能量守恒【题组二】一.选择题1.(2009崇文区期末试题)如图所示,一个质量为0.18kg 的垒球,以25m/s 的水平速度飞向球棒,被球棒打击后反向水平飞回,速度大小变为45m/s ,设球棒与垒球的作用时间为0.01s 。
下列说法正确的是( A )①球棒对垒球的平均作用力大小为1260N②球棒对垒球的平均作用力大小为360N③球棒对垒球做的功为126J④球棒对垒球做的功为36JA .①③B .①④C .②③D .②④2.(2009崇文区期末试题)质量相等的两木块A 、B 用一轻弹簧栓接,静置于水平地面上,如图(a )所示。
现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图(b )所示。
从木块A 开始做匀加速直线运动到木块B 将要离开地面时的这一过程,下列说法正确的是(设此过程弹簧始终处于弹性限度内 )( A )A .力F 一直增大B .弹簧的弹性势能一直减小C .木块A 的动能和重力势能之和先增大后减小D .两木块A 、B 和轻弹簧组成的系统的机械能先增大后减小3.(凤阳荣达学校2009届高三物理第三次月考测试卷).如图所示,一个质量为m 的物体以某一速度从A 点冲上倾角为30°的斜面,其运动的加速度为3g /4,这物体在斜面上上升的最大高度为h ,则这过程中:( BD )A 、重力势能增加了mgh 43; B 、机械能损失了mgh 21; C 、动能损失了mgh ;D 、重力势能增加了mgh 。
4.(2009江安中学月考)如图,一轻弹簧左端固定在长木块M 的左端,右端与小木块m连接,BC且m 、M 及M 与地面间接触光滑。
开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2。
从两物体开始运动以后的整个运动过程中,对m 、M 和弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度)。
正确的说法是(.D )A 、由于F 1、F 2等大反向,故系统机械能守恒B 、F 1、F 2 分别对m 、M 做正功,故系统动量不断增加C 、F 1、F 2 分别对m 、M 做正功,故系统机械能不断增加D 、当弹簧弹力大小与F 1、F 2大小相等时,m 、M 的动能最大5.(2009届高士中学第二次月考高三物理试题)光滑水平面上静置一质量为M 的木块,一颗质量为m 的子弹以水平速度v 1射入木块,以v 2速度穿出,对这个过程,下列说法正确的是: ( D )A 、子弹对木块做的功等于()222121v v m -; B 、子弹对木块做的功等于子弹克服阻力做的功;C 、子弹对木块做的功等于木块获得的动能与子弹跟木块摩擦生热的内能之和;D 、子弹损失的动能等于木块的动能跟子弹与木块摩擦转化的内能和。
6.(肥西中学高三物理第二次月考试卷)质量为m 的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦系数为μ,在外力作用下,斜面以加速度a 沿水平方向向左做匀加速运动,运动中物体m 与斜面体相对静止。
则关于斜面对m 的支持力和摩擦力的下列说法中错误的是 ( B )A .支持力一定做正功B .摩擦力一定做正功C .摩擦力可能不做功D .摩擦力可能做负功7.(2009安丰中学月考)如图所示,在一辆表面光滑足够长的小车上,有质量为m 1、m 2的两个小球(m 1>m 2),原来随车一起运动,当车突然停止时,如不考虑其他阻力,则两个小球( B )A .一定相碰B .一定不相碰C .不一定相碰D .无法确定,因为不知小车的运动方向8.(合肥35中2009届高三物理第一次质量抽测试卷)如图,电梯内固定的 光滑水平桌面上,一轻弹簧左端固定,一小球与弹簧接触而不粘连。
先用手推着球使弹簧压缩到一定程度,再释放,小球离开弹簧时获得了一定的动能。
当电梯向上减速时,球对桌面的压力用F N1表示,球获得的动能用E K1表示,电梯向上匀速时,球对桌面的压力用F N2表示,获得的动能用E K2表示,当电梯向上加速时,球对桌面的压力用F N3表示,获得的动能用E K3表示,则下列表达式成1 F立的是 ( BC )A.F N1=F N2=F N3 B.F N1<F N2<F N3 C.E K1=E K2=E K3 D.E K1<E K2<E K39.(2009丰台区期末试题)在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m的跳水运动员进入水中后受到水的阻力而竖直向下做减速运动,设水对他的阻力大小恒为F,那么在他减速下降深度为h的过程中,下列说法正确的是(g为当地的重力加速度)( BD )A.他的动能减少了FhB.他的重力势能减少了mghC.他的机械能减少了(F-mg)hD.他的机械能减少了Fh10.(2009高淳外校月考)如图所示,A、B两质量相等的长方体木块放在光滑的水平面上,一颗子弹以水平速度v先后穿过A和B(此过程中A和B没相碰)。
子弹穿过B后的速度变为2v/5 ,子弹在A和B内的运动时间t1 : t2=1:2,若子弹在两木块中所受阻力相等,则:(AC)A.子弹穿过B后两木块的速度大小之比为1:2B.子弹穿过B后两木块的速度大小之比为1:4C.子弹在A和B内克服阻力做功之比为3:4D.子弹在A和B内克服阻力做功之比为1:211.(开城中学2008-2009学年度第一学期高三月考)如图所示,水平面上的轻弹簧一端与物体相连,另一端固定在墙上P点,已知物体的质量为m=2.0kg,物体与水平面间的动摩擦因数μ=0.4,弹簧的劲度系数k=200N/m.现用力F拉物体,使弹簧从处于自然状态的O点由静止开始向左移动10cm,这时弹簧具有弹性势能E P=1.0J,物体处于静止状态.若取g=10m/s2,则撤去外力F后( CD )A. 物体回到O点时速度最大B .物体向右滑动的距离可以达到12.5cmC .物体向右滑动的距离一定小于12.5cmD. 物体到达最右端时动能为0,系统机械能不为012.(长郡中学2009届高三第二次月考物理试题) 子弹在射入木块前的动能为E 1,动量大小为1p ;射穿木板后子弹的动能为E 2,动量大小为2p 。
若木板对子弹的阻力大小恒定,则子弹在射穿木板的过程中的平均速度大小为(BC)A 、2121p p E E ++ B 、1212p p E E -- C 、2211p E p E + D 、2211p E p E -13.(2009海淀区期末试题) 如图所示,一质量为m 的金属杆ab ,以一定的初速度v 0从一光滑平行金属轨道的底端向上滑 行,轨道平面与水平面成θ角,两导轨上端用一电阻相连, 磁场方向垂直轨道平面向上,轨道与金属杆ab 的电阻不计并接触良好。
金属杆向上滑行到某一高度h 后又返回到底端,在此过程中 ( B )A .整个过程中合外力的冲量大小为2mv 0B .下滑过程中合外力所做的功等于电阻R 上产生的焦耳热C .下滑过程中电阻R 上产生的焦耳热小于mgh mv -2021 D .整个过程中重力的冲量大小为零14.(湖南省长沙市一中高三第二次月考).一物体竖直向下匀加速运动一段距离,对于这一运动过程,下列说法正确的是 ( C )A .物体的机械能一定增加B .物体的机械能一定减少C .相同时间内,物体动量的增量一定相等D .相同时间内,物体动能的增量一定相等15.(宜昌市一中2009届高三年级十月月考).如图所示,小车由光滑的弧形段AB 和粗糙的水平段BC 组成,静止在光滑水平面上,当小车固定时,从A 点由静止滑下的物体到C 点恰好停止。
如果小车不固定,物体仍从A 点静止滑下,则(B)A .还是滑到C 点停住B .滑到BC 间某处停住C .会冲出C 点落到车外D .上述三种情况都有可能16.(芜湖一中2009届高三第一次模拟考试)在探究功与物体速度变化的关系实验中,某同学在一次实验中得到了一条如图所示的纸带,这条纸带上的点两端较密,中间疏,出现这种情Ah 况的原因可能是 (C)A .电源的频率不稳定B .木板倾斜程度太大C .没有使木板倾斜或倾斜角度太小D .是由于橡皮筋的拉伸程度过大而导致的17.(2009东城区期末试题)下列说法正确的是 ( B )A .质点做自由落体运动,每秒内重力所做的功都相同B .质点做平抛运动,每秒内动量的增量都相同C .质点做匀速圆周运动,每秒内合外力的冲量都相同D .质点做简谐运动,每四分之一周期内回复力做的功都相同18.(2009届湖南省浏阳一中高三10月月考物理试题).如图所示,一物体以初速度v 0冲向光滑斜面AB ,并能沿斜面升高h ,下列说法中正确的是 ( D )A .若把斜面从C 点锯断,由机械能守恒定律可知,物体冲出C 点后仍能升高hB .若把斜面变成圆弧形AB ′,物体仍能沿AB ′升高hC .无论是把斜面从C 点锯断或把斜面弯成圆弧形,物体都不能升高h ,因为机械能不守恒D .无论是把斜面从C 点锯断或把斜面弯成圆弧形,物体都不能升高h ,但机械能守恒υ0υ0A B 19.(2009届湖南省浏阳一中高三10月月考物理试题).如图中AB 为一段粗糙的波浪形路面,一个物体从A 端以初速度v 0开始滑行,到达B 端时的速度大小为v 1,若此物体以同样大小的初速度v 0从B 端开始滑行,到达A 端时速度大小为v 2,则v 1与v 2相比(B ) A .v 1=v 2 B .v 1>v 2C .v 1<v 2D .条件不足,无法比较20.(2009石景山区期末试题)一位高三学生以恒定的速率从学校教学楼的一层上到四层,该同学上楼过程中克服自身重力做的功最接近: ( C )A .60 JB .6.0×102 JC .6.0×103 JD .6.0×104 J21.(湘钢一中2009届10月月考试题)人站在岸上通过定滑轮用轻绳牵引水面上的小船,使船先后经过了A 、B 、C 三点,如图所示。
若水对小船的阻力和人对绳的牵引力F 恒定不变,且AB=BC ,船从A 到B 牵引力做功为W 1,船从B 到C 牵引力做功为W 2,则在船靠岸的过程中,一定是:(B )A . W 1 = W 2B . W 1 > W 2C . W 1 < W 2D . 小船经过C 点时的动能大于它经过B 点时的动能22.(宜昌市一中2009届高三年级十月月考).如图所示,一根不可伸长的轻绳两端各系一个小球a 和b ,跨在两根固定在同一高度的光滑水平细杆上,质量为3m 的a 球置于地面上,质量为m 的b 球从水平位置静止释放。
当a 球对地面压力刚好为零时,b 球摆过的角度为θ。
下列结论正确的是(AC)A .θ=90︒B .θ=45︒C .b 球摆动到最低点的过程中,重力对小球做功的功率 先增大后减小D .b 球摆动到最低点的过程中,重力对小球做功的功率一直增大23.(2009东城区期末试题) 静止在光滑水平面上的物体,受到 水平拉力F 的作用,拉力A.0—4s 内物体的位移为零B.0—4s 内拉力对物体做功为零C. 4s 末物体的速度为零D.0—4s 内拉力对物体冲量为零24.(北京海淀区2009高三期末试题)如图15所示,BD 是竖直平面上圆的一条竖直直径,AC 是该圆的任意一条直径,已知AC 和BD 不重合,且该圆处于匀强电场中,场强大小为E ,方向在圆周平面内。