推荐九年级数学下册 第26章 二次函数 26.2 二次函数的图象与性质(1)学案(无答案)(新版)华东师大版
仪陇县第九中学九年级数学下册 第26章 二次函数26.2 二次函数的图象与性质 1二次函数y=ax2

26.2 二次函数的图象与性质1. 二次函数y =ax 2的图象与性质1.能够利用描点法作出y =x 2的图象,并能根据图象认识和理解二次函数y =x 2的性质.2.能作出二次函数y =-x 2的图象,并能够比较与y =x 2的图象的异同,初步建立二次函数关系式与图象之间的联系.重点会画y =ax 2的图象,理解其性质.难点结合图象理解抛物线开口方向、对称轴、顶点坐标及基本性质,并归纳总结出来.一、创设情境,引入新课导语一 回忆一次函数和反比例函数的定义和图象特征,思考二次函数的图象又有何特征呢?导语二 展示(用课件或幻灯片)具有抛物线的实例让大家欣赏,议一议这与二次函数有何联系呢?导语三 用红色的乒乓球作投篮动作,观察乒乓球的运动路线,思考运动路线有何规律?怎样用数学规律来描述呢?二、探究问题,形成概念1.函数y =ax 2 的图象画法及相关名称【探究1】画y =x 2的图象学生动手实践、尝试画y =x 2的图象教师分析,画图像的一般步骤:列表→描点→连线教师在学生完成图象后,在黑板上示范性画出y =x 2的图象,如图1.【共同探究】该二次函数图像有何特征?特征如下:①形状是开口向上的抛物线;②图象关于y 轴对称;③有最低点,没有最高点.结合图象介绍下列名称:①顶点;②对称轴;③开口及开口方向.2.函数y =ax 2的图象特征及其性质【探究2】在同一坐标系中,画出y =12x 2,y =x 2,y =2x 2的图象. 学生自己完成此题.教师做个别指导,在学生(大部分)完成后,教师可示范性地画出两函数的图象.如图2.比较图中三个抛物线的异同.相同点:①顶点相同,其坐标都为(0,0);②对称轴相同,都为y 轴;③开口方向相同,它们的开口方向都向上.不同点:开口大小不同.【练一练】画出函数y =-x 2,y =-12x 2,y =-2x 2的图象.(分析:仿照探究2的实施过程)比较函数y =-x 2,y =-12x 2,y =-2x 2的图象.找出它们的异同点. 相同点:①形状都是抛物线;②顶点相同,其坐标都为(0,0);③对称轴相同,都为y 轴;④开口方向相同,它们的开口方向都向下.不同点:开口大小不同.【归纳】y =ax 2的图象特征:(1)二次函数y =ax 2的图象是一条抛物线;(2)抛物线y =ax 2的对称轴是y 轴,顶点是原点.当a>0时,抛物线开口向上,顶点是抛物线的最低点.当a<0时,抛物线开口向下,顶点是抛物线的最高点;(3)|a|越大,抛物线y =ax 2的开口越小.三、练习巩固1.已知函数y =(m -2)xm 2-7是二次函数,且开口向下,则m =________.2.已知抛物线y =ax 2经过点A(-2,-8).(1)求此抛物线的函数关系式;(2)判断点B(-1,-4)是否在此抛物线上.3.已知y =(k +2)xk 2+k -4是二次函数,且当x >0时,y 随x 的增大而增大.(1)求k 的值;(2)求顶点坐标和对称轴.4.已知正方形周长为C (cm ),面积为S (cm 2).(1)求S 和C 之间的函数关系式,并画出图象;(2)根据图象,求出S =1 cm 2时,正方形的周长;(3)根据图象,求出C 取何值时,S ≥4 cm 2.四、小结与作业小结1.抛物线y =ax 2 (a ≠0)的对称轴是y 轴,顶点是原点.2.当a >0时,抛物线y =ax 2的开口向上,顶点是抛物线的最低点,a 越大,抛物线的开口越小.3.当a <0时,抛物线y =ax 2的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大.作业1.布置作业:教材P7“练习”中第1,2,3题.2.完成同步练习册中本课时的练习.本节课的教学过程的设计符合新课程标准和课程改革的要求,通过教学情景创设和优化课堂教学设计,体现了在活动中学习数学,在活动中“做数学”的理念,并利用教具使教学内容形象、直观并具有亲和力,极大地调动了学生的学习积极性和热情,培养了学生学习数学的兴趣.教学过程始终坚持让学生自己去动脑、动手、动口,在分析、练习基础上掌握知识.整个教学过程都较好地落实了“学生的主体地位和教师的主导作用”,让学生体会到学习成功的乐趣.22.4 图形的位似变换图形在平面直角坐标系中的位似变换一、教学目标1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.二、重点、难点1.重点:用图形的坐标的变化来表示图形的位似变换.2.难点:把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.难点的突破方法(1)相似与轴对称、平移、旋转一样,也是图形之间的一个基本变换,因此一些特殊的相似(如位似)也可以用图形坐标的变化来表示..(2)带领学生共同探究出位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点..为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.(3)在平面直角坐标系中,用图形的坐标的变化来表示图形的位似变换的关键是要确定位似图形各个顶点的坐标,而不同方法得到的图形坐标是不同的.如:已知:△ABC三个顶点坐标分别为A(1,3),B(2,0),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,根据前面(2)总结的变化规律,点A的对应点A′的坐标为(1×2,3×2),即A′(2,6),或点A的对应点A′′的坐标为(1×(-2),3×(-2)),即A′′(-2,-6).类似地,可以确定其他顶点的坐标.(4)本节课的最后要给学生总结(或让学生自己总结)平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而图形放大或缩小(位似变换)之后是相似的.并让学生练习在所给的图案中,找出平移、轴对称、旋转和位似这些变换.三、例题的意图本节课安排了两个例题,例1是教材P63的例题,它是在引导学生寻找出位似变换中对应点的坐标的变化规律后的一个用图形的坐标的变化来表示图形的位似变换的题目,其目的是巩固新知识,帮助学生加深理解用图形的坐标的变化来表示图形的位似变换知识,此题目应让学生用不同方法作出图形.例2是教材P64的一个问题,它是“平移、轴对称、旋转和位似”四种变换的一个综合题目,所给的图案由于观察的角度不同,答案就会不同,因此应让学生自己来回答,并在顺利完成这个题目基础上,让学生自己总结出这四种变换的异同.四、课堂引入1.如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将△ABC 向左平移三个单位得到△A 1B 1C 1,写出A 1、B 1、C 1三点的坐标;(2)写出△ABC 关于x 轴对称的△A 2B 2C 2三个顶点A 2、B 2、C 2的坐标;(3)将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3、B 3、C 3三点的坐标.2.在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.3.探究:(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O 为位似中心,相似比为31,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现? (2)如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .五、例题讲解例1(教材P63的例题)分析:略(见教材P63的例题分析)解:略(见教材P63的例题解答)问:你还可以得到其他图形吗?请你自己试一试!解法二:点A 的对应点A′′的坐标为(-6×)21(-,6×)21(-),即A′′(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)例2(教材P64)在右图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?分析:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4∶3∶2∶1的位似图形,…….解:答案不惟一,略.六、课堂练习1. 教材P64.1、22. △ABO 的定点坐标分别为A(-1,4),B(3,2),O(0,0),试将△ABO放大为△EFO,使△EFO与△ABO的相似比为2.5∶1,求点E和点F 的坐标.3.如图,△AOB缩小后得到△COD,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比.七、课后练习1.教材P65.3, P66.5、82.请用平移、轴对称、旋转和位似这四种变换设计一种图案(选择的变换不限).3.如图,将图中的△ABC以A.为位似中心,放大到 1.5倍,请画出图形,并指出三个顶点的坐标所发生的变化.教学反思24.6 图形与坐标学前温故在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴,这就建立了平面____.通常把其中水平的一条数轴叫做______或______,取向右为正方向;铅直的数轴叫做______或____,取向上为正方向;两数轴的交点O叫做______.新课早知1.确定点的位置的方法有多种:①用______确定点的位置;②用角度和距离确定点的位置;③用棋盘坐标确定点的位置;④用经纬坐标确定点的位置,利用________来表示.2.平面直角坐标系中,图形中各点的坐标发生变化,则新旧图形的变化规律如下:(1)横坐标不变,纵坐标都乘以-1,图形关于____对称;(2)纵坐标不变,横坐标都乘以-1,图形关于____对称;(3)横、纵坐标均乘以-1,图形关于____对称;(4)如果一个图形的各个点的横坐标都加上(或减去)一个正数a,纵坐标不变,相应的新图形就是把原图形______平移a个单位长度;如果把它的各个点的纵坐标都加上(或减去)一个正数a,横坐标不变,相应的新图形就是把原图形______平移a个单位长度;(5)如果原图形上点的横、纵坐标保持不变,而另一个图形的横、纵坐标扩大或缩小一定倍数时,图形则相应地被________放大或缩小该倍数.3.在平面直角坐标系中,点A(3,4)、B(-4,3),以原点O为位似中心,相似比为2,将线段AB放大,则对应点A′、B′的坐标为( ).A.A′(6,8)、B′(-8,-6)B.A′(6,8)、B′(8,-6)C.A′(-6,-8)、B′(-8,6)D.A′(-6,-8)、B′(8,-6)答案:学前温故直角坐标系x轴横轴y轴纵轴坐标原点新课早知1.平面直角坐标系经纬度2.(1)x轴(2)y轴(3)原点(4)向右(或向左) 向上(或向下)(5)横向、纵向3.D位似变化【例题】如图,把△ABC以A为位似中心,放大1倍,并分别写出变化前后各对应顶点的坐标.分析:(1)运用网格法,延长AB、AC到B′、C′,运用相似三角形性质,相似比等于对应边的比,使AB′=2AB ,AC′=2AC ,连结B′C′,△AB′C′为所求三角形.(2)可运用相似三角形的性质求变化的坐标.解:如上图所示,网格法延长AB 至B′使AB′=2AB , ∵AB=32+32=18=32,则AB′=62,延长AC 至C′使AC′=2AC ,∵AC=52+1=26,则AC′=226,△AB′C′为所求三角形,AB′AB =B′C′BC =AC′AC=2, ∴B′(1,4)、C′(5,0).∴图形变化前后各对应顶点坐标为:A(-5,-2)、B(-2,1)、C(0,-1)、B′(1,4)、C′(5,0).点拨:(1)作位似图形时,也可反向延长,即反向延长BA 、CA 到B′、C′,使AB′=2AB ,AC′=2AC ,连结B′C′.(2)图形放大坐标变化:①用网格法易求点的坐标变化.②运用相似三角形性质求点的坐标变化,构建直角三角形,利用相似形入手求解.1.如图所示,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( ).A .点AB .点BC .点CD .点D2.已知△ABC 在直角坐标系中的位置如图所示,如果△ABC 与△A′B′C′关于y 轴对称,那么点A 的对应点A′的坐标为( ).A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2)3.线段AB 的两端点A(1,3)、B(2,-5).(1)把线段AB 向左平移2个单位,则点A′、B′的坐标为:A′______,B′_______.(2)线段AB 关于x 轴对称的线段A″B″,则其坐标为:A″_______,B″________.(3)把线段AB 向上平移2个单位得线段A 1B 1,A 1B 1关于y 轴对称的线段A 2B 2,那么点A 2的坐标为________,点B 2的坐标为________.4.如图所示是某城市几个景点的示意图(图中小方块是边长为1个单位长度的小正方形).请以某个景点坐标为原点,画出直角坐标系,并用坐标表示下列景点的位置.答案:答案:1.B 2.D3.(1)(-1,3) (0,-5)(2)(1,-3) (2,5)(3)(-1,5) (-2,-3)4.分析:(1)几个景点之中,只有“金凤广场”不在格点上.故选择原点时应避开金凤广场,这样就避免太多的点的坐标是分数.(2)选择湖心岛或者动物园作原点,则其他景点均在y轴的右方或者左方,选择动物园作为坐标原点,则所有点均在第三象限.解:选择动物园作为坐标原点建立直角坐标系,如图所示,则湖心岛的坐标为(-6,-2),光岳楼的坐标为(-5,-3),山峡会馆的坐标为(-1,-3),金凤广场的坐标为(-5.5,-5).。
2020最新华师大版九年级数学下册电子课本课件【全册】

第26章 二次函数
2020最新华师大版九年级数学下册 电子课本课件【全册】
26.1 二次函数
2020最新华师大版九年级数学下册 电子课本课件【全册】
26.2 二次函数的图象与性质
2020最新华师 0087页 0128页 0196页 0224页 0249页 0296页 0337页 0349页 0402页 0425页 0483页 0515页
第26章 二次函数 26.2 二次函数的图象与性质 2. 二次函数y=ax2+bx+c的图象与性质 26.3 实践与探索 27.1 圆的认识 2. 圆的对称性 27.2 与圆有关的位置关系 2. 直线与圆的位置关系 27.3 圆中的计算问题 第28章 样本与总体 1. 普查和抽样调查 28.2 用样本估计总体 2. 简单随机抽样调查可靠吗 1. 借助调查作决策
九年级数学下册第26章二次函数26.2二次函数的图象与性质26.2.1二次函数y=ax2的图象与性质

第26章 二次函数二次函数y =ax 2的图象与性质1.关于抛物线y =12x 2,y =x 2,y =-x 2的共同性质:①都是开口向上;②都以点(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称.其中正确的个数是( ) A .1 B .2 C .3 D .42.已知抛物线y =ax 2()a >0经过A ()-2,y 1,B ()1,y 2两点,则下列关系式一定正确的是( )A .y 1>0>y 2B .y 2>0>y 1C .y 1>y 2>0D .y 2>y 1>03.在同一坐标系中画出下列函数的图象: (1)y =3x 2;(2)y =-13x 2.4.当物体自由下落时,下落的高度h (m)与下落时间t (s)之间的关系式是h =12gt 2(g 为定值,g 取9.8 m/s 2),这表明h 是t 的函数.(1)当t =1、2、3时,求出物体的下落高度h ; (2)画出函数h =12gt 2的图象.5.已知a ≠0,在同一直角坐标系中,函数y =ax 与y =ax 2的图象有可能是( )A B C D6.[2018·株洲]已知二次函数y =ax 2的图象如图,则下列表示的点有可能在反比例函数y =a x的图象上的是( )A .(-1,2)B .(1,-2)C .(2,3)D .(2,-3)7.[2018·岳阳]在同一直角坐标系中,二次函数y =x 2与反比例函数y =1x(x >0)的图象如图所示,若两个函数图象上有三个不同的点A (x 1,m )、B (x 2,m )、C (x 3,m ),其中m 为常数,令ω=x 1+x 2+x 3,则ω的值为( )A .1B .mC .m2D.1m8.[2018·孝感]如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (-2,4)、B (1,1),则方程ax 2=bx +c 的解是______________.9.已知直线y =kx +b 与抛物线y =ax 2(a >0)相交于A 、B 两点(点A 在点B 的左侧),与y 轴正半轴相交于点C ,过点A 作AD ⊥x 轴,垂足为点D .若∠AOB =60°,AB ∥x 轴,AB =2,求a 的值.10.二次函数y =3x 2的图象如图所示,点O 为坐标原点,点A 在y 轴的正半轴上,点B ,C 在二次函数y =3x 2的图象上,四边形OBAC 为菱形,且∠OBA =120°,求菱形OBAC的面积.11.如图,平行于x 轴的直线AC 分别交函数y 1=x 2(x ≥0)与y 2=x 23(x ≥0)的图象于B 、C 两点,过点C 作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC ,交y 2的图象于点E ,求DEAB的值.12.有一座抛物线形拱桥,正常水位时桥下水面宽度为20 m ,拱顶距离水面4 m. (1)在如图所示的直角坐标系中,求出该抛物线的解析式;(2)设正常水位时桥下的水深为 2 m ,为保证过往船只顺利航行,桥下水面的宽度不得小于18 m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.参考答案【分层作业】 1.B 2.C 3.解:列表:3(2)描点,连线,图略.4.解:(1)把t =1、2、3分别代入关系式h =12gt 2,可求得h 1=12×9.8×12=4.9(m),h 2=12×9.8×22=19.6(m), h 3=12×9.8×32=44.1(m).(2)列表:答图在平面直角坐标系中描点,然后用光滑的曲线顺次连结各点,得到函数h =12gt 2的图象,如答图所示.5.C 6.C【解析】∵抛物线开口向上,∴a >0,∴点(2,3)可能在反比例函数y =ax的图象上. 7.D【解析】根据题意可得A ,B ,C 三点有两点在二次函数图象上,一点在反比例函数图象上.不妨设A ,B 两点在二次函数图象上,点C 在反比例函数图象上.∵二次函数y =x 2的对称轴是y 轴,∴x 1+x 2=0.∵点C 在反比例函数y =1x (x >0)上,∴x 3=1m ,∴ω=x 1+x 2+x 3=1m .8.x 1=-2,x 2=1【解析】∵抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (-2,4)、B (1,1),∴⎩⎪⎨⎪⎧y =ax 2,y =bx +c 的解为⎩⎪⎨⎪⎧x 1=-2,y 1=4, ⎩⎪⎨⎪⎧x 2=1,y 2=1, 即方程ax 2=bx +c 的解是x 1=-2,x 2=1. 9. 解:∵AB ∥x 轴,∴点A 、B 关于y 轴对称. ∵AB =2,∴AC =BC =1. ∵∠AOB =60°, ∴OC =3,AD = 3. 又∵点A 在第二象限, ∴点A 的坐标是(-1,3). ∴3=a ·(-1)2,解得a = 3.10.答图解:连结BC 交OA 于点D ,如答图. ∵四边形OBAC 为菱形,∴BC ⊥O A. ∵∠OBA =120°,∴∠OBD =60°, ∴OD =3BD .设BD =t ,则OD =3t ,∴B (t ,3t ), 把B (t ,3t )代入y =3x 2,得3t =3t 2, 解得t 1=0(舍去),t 2=1,∴BD =1,OD = 3. ∴BC =2BD =2,OA =2OD =23, ∴菱形OBAC 的面积=12×2×23=2 3.11.解:设A 点坐标为(0,a )(a >0), 则x 2=a ,解得x =a , ∴点B (a ,a ). 又∵x 23=a ,则x =3a ,∴点C (3a ,a ). ∵CD ∥y 轴,∴点D 的横坐标与点C 的横坐标相同,为3a , ∴y =(3a )2=3a ,∴点D 的坐标为(3a ,3a ). ∵DE ∥AC ,∴点E 的纵坐标为3a , ∴x 23=3a ,∴x =3a , ∴点E 的坐标为(3a ,3a ), ∴DE =3a -3a ,∴DEAB=3a-3aa=3- 3.12.解:(1)设该抛物线的解析式是y=ax2.结合图象,把(10,-4)代入,得100a=-4,∴a=-125,则该抛物线的解析式是y=-125x2.(2)当x=9 m时,则有y=-125×81=-3.24,4+2-3.24=2.76(m),所以水深超过2.76 m时就会影响过往船只在桥下的顺利航行.。
华师版九年级数学下册26.2.2 第1课时 二次函数y=ax2+k的图象与性质教案与反思

新竹高于旧竹枝,全凭老干为扶持。
出自郑燮的《新竹》前进学校史爱东东宫白庶子,南寺远禅师。
——白居易《远师》枫岭头学校张海泉古之学者必严其师,师严然后道尊。
欧阳修铁山学校何逸春1.会用描点法画出y=ax2+k的图象.(重点)2.掌握形如y=ax2+k的二次函数图象的性质,并会应用.(重难点)3.理解二次函数y=ax2+k与y=ax2之间的联系.(重点)一、情境导入在边长为15cm的正方形铁片中间剪去一个边长为x(cm)的小正方形铁片,剩下的四方框铁片的面积y(cm2)与x(cm)的函数关系式是什么?它的顶点标是什么?二、合作探究探究点一:二次函数y=ax2+k的图象与质【类型一】y=ax2+k的图象与性质的识别若二次函数y=ax2+2的图象经过点(-2,10),则下列说法错误的是( )A.a=2B.当x<0时,y随x的增大而减小C.顶点坐标为(2,0)D.图象有最低点解析:把x=-2,y=10代入y=ax2+2可得1=4a+2,∴a=2,∴y=2x2+2,抛物线开口向上,有最低点当x<0时,y随x的增大而减小,∴A、B、D 均正确而顶点标为(0,2),而不是(2,0).故选C.方法总结:抛线y=ax2+k(a≠0)的顶点坐标为(0,k),对称轴y轴.【类型二】二次函数y=ax2+k增减性判断已知点(x1,y1),(x2,y2)均抛物线y=x2-1上下列说法中正确的是( )A.若y1y2,则x1=x2.若x1=-x2,则y1=-y2C.若0<x1<x2则y1>y2D.若x1<x2<0,则y1>y2解析:如图所示,选项A:若y1=y2,则x1=x2或x1=-x2,∴选项A是错误的;选项B:若x1=-x2,则y1=y2,∴选项B是错误的选项C:若0<x1<x2,在对称轴的右侧,y随x的增大而大,则y1<y2,∴选项C是错误的;选项D:若x1x2<0,在对称轴的左侧,y随x的增大而减小,则y1>y2,故选D.方法总结:讨论二次函数的增减性时,应对自变量分区讨论,通常以对称轴为分界线.【类型三】在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c与二次函数y=ax2+c的图象大致为( )解析:当a>0时,抛物线开口向上,且直线从左向右逐渐上升,当a<0时,抛物线开口向下,且直线从左向右逐渐下降,由此排除选项A,C,D,故选B.方法总结:在解决此类问题时,应分类讨论,逐一排查.【类型四】二次函数y=ax2+k与y=ax2图象之间的关系抛物线y=ax2+c与y=-5x2的形状大小、开口方向都相同,且顶点坐标是(0,3),求抛物线的表达式,它是由抛物线y=-5x2怎样得到的?解析:由于抛物线y=ax2+c与y=-5x2的形状相同,则a=-5,则利用顶点式可写出所求抛物线表达式,然后根据抛物线平移的规律判断抛物线y=-5x2怎样平移得到的抛物线y=-5x2+3.解:∵抛物线y=ax2+c与y=-5x2的形状大小相同,开口方向也相同,∴a=-5.又∵其顶点坐标为(0,3),∴c=3.∴y=-5x2+3.它是由抛物线y =-5x2向上平移3个单位得到的.方法总结:抛物线y=ax2+k与y=ax2开口大小、方向都相同,只是顶点不同,二者可相互平移得到.探究点二:二次函数y=ax2+k的应用【类型一】y=ax2+k的图象与几何图形的综合应用如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是________.解析:二次函数y=ax2+c与y轴的交点为(0,c),因此OA=c,根据正方形对角线互相垂直平分且相等,不难求得B(-c2,c2)、C(c2,c2),因为C(c2,c2)在函数y=ax2+c的图象上,将点C的坐标代入关系式即可求出ac的值.解:∵y=ax2+c与y轴的交点为(0,c),四边形ABOC为正方形,∴C点的坐标为(c2,c2).∵二次函数y=ax2+c经过点C,∴c2=a(c2)2+c,即ac=-2.方法总结:在解决此类问题时,应充分利用抛物线及正方形的对称性.【类型二】二次函数y=ax2+k的实际应用如图,一位篮球运动员投篮,球沿抛物线y=-15x2+72运行,然后准确落入篮筐内,已知篮筐的中心离地面的距离为3.05m.(1)球在空中运行的最大高度为多少?(2)如果该运动员跳起,球出手时离地面的高度为2.25m,要想投入篮筐,则他距离篮筐中心的水平距离是多少?解析:(1)由抛物线的顶点坐标即可得;(2)分别求出y=3.05和y=2.25时x的值即可得出答案.解:(1)∵y=-15x2+72的顶点坐标为(0,3.5),∴球在空中运行的最大高度为3.5m.(2)在y=-15x2+72中,当y=3.05时,3.05=-15x2+72,解得x=±1.5.∵篮筐在第一象限内,∴篮筐中心的横坐标x=1.5.又当y=2.25时,2.25=-1 5x2+72,解得x=±2.5.∵运动员在第二象限内,∴运动员的横坐标x=-2.5.故该运动员距离篮球筐中心的水平距离为1.5-(-2.5)=4(m).方法总结:本题主要考查二次函数的应用,熟练掌握二次函数的性质是解题的关键.三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=ax2+k的图象与性质,体会抛物线y=ax2与y=ax2+k之间联系与区别.1、2019年,文野31岁那年,买房后第二年,完成了人生中最重要的一次转变。
华东版九年级数学下册第26章26.226.2.2第2课时 二次函数y=a(x-h)2的图象与性质

4. 在函数 y=(x-3)2 中,当 x >3 时,函数值 y 随 x 的增大而增大;当 x <3 时,函数值 y 随 x 的增大 而减小; 当 x= 3 时, 函数值 y 取最 小 值, 是 0 .
1 2的开口向 5. 抛物线 y=-3x-2 1 1 直线 x= , 0 2 ,顶点坐标为 是 2
.
9. 若二次函数 y=x2-mx+1 的图象顶点在 x 轴上, 则 m 的值是( D ) A.2 C.0 B.-2 D.±2
10. 在平面直角坐标系中,函数 y=-x+1 与 y=- 3 (x-1)2 的图象大致是( D ) 2
11. 抛物线 y=3(x-1)2 的图象上有三点 A(-1,y1), B( 2,y2),C(2,y3),则 y1,y2,y3 的大小关系是( D ) A.y1>y2>y3 C.y3>y2>y1 B.y2>y1>y3 D.y1>y3>y2
16. 如图所示,二次函数 y1=a(x-h)2 的图象与直线 y2=kx+b 交于 A(0,-1),B(1,0)两点.
(1)确定二次函数与一次函数的解析式; (2)当 y1<y2,y1=y2,y1>y2 时,根据图象分别确定 自变量 x 的取值范围.
解:(1)y1=-(x-1)2, y2=x-1; (2)当 y1<y2 时, x<0 或 x>1, 当 y1=y2 时,x=0 或 x=1, 当 y1>y2 时,0<x<1.
18. 如图,抛物线的顶点 M 在 x 轴上,抛物线与 y 轴交于点 N,且 OM=ON=4,矩形 ABCD 的顶点 A、B 在抛物线上,C、D 在 x 轴上.
(1)求抛物线的解析式; (2)设点 A 的横坐标为 t(t>4), 矩形 ABCD 的周长为 l, 求 l 与 t 之间的函数关系式. 1 解:(1)y=4(x-4)2;
华师大版九年级数学下册第二十六章《二次函数y=ax2+k的图象与性质》优课件

19.不画出图象,回答下列问题: (1)函数y=3x2-2的图象可以看成是由函数y=3x2的图象通过怎样的平移得到的 ? (2)说出函数y=3x2-2的图象的开口方向、对称轴和顶点坐标; (3)函数y=3x2-2的图象还有哪些性质? (4)如果要将函数y=3x2的图象经过适当的平移,得到函数y=3x2+5的图象,那 么应该怎样平移? 解:(1)将函数y=3x2的图象向下平移2个单位就可得到函数y=3x2-2的图象 (2)开口向上,对称轴为y轴,顶点坐标为(0,-2) (3)当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小 (4)将函数y= 3x2的图象向上平移5个单位可得到函数y=3x2+5的图象
mx2+m的图象大致是( )
A
14.已知抛物线 y=-13x2+2,则当 1≤x≤5 时,y 的最大值是( C )
A.2
,两条抛物线 y1=-21x2+1,y2=-12x2-1 与分别经过点(-2,
0),(2,0)且平行于 y 轴的两条平行线围成的阴影部分的面积为( A ) A.8 B.6 C.10 D.4 16.若抛物线 y=2xm2-4m-3+m-4 的顶点在 x 轴的下方,则 m= __-__1__.
B.y=21x2+2,y=2x2+21
C.y=-2x2,y=x2-2 D.y=x2+2,y=x2-2
3.抛物线 y=-31x2+2 可由抛物线 y=-13x2-3 向上____平移__5__个单 位得到. 4.如果把抛物线 y=mx2+n 向下平移 3 个单位后得到抛物线 y=-12x2 +2,那么 m+n 的值是多少?
谢谢观赏
26.二次函数y=ax2+bx+c的图象与性质PPT课件(华师大版)

26.2 二次函数的图象与性质 2.二次函数y=ax2+bx+c的图象与性质
学习目标
情境引入
1.会用配方法或公式法将一般式y=ax2+bx+c化成顶点式y=a(x-
h)2+k.(难点)
2.会熟练求出二次函数一般式y=ax2+bx+c的顶点坐标、对称轴. (重点)
导入新课
复习引入
b 2a
时,y随x的增大而减小;
当x> b 时,y随x的增大而增大.
2a
O
x
(2) 如大果;a当<x0>,当 x2b<a 时2ba,时y随,xy的随增x的大增而大减而小增.
例2 已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减
小,则实数b的取值范围是( )
D
A.b≥-1
B.b≤-1
? ?
最值
最大值0 最大值-5 最大值0 最大值-4
最小值3 ? ?
讲授新课
一 二次函数y=ax2+bx+c的图象和性质
探究归纳
我们已经知道y=a(x-h)2+k的图象和性质,能否利用这些知识来讨论 的图象和性质? y 1 x2 6x 21
2
问题1 怎样将 y 1 x2 6x 21 化成y=a(x-h)2+k的情势? 2
D
A.y轴 C. 直线x=2
B.直线x= 5
2
D.直线x= 3
2
2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所
y
示,则下列结论:
(1)a、b同号;
(2)当x=–1和x=3时,函数值相等;
(3) 4a+b=0; (4)当y=–2时,x的值只能取0; 其中正确的是 (2.)
华师大版九年级[下册]数学知识点总结
![华师大版九年级[下册]数学知识点总结](https://img.taocdn.com/s3/m/9b41cb50581b6bd97e19ea00.png)
华师大版九年级下册数学知识点总结第二十六章 二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零。
二次函数的定义域是全体实数。
2、二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2。
⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项。
二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:3. ()2y a x h =-的性质:4. ()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。
概括成八个字“左加右减,上加下减”。
方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26.2.1二次函数的图象(1)
【学习目标】
1.会用描点法画出函数2ax y =的图象;
2.掌握二次函数2ax y =的图象和性质;
3.体会通过探究发现问题的乐趣。
【重点】二次函数2ax y =的图象和性质 【难点】二次函数2ax y =性质的应用。
【使用说明与学法指导】 先预习P3—P4内容,勾画课文中的重点,然后独立完成导学案,疑惑随时记录在课本或预习案上,准备课上讨论质疑; 预 习 案 一、预习导学: 1. 怎样画二次函数2ax y =的图象?怎么取点? 2.在二次函数2ax y =的图象中,开口方向和开口大小是由什么决定的? 3.二次函数2ax y =的图象和2ax y -=的图象有什么关系?
【知识梳理】
二次函数y =x 2的性质:
1.二次函数y =x 2是一条曲线,把这条曲线叫做______________.
2.二次函数y =x 2中,二次函数a =_______,抛物线y =x 2的图象开口__________.
3.自变量x 的取值范围是____________.
4.观察图象,当两点的横坐标互为相反数时,函数y 值相等,所描出的各对应点关于________对称,
从
而图象关于___________对称.
5.抛物线y =x 2与它的对称轴的交点( , )叫做抛物线y =x 2的 .因此,抛物线与对称轴的交点叫做抛物线的
6.抛物线y =x 2有____________点(填“最高”或“最低”) .
二、我的疑惑
合作探究
探究一:二次函数2ax y =的图象:在同一直角坐标系中,画出函数y =-2x 2、y =2x 2的图象.,并指出它的顶点坐标,对称轴,增减性和最值。
解:列表
探究二:二次函数2ax y =的性质
已知函数42)2(-++=m m x m y 是关于x 的二次函数,求(1)满足条件的m 的值。
(2)m 为何值时,抛物线有最低点?求出这个最低点的坐标,这时当x 为何值时,y 随x 的增大而增大?
二次函数y =ax 2的图象与性质
我们知道,一次函数的图像是一条直线.那么,二次函数的图像是什么?它有什么特点?又有。