江苏省第二十一届初中数学竞赛初三年级_第2试_

合集下载

江苏省第十九届初中数学竞赛初三年级第2试试题

江苏省第十九届初中数学竞赛初三年级第2试试题

江苏省第十九届初中数学竞赛初三年级第2试试题(2004年12月26日 8﹕30-11﹕00)一、选择题(每小题7分,共42分)以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后圆括号内.1、已知整数,x y =,那么整数对(,)x y 的个数是( D )(A )0 (B )1 (C )2 (D )32、方程222x xx-=的正根的个数是 ( A )(A )0 (B )1 (C )2 (D )33、在直角坐标系中,已知两点A (8,3)-、B (4,5)-以及动点C (0,)n 、D (,0)m ,则当四边形ABCD 的周长最小时,比值mn为 ( C )(A )23-(B )2- (C )32-(D )3-4、设一个三角形的三边长为正整数,,a n b ,其中b n a ≤≤。

则对于给定的边长n ,所有这样的三角形的个数是( D )(A )n (B )1n + (C )2nn +(D )1(1)2n n + 5、甲、乙、丙、丁4人打靶,每人打4枪,每人各自中靶的环数之积都是72(中靶环数最高为10),且4人中靶的总环数恰为4个连续整数,那么,其中打中过4环的人数为( C )(A )0 (B )1 (C )2 (D )36、空间6个点(任意三点不共线)两两连线,用红、蓝两色染这些线段,其中A 点连出的线段都是红色的,以这6个点为顶点的三角形中,三边同色的三角形至少有 ( C )(A )3个 (B )4个 (C )5个 (D )6个二、填空题(每题7分,共56分) 7、已知1222Sx x x =--++,且12x -≤≤,则S 的最大值与最小值的差是1 。

8、已知两个整数a 、b ,满足010b a <<<,且9aa b+是整数,那么数对(,)a b 有 7 个。

9、方程22229129xy x y xy ++-=的非负整数解是23x y =⎧⎨=⎩,03x y =⎧⎨=⎩,10x y =⎧⎨=⎩,16x y =⎧⎨=⎩. 10、密码的使用对现代社会是极其重要的。

2021年江苏省苏州市九年级中考数学二模试题

2021年江苏省苏州市九年级中考数学二模试题
C.“同位角相等”这一事件是不可能事件
D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件
5.设点A(x1,y1)和点B(x2,y2)是反比例函数y= 图象上的两点,当x1<x2<0时,y1>y2,则一次函数y=-2x+k的图象不经过的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
23.已知锐角△ABC,∠ABC=45°,AD⊥BC于D,BE⊥AC于E,交AD于F.
(1)求证:△BDF≌△ADC;
(2)若BD=4,DC=3,求线段BE的长度.
24.某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:
(1)求证:EF⊥AC.(2)连结DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.
27.如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.
(1)若∠AOB=45°,OM=4,OQ= ,求证:CN⊥OB;
18.如图,AB是半⊙O的直径,点C在半⊙O上,AB=5cm,AC=4cm.D是 上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为__.
三、解答题
19.计算:(-3)2- +|-2|
20.先化简,再求值: ,其中,a= +1.
21.解不等式组
22.在端午节来临之际,某商店订购了A型和B型两种粽子.A型粽子28元/千克,B型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.

精品解析江苏省南通通州区2021届九年级中考二模数学试题(原卷版)

精品解析江苏省南通通州区2021届九年级中考二模数学试题(原卷版)

2021届初三年级第二次模拟调研测试数学试题注意事项考生在答题前请认真阅读本考前须知:1.本试卷共6页,总分值为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题〔本大题共10小题,每题3分,共30分.在每题给出的四个选项中,恰有一项为哪一项符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上〕1. 计算(-4)+6的结果为( )A. -2B. 2C. -10D. 22. 我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为( )A. 3.5×106B. 3.5×107C. 35×105D. 0.35×1083. 以下图形中,是中心对称图形的是( )A. B. C. D.4. 如图,数轴上有四个点M,P,N,Q,假设点M,N表示的数互为相反数,那么图中表示绝对值最大的数对应的点是( )A. 点MB. 点NC. 点PD. 点Q5. 如图是某个几何体的三视图,该几何体是( )A. 三棱柱B. 三棱锥C. 圆锥D. 圆柱6. 方程3x2-4x-4=0的两个实数根分别为x1,x2.那么x1+x2的值为( )A. 4B.C.D. -7. 八年级学生去距学校10km的博物馆参观,一局部学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达,汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为km/h,那么所列方程正确的选项是( )A. 10x −102x=20 B. 102x−10x=20C. 10x −102x=13D. 102x−10x=138. 假设圆锥的母线长是12,侧面展开图的圆心角是120°,那么它的底面圆的半径为( )学|科|网...A. 2B. 4C. 6D. 89. 如图,点A为反比例函数y=8x (x﹥0)图象上一点,点B为反比例函数y=kx(x﹤0)图象上一点,直线AB过原点O,且OA=2OB,那么k的值为( )A. 2B. 4C. -2D. -410. 如图,在矩形ABCD中,AB=4,BC=6,E为BC的中点.将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,那么△CDF的面积为( )A. 3.6B. 4.32C. 5.4D. 5.76二、填空题〔本大题共8小题,每题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上〕11. 9的算术平方根为____.12. 如图,假设AB∥CD,∠1=65°,那么∠2的度数为____°.13. 分解因式:12a2-3b2=____.14. 如图,⊙O的内接四边形ABCD中,∠BOD=100°,那么∠BCD=____°.15. 如图,利用标杆BE测量建筑物的高度.假设标杆BE的高为1.2m,测得AB=1.6m,BC=12.4m,那么楼高CD为____m.16. 小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是____.17. 将正六边形ABCDEF放入平面直角坐标系xOy后,假设点A,B,E的坐标分别为〔a,b〕,〔-3,-1〕,〔-a,b〕,那么点D的坐标为____.18. 如图,平面直角坐标系xOy中,点A是直线y=x+上一动点,将点A向右平移1个单位得到点B,点C〔1,0〕,那么OB+CB的最小值为____.学|科|网...三、解答题〔本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤〕19. 〔1〕计算(x+y)2-y(2x+y);〔2〕先化简,再求代数式的值:(a+2a2−2a −a−1a2−4a+4)÷a−4a,其中a=2−√5.20. 近年来,我国很多地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因〞,随机调查了该市局部市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表:组别观点频数〔人数〕A 大气气压低,空气不流动mB 地面灰尘大,空气湿度低40C 汽车尾气排放nD 工厂造成的污染120E 其他60请根据图表中提供的信息解答以下问题:〔1〕填空:m=,n=,扇形统计图中E组所占的百分比为 % ;〔2〕假设该市人口约有400万人,请你计算其中持D组“观点〞的市民人数;〔3〕对于“雾霾〞这个环境问题,请用简短的语言发出建议.学|科|网...21. 一个不透明的口袋中装有四个完全相同的小球,把它们分别标号为1,2,3,4.从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,请用列表法或画树形图的方法,求两次摸出的小球上所标数字之和大于4的概率.22. 如图,小明要测量河内小岛B到河边公路AD的距离,在点A处测得∠BAD=37°,沿AD方向前进150米到达点C,测得∠BCD=45°. 求小岛B到河边公路AD的距离.〔参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75〕23. 如图,⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作⊙O的切线交AC的延长线于点E .求DE 的长.24. 如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程. 〔1〕假设不等式组{x −12<2,1+x >−3x +6的一个关联方程的解是整数,那么这个关联方程可以是 〔写出一个即可〕;〔2〕假设方程3-x =2x ,3+x =2(x +12)都是关于x 的不等式组{x <2x −m ,x −2≤m的关联方程,试求m 的取值范围.25. 在△ABC 中,AB =AC =2,∠BAC =45º.△AEF 是由△ABC 绕点A 按逆时针方向旋转得到,连接BE ,CF 相交于点D .〔1〕求证:BE =CF ;〔2〕当四边形ABDF 是菱形时,求CD 的长.26. 请用学过的方法研究一类新函数y =k|x|〔k 为常数,k ≠0〕的图象和性质. 〔1〕在给出的平面直角坐标系中画出函数y =6|x|的图象〔可以不列表〕; 〔2〕对于函数y =k|x|,当自变量x 的值增大时,函数值y 怎样变化? 〔3〕函数y =k |x|的图象可以经过怎样的变化得到函数y =k|x+2|的图象?27. 如图,矩形ABCD 中,AB =4,AD =6,点P 在AB 上,点Q 在DC 的延长线上,连接DP ,QP ,且∠APD =∠QPD ,PQ 交BC 于点G . 〔1〕求证:DQ =PQ ; 〔2〕求AP ·DQ 的最大值;〔3〕假设P 为AB 的中点,求PG 的长.学|科|网...28. 二次函数y =ax 2+bx +c 〔c ≠4a 〕,其图象L 经过点A 〔-2,0〕. 〔1〕求证:b 2-4ac >0; 〔2〕假设点B 〔-,b +3〕在图象L 上,求b 的值;〔3〕在〔2〕的条件下,假设图象L 的对称轴为直线x =3,且经过点C 〔6,-8〕,点D 〔0,n 〕在y 轴负半轴上,直线BD 与OC 相交于点E ,当△ODE 为等腰三角形时,求n 的值.。

江苏省盐城市滨海2021届初三毕业班第二次调研测试数学试卷(含答

江苏省盐城市滨海2021届初三毕业班第二次调研测试数学试卷(含答

江苏省盐城市滨海2021届初三毕业班第二次调研测试数学试卷(含答江苏省盐城市滨海2021届初三毕业班第二次调研测试数学试卷(含答案)一、选择题1.如图,抛物线y=ax+bx+c的对称轴是x=��1.且过点(,0),有下列结论:①abc>0;②a��2b+4c=0;③25a��10b+4c=0;④3b+2c>0;⑤a��b≥m (am��b);其中所有正确的结论是()2A.①②③ B.①③④ C.①②③⑤ D.①③⑤ 【答案】D 【解析】试题分析:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;直线x=��1是抛物线y=ax+bx+c(a≠0)的对称轴,所以��a��2b+4c=a��4a+4c=��3a+4c,∵a<0,∴��3a>0,∴��3a+4c>0,即a��2b+4c>0,故②错误;∵抛物线y=ax+bx+c的对称轴是x=��1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(��,0),当x=��时,y=0,即a(��)+b×(��)+c=0,整理得:25a��10b+4c=0,故③正确;222=��1,可得b=2a,∵b=2a,a+b+c<0,∴b+b+c<0,即3b+2c<0,故④错误;∵x=��1时,函数值最大,∴a��b+c>ma��mb+c (m≠1),∴a��b>m(am��b),所以⑤正确;故选D.考点:二次函数图象与系数的关系二、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是( )2A. B. C. D.【答案】B【解析】试题解析:根据轴对称图形和中心对称图形的定义知,选项A正确. 故选A.2.已知a=81,b=27,c=9,则a、b、c的大小关系是() A.a>b>c B.a >c>b C.a<b<c D.b>c>a 【答案】A【解析】试题分析:逆用幂的乘方法则可得,即可作出判断. ∵∴故选A.考点:幂的运算,有理数的大小比较点评:解题的关键是逆用幂的乘方法则,由公式得到,,,,3141613.若反比例函数y=-的图象经过点A(2,m),则m的值是( ) A.-2 B.2 C.- D.【答案】C【解析】试题解析:把点A代入解析式可知:m=-.故选C.4.如图,线段AB是⊙O的直径,弦CD�AAB,∠CAB=20°,则∠AOD等于()A.160° B.150° C.140° D.120° 【答案】C【解析】试题解析:∵线段AB是⊙O的直径,弦CD�AAB,∴,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选C.5.如图,点A、B、C、在一次函数y=-2x+m的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A. 1B. 3C. 3(m-1)D. 1.5m-3 【答案】B【解析】试题分析:如图所示,将A、B、C的横坐标代入到一次函数中;解得A(-1,m+2),B(1,m-2),C(2,m-4).由一次函数的性质可知,三个阴影部分三角形全等,底边长为2-1=1,高为(m-2)-(m-4)=2,可求的阴影部分面积为:S=×1×2×3=3.故选B.考点:一次函数综合题.点评:本题中阴影是由3个全等直角三角形组成,解题过程中只要计算其中任意一个即可.同时,还可把未知量m当成一个常量来看.三、填空题1.在函数y=【答案】中,自变量x的取值范围是_________【解析】试题解析:根据题意得,x-2≠0 解得:x≠2. 2.计算【答案】的结果是_________【解析】试题解析:===-1.3.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为__.【答案】1【解析】试题解析:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD=.4.如图,矩形纸片ABCD中,AD= 1,AB一2.将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点仪当触ED的外接圆与BC相切于BC的中点N.则折痕FG的长为________【答案】【解析】试题解析:设AE与FG的交点为O.根据轴对称的性质,得AO=EO.取AD的中点M,连接MO.则MO=DE,MO∥DC.设DE=x,则MO=x,在矩形ABCD中,∠C=∠D=90°,∴AE为△AED的外接圆的直径,O为圆心.延长MO交BC于点N,则ON∥CD.∴∠CNM=180°-∠C=90°.∴ON⊥BC,四边形MNCD是矩形.∴MN=CD=AB=2.∴ON=MN-MO=2-x.∵△AED的外接圆与BC相切,∴ON是△AED的外接圆的半径.∴OE=ON=2-x,AE=2ON=4-x.在Rt△AED 中,AD+DE=AE,∴1+x=(4-x).解这个方程,得x=∴DE=,OE=2-x=..222222根据轴对称的性质,得AE⊥FG.∴∠FOE=∠D=90°.可得FO=.又AB∥CD,∴∠EFO=∠AGO,∠FEO=∠GAO.∴△FEO≌△GAO.∴FO=GO.∴FG=2FO=..∴折痕FG的长是【点睛】本题通过矩形纸片折叠,利用轴对称图形的性质,在丰富的图形关系中,考查学生获取信息和利用所得信息认识新事物的能力,本题对图形折叠前后的不变量的把握、直线与圆位置关系的准确理解、方程思想的运用意识和策略等具有可再抽象性.四、解答题 1.先化简,再求值,其中x=��2+.感谢您的阅读,祝您生活愉快。

2005年第二十届初中数学竞赛试卷

2005年第二十届初中数学竞赛试卷

江苏省第二十届初中数学竞赛试卷(第2试)(2005年12月18日上午8:30-11:00)一、选择题(共8题,每题8分,共64分)以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的括号内.1.定义运算符号“﹡”的意义为:a﹡b = (其中a、b均不为0 ).下面有两个结论:(1)运算“﹡”满足交换律; (2)运算“﹡”满足结合律.其中 ( )(A)只有(1)正确 (B)只有(2)正确 (C)(1)和(2)都正确 (D)(1)和(2)都不正确2.下面有4个正整数的集合: (1)1~10l中3的倍数; (2)1~101中4的倍数; (3)1~101中5的倍数; (4)l~10l中6的倍数.其中平均数最大的集合是 ( )(A) (1) (B) (2) (C) (3) (D ) (4)3.下面有3个结论:(1)存在两个不同的无理数,它们的差是整数;(2)存在两个不同的无理数,它们的积是整数;(3)存在两个不同的非整数的有理数,它们的和与商都是整数.其中正确的结论有 ( )(A) 0个 (B) 1个 (C) 2个 (D) 3个4.如果△ABC的两边长分别为a、b,那么△ABC的面积不可能等于 ( )(A) (a2 + b2) (B) (a2 + b2 ) (C) (a + b )2 (D) ab5.如果m、n是奇数,关于x的方程x2 + mx + n = 0有两个实数根,则其实根的情况是( ) (A)有奇数根,也有偶数根 (B)既没有奇数根也没有偶数根(C)有偶数根,没有奇数根 (D)有奇数根,没有偶数根6.如图,AB为⊙O的直径,诸角p、q、r、s之间的关系 (1) p = 2q;(2) q = r;(3) p + s= 180° 中,正确的是 ( )(A) 只有(1)和(2) (B) 只有(1)和(3) (C) 只有(2)和(3) (D) (1)、(2)和(3)第6题第8题7.有6个量杯A、B、C、D、E、F,它们的容积分别是16毫升、18毫升、22毫升、23毫升、24毫升和34毫升.有些量杯中注满了酒精,有些量杯中注满了蒸馏水,还剩下一个空量杯,而酒精的体积是蒸馏水体积的两倍.那么注满蒸馏水的量杯是 ( )(A) B、D (B) D、E (C) A、E (D) A、C8.如图,表示阴影区域的不等式组为 ( )2x +.y≥5, 2x + y≤5, 2x +.y≥5, 2x + y≤5,(A) 3x + 4y≥9, (B) 3x + 4y≤9, (C) 3x + 4y≥9, (D) 3x + 4y≤9,y≥0 y≥0 x≥0 x≥0二、填空题(共8题,每题8分,共64分):9.设a、b、c是△ABC的三边的长,化简+ + 的结果是 .10.如图,DC∥AB,∠BAF =∠BCD,AE⊥DE,∠D= 130°,则∠B = .第10题第13题11.同时掷出七颗骰子后,向上的七个面上的点数的和是10的概率与向上的七个面的点数的和是a (a≠10)的概率相等,那么a = .12.方程2x2 - x y - 3x + y + 2006 = 0的正整数解( x,y )共有对.13.如图,已知直角坐标系中四点A(- 2,4),B(- 2,0),C(2,-3),D(2,0).设P是x轴上的点,且PA、PB、AB所围成的三角形与PC、PD、CD所围成的三角形相似,请写出所有符合上述条件的点P的坐标: .14.已知R、x、y、z是整数,且R> x > y > z,若R、x、y、z满足方程16(2R +2x + 2y +2z) = 330,则R = .15.如图,在斜坡的顶部有一铁塔AB,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD = 14m,塔影长DE = 36m,小明和小华的身高都是1.6m,小明站在点E处,影子也在斜坡面上,小华站在沿DE方向的坡脚下,影子在平地上,两人的影长分别为4m与2m,那么,塔高AB = m.16.设2005的所有不同正约数的积为a,a的所有不同正约数的积为b,则b = .三、解答题(共4题,每题13分,共52分)17.某仓储系统有20条输入传送带,20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(1),每条输出传送带每小时出库的货物流量如图 (2),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(3),则在0时至2时有多少条输入传送带和输出传送带在工作? 在4时至5时有多少条输入传送带和输出传送带在工作?18.已知直角三角形ABC和ADC有公共斜边AC,M、N分别是AC,BD中点,且M、N不重合.(1)线段MN与BD是否垂直?请说明理由. (2)若∠BAC= 30°,∠CAD= 45°,AC =4,求MN的长 .19.已知x、y为正整数,且满足xy - ( x + y ) = 2p + q,其中p、q分别是x与y的最大公约数和最小公倍数,求所有这样的数对(x,y ) (x≥y )20.若干个1与2排成一行:1,2,1,2,2,l,2,2,2,1,2,...,规则是:第1个数是l,第2个数是2,第3个数是1.一般地,先写一行1,再在第k个1与第k + 1个1之间插入k个2 (k = 1,2,3,...).试问(1) 第2005个数是1还是2 ?(2)前2005个数的和是多少? (3)前2005个数两两乘积的和是多少?。

江苏省第二十一届初中数学竞赛

江苏省第二十一届初中数学竞赛

江苏省第二十一届初中数学竞赛主办单位:江苏省教育学会中学数学专业委员会江苏教育出版社《时代数学学习》编辑部初二年级(第2试)一、选择题(共6题,每题7分,共42分) 以下每个题的四个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内.1.下列不等式中,一定成立的是( )(A) 4.1a > 4a(B) 5 –a > 4 –a(C) a5 > a4(D) 5a>4a2.要绘制长1.6km、宽0.96km的长方形地区的平面图,且要求平面图中所画长方形的长不大于l0cm,宽不小于5cm,那么对于下面两个比例尺:(1)1:20000,(2) 1:15000,( )(A)只有(1)适用(B)只有(2)适用(C)(1)、(2)都适用(D)(1)、(2)都不适用3.在10×10的正方形网格纸上,每个小正方形的边长都为1. 如果以该网格中心为圆心,以5为半径画圆,那么在该圆周上的格点共有( )(A) 4个(B) 8个(C) 12个(D) 16个4.整数x、y满足等式x2 + y2 + 7 = 4x + 4y,则x + y的值是( )(A) 1或– 1 (B) 5 (C) 3 (D) 5或35.正五边形ABCDE内有一个正三角形PQR,QR与AB重合,将△PQR在五边形内沿着它的边AB、BC、CD、DE、EA、AB、…连续地翻转n次,使点P、Q、R同时回到原来的起始位置,那么n 的最小值为( )(A) 5 (B) 9 (C) 10 (D) 156.在边长为2cm的等边三角形内,随意取一些点,如果要保证所取的点中一定存在距离小于lcm的两点,那么取的点至少应有( )(A) 4个(B) 5个(C) 6个(D) 7个7.对于任意实数x、y,定义新运算“*”为x*y = x + y + xy,则( )(A)运算*满足交换律,但不满足结合律(B)运算*不满足交换律,但满足结合律(C)运算*既不满足交换律,也不满足结合律(D)运算*既满足交换律,也满足结合律8.如图,正方形ABCD的面积为64,△BCE是等边三角形,F是CE的中点,AE、BF交于点G,连结CG,则CG等于( )(A) 4 2 (B) 6 (C) 3 2 (D) 4二、填空题(共8题,每题7分,共56分)9.如果关于x、y的方程组x + y = m,的解x、y都是正整数,5x + 3y = 2m + 5那么整数m = .10.在图中每个小方格内填入一个数,使每一行、每一列都有1、2、3、4、5. 那么,右下角的小方格(用粗线围出的方格) 内填入的数应是.132353145DCBAGFE( R )( Q )EDCBAP11.在如图的算式中,“美、好、末、来、祥、和、谐”七个不同的汉 字,代表0~9这十个数字中的某七个数字,相同的汉字代表相同的数字, 不同的汉字代表不同的数字.这里“美好未来”是一个四位数,那么“祥 和和谐”代表的四位数最小是 .12.观察图(1)中“蝴蝶”的画法,在图(2)的8×8正方形网格中,画两只与图(1)形状、大小都相同的蝴蝶(二者可以有部分重叠),组成一幅对称图案,并标出对称轴l 或对称中心O .(1 ) (2 )13.2006除以正整数n ,余数为6,这样的正整数n 共有 个.14.如图(1),一个正方体的三个面上分别写有1、2、3,与它们相对的三个面上依次写有6、5、4.这个正方体的每一条棱处各嵌有一根金属条, 每根金属条的质量数(单位:克)等于过该棱的两个面上所 写数的平均数.(1)这个正方体各棱上所嵌金属条的质量 总和为 克.(2)沿这个正方体的某些棱(连同嵌条) 剪开,得到图(2)所示的展开图,其周边棱上金属条质 量之和的最小值为 克.在图(2)中把这个正方体的六个面上原有的数字写出来(注:写字的这一面是原正方体的外表面).15.如图,△ABC 、中,AB = AC ,点D 、E 分别在BC 和AC 上,且AD = AE .设∠DAB = α,∠B = β,∠CDE = γ,∠DAC = θ.(1) 写一个含有上面四个角度的等式: ; (等式中若有同类项应予合并,使形式简明)(2)写一个仅含有上述两个角度的等式: .16,一个直角三角形三边的长a 、b 、c 都是整数,且满足a < b < c ,a + c = 49.则这个直角三角形的面积为 .三、解答题(共4题,每题12分,共48分)17.有两只同样的杯子,甲杯盛满了水,乙杯是空杯.第一次操作是将甲杯中水的一半倒入乙杯,第二次操作是将乙杯中水的一半倒入甲杯,如此反复上述过程.操作三次后两杯(2) 对于n >1的情况,比较 a n 与 b n 的大小;美未来来好未来和谐和祥来未好+(3) 对于n >1的情况,求a n与a n – 1的关系(用a n – 1表示a n ).18.河岸l同侧的两个居民小区A、B到河岸的距离分别为a米、b米(即图(1)中所示AA′ = a米,BB′ = b米),A′B′ = c米. 现欲在河岸边建一个长度为s米的绿化带CD(宽度不计),使C到小区A的距离与D到小区B的距离之和最小.(1) 在图(2)中画出绿化带的位置,并写出画图过程;(2) 求AC + BD的最小值.19. 甲、乙、丙三支乒乓球队,人数都不相同,每队不少于2人,甲队最少,丙队最多. 同一球队的队员互相不比赛,不同球队的队员之间都要比赛一场. 统计员作了记录:参加比赛的共有13人,进行的比赛共有54场. 求甲、乙、丙三支球队的队员数,并说明理由.20.为了培养学生的理财能力,初二(1)班创办了一个“小银行”.王华打算将一张存单上的钱全部取出,“银行出纳员”匆忙中把存单金额的整数部分(元数)与小数部分正好错位(即把小数部分当成整数部分,而把整数部分当成小数部分)付给了王华.王华没有清点即回家,回家途中他购物用了3.50元,购物后却惊奇地发现所剩的钱数是应取钱数的2倍.便立即与出纳员联系.问王华应取多少钱?。

江苏省历年初中数学竞赛试题及解答(23份)

江苏省历年初中数学竞赛试题及解答(23份)

第十五届江苏省初中数学竞赛试题初一年级第一试 (1)第十五届江苏省初中数学竞赛试卷初一年级 第二试 (3)江苏省第十五届初中数学竞赛初二第1试试题 (6)江苏省第十五届初中数学竞赛初二年级 第二试 (8)江苏省第十五届初中数学竞赛初三年级 (14)2001年第十六届江苏省初中数学竞赛A 卷 (19)2001年第十六届江苏省初中数学竞赛B 卷 (24)第十六届江苏省初中数学竞赛试题(C 卷)初三年级 (29)江苏省第十七届初中数学竞赛 初一年级 第l 试 (33)江苏省第十七届初中数学竞赛试卷 初一年级(第2试) (35)江苏省第十七届初中数学竞赛 初二年级 第l 试 (38)江苏省第十七届初中数学竞赛试卷 初二年级(第2试) (40)江苏省第十七届初中数学竞赛试卷 初三年级 (43)江苏省第十八届初中数学竞赛初一年级第1试 (45)2003年江苏省第十八届初中数学竞赛初中一年级 第2试 (48)2003年江苏省第十八届初中数学竞赛初中二年级 第2试 (52)2003年江苏省第十八届初中数学竞赛初中三年级 (57)江苏省第十九届初中数学竞赛初一年级 第1试 (60)江苏省第十九届初中数学竞赛初二年级第1试 (62)江苏省第十九届初中数学竞赛试卷初二年级第2试 (65)江苏省第十九届初中数学竞赛初三年级(第1试) (71)江苏省第十九届初中数学竞赛(保留)初三年级第l 试 (73)江苏省第十九届初中数学竞赛试题与答案初三年级(第2试) (80)第十五届江苏省初中数学竞赛试题初一年级第一试一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内)1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ).(A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2 (c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)2 3.若a 是负数,则a+|-a|( ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数4.如果n 是正整数,那么表示“任意负奇数”的代数式是( ).(A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ).(A)A 、B 两点的距离 (B)A 、C 两点的距离(C)A 、B 两点到原点的距离之和(D)A 、C 两点到原点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ).(A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b ,则化简a b (a+1)+ba (b+1)得( ). (A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)= 10.计算:0.7×194+243×(-15)+0.7×95+41×(-15)= ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 . 16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x =17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中a 1=6×2+l ;a 2=6×3+2;a 3=6×4+3;a 4=6×5+4;则第n 个数a n = ;当a n =2001时,n = .20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是第十五届江苏省初中数学竞赛参考答案初一年级第一试一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D二、9.一6a +1 06. 10.一43.6. 11.男生比女生多的人数.1 2.90. 1 3.1 6. 1 4.0.1 2 5. 1 5.-151 1 6.1. 1 7.1988;1.18.1022.5;101 8.1 9.7n+6;2 8 5.2 O .2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).第十五届江苏省初中数学竞赛试卷初一年级 第二试一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( )(A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c =2001,且a+b+c=2001k ,那么k 的值为( )。

江苏省2021届中考数学二模试卷含答案解析

江苏省2021届中考数学二模试卷含答案解析

中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B.xy2C.2xy D.(﹣)22.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5 D.2a﹣1=(a≠0)3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y 随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABC D是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=.8.(4分)在实数范围内分解因式:4a2﹣3=.9.(4分)方程=1的根是.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=,=,那么=(用、的式子表示).15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为.(用锐角α的三角比表示)17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)18.(4分)在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD=.三、解答题:(本大题共7题,满分78分)19.(10分)计算: +(﹣1)2022﹣2cos45°+8.20.(10分)解方程组:21.(10分)已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC=90°,tan∠ABC=.(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点M与点C位于直线AB的同侧,使=S△ABC,求点M的坐标.得2S△ABM22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?23.(12分)如图,已知在△ABC中,∠BAC=2∠C,∠BAC的平分线AE与∠ABC 的平分线BD相交于点F,FG∥AC,联结DG.(1)求证:BF•BC=AB•BD;(2)求证:四边形ADGF是菱形.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B.xy2C.2xy D.(﹣)2【解答】解:由题意可知:2xy是二次单项式,故选:C.2.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5 D.2a﹣1=(a≠0)【解答】解:(A)原式=a2+2ab+b2,故A错误;(B)2a2+a中没有同类项,不能合并,故B错误;(D)原式=,故D错误;故选:C.3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y 随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【解答】解:∵反比例函数y=(k≠0)图象在每个象限内y随着x的增大而减小,∴k>0,∴它的图象的两个分支分别在第一、三象限.故选:A.4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD 是菱形,故本选项错误;C、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项错误;D、根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D选项;故选:D.6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离【解答】解:∵点A在圆O上,已知圆O的半径是4,点A到直线a的距离是8,∴圆O与直线a的位置关系可能是相切或相离,故选:D.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=5.【解答】解:原式=1+4=5,故答案为:58.(4分)在实数范围内分解因式:4a2﹣3=.【解答】解:4a2﹣3=.故答案为:.9.(4分)方程=1的根是1.【解答】解:两边平方得2x﹣1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是m.【解答】解:∵关于x的方程x2﹣3x﹣m=0没有实数根,∴△<0,即(﹣3)2﹣4(﹣m)<0,解得m<﹣,故答案为:m<﹣.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为y=﹣x+5.【解答】解:∵直线y=kx+b平行于直线y=﹣x,∴k=﹣.又∵截距为5,∴b=5,∴这条直线的解析式是y=﹣x+5.故答案是:y=﹣x+5.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【解答】解:抬头看信号灯时,是绿灯的概率为.故答案为:.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为8.【解答】解:根据题意,得:第一组到第四组的频率和是=0.7,又∵第五组的频率是0.10,∴第六组的频率为1﹣(0.7+0.10)=0.2,∴第六组的频数为:40×0.2=8.故答案为:8.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=,=,那么=﹣(用、的式子表示).【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD=BC,AD∥BC,∴==,==,∵AE=2DE,∴=,∵=+.∴=﹣,故答案为﹣.15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为y=x2+3x﹣.【解答】解:∵y=﹣x2+3x﹣2中a=﹣1,b=3,c=﹣2,且﹣1的相反数是1,与b 相等的数是3,﹣2的倒数是﹣,∴y=﹣x2+3x﹣2的“亚旋转函数”为y=x2+3x﹣.故答案是:y=x2+3x﹣.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为cotα(或).(用锐角α的三角比表示)【解答】解:如图所示:∵正n边形的中心角为2α,边长为5,∵边心距OD=(或),故答案为:(或),17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为17.3米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)【解答】解:在Rt△AMN中,AN=MN×tan∠AMN=MN×tan60°=9×=9.在Rt△BMN中,BN=MN×tan∠BMN=MN×tan30°=9×=3.∴AB=AN﹣BN=9﹣3=6.则A到B的平均速度为:==10≈17.3(米/秒).故答案为:17.3.18.(4分)在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD=12﹣12.【解答】解:过点C作CF⊥AB于点F,则四边形AFC D为矩形,如图所示.∵AB=12,DC=7,∴BF=5.又∵cos∠ABC=,∴BC=13,CF==12.∵AD=CF=12,AB=12,∴BD==12.∵△ABE沿BE翻折得到△PBE,∴BP=BA=12,∴PD=BD﹣BP=12﹣12.故答案为:12﹣12.三、解答题:(本大题共7题,满分78分)19.(10分)计算: +(﹣1)2022﹣2cos45°+8.【解答】解:原式=﹣1+1﹣2×+2=﹣+2=2.20.(10分)解方程组:【解答】解:由②得:(x﹣2y)(x+y)=0x﹣2y=0或x+y=0…………………………………………(2分)原方程组可化为,………………………………(2分)解得原方程组的解为,…………………………………(5分)∴原方程组的解是为,……………………………………(6分)21.(10分)已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC=90°,tan∠ABC=.(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点M与点C位于直线AB的同侧,使=S△ABC,求点M的坐标.得2S△ABM【解答】解:(1)令y=0,则﹣2x+4=0,解得x=2,∴点A坐标是(2,0).令x=0,则y=4,∴点B 坐标是(0,4).∴AB===2.∵∠BAC=90°,tan ∠ABC==,∴AC=AB=. 如图1,过C 点作CD ⊥x 轴于点D ,∠BAO +∠ABO=90°,∠BAO +∠CAD=90°,∵∴∠ABO=∠CAD ,,∴△OAB ∽△DAC . ∴===,∵OB=4,OA=2,∴AD=2,CD=1,∴点C 坐标是(4,1).(2)S △ABC =AB•AC=×2×=5.∵2S △ABM =S △ABC ,∴S △ABM =.∵M (1,m ),∴点M 在直线x=1上;令直线x=1与线段AB 交于点E ,ME=m ﹣2;如图2,分别过点A 、B 作直线x=1的垂线,垂足分别是点F 、G ,∴AF +BG=OA=2;∴S △ABM =S △BME +S △AME =ME•BG +ME•AF=ME (BG +AF ) =ME•OA=×2×ME=,∴ME=,m ﹣2=, m=,∴M (1,).22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?【解答】解:设自行车的平均速度是x 千米/时. 根据题意,列方程得﹣=,解得:x 1=15,x 2=﹣30.经检验,x 1=15是原方程的根,且符合题意,x 2=﹣30不符合题意舍去. 答:自行车的平均速度是15千米/时.23.(12分)如图,已知在△ABC 中,∠BAC=2∠C ,∠BAC 的平分线AE 与∠ABC的平分线BD相交于点F,FG∥AC,联结DG.(1)求证:BF•BC=AB•BD;(2)求证:四边形ADGF是菱形.【解答】证明:(1)∵AE平分∠BAC,∴∠BAC=2∠BAF=2∠EAC.∵∠BAC=2∠C,∴∠BAF=∠C=∠EAC.又∵BD平分∠ABC,∴∠ABD=∠DBC.∵∠ABF=∠C,∠ABD=∠DBC,∴△ABF∽△CBD.…………………………………………………(1分)∴.………………………………………………………(1分)∴BF•BC=AB•B D.………………………………………………(1分)(2)∵FG∥AC,∴∠C=∠FGB,∴∠FGB=∠FAB.………………(1分)∵∠BAF=∠BGF,∠ABD=∠GBD,BF=BF,∴△ABF≌△GBF.∴AF=FG,BA=BG.…………………………(1分)∵BA=BG,∠ABD=∠GBD,BD=BD,∴△ABD≌△GBD.∴∠BAD=∠BGD.……………………………(1分)∵∠BAD=2∠C,∴∠BGD=2∠C,∴∠GDC=∠C,∴∠GDC=∠EAC,∴AF∥DG.……………………………………(1分)又∵FG∥AC,∴四边形ADGF是平行四边形.……………………(1分)∴AF=FG.……………………………………………………………(1分)∴四边形ADGF是菱形.……………………………………………(1分)24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.【解答】解:(1)把B(1,0)和C(0,3)代入y=ax2﹣2x+c中,得,解得,∴抛物线的解析式是:y=﹣x2﹣2x+3,∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标D(﹣1,4);(2)令y=0,则﹣x2﹣2x+3=0,解得x1=﹣3,x2=1,∴A(﹣3,0),∴OA=OC=3,∴∠CAO=∠OCA,在Rt△BOC中,tan∠OCB==,∵AC==3,DC==,AD==2,∴AC2+DC2=20=AD2;∴△ACD是直角三角形且∠ACD=90°,∴tan∠DAC===,又∵∠DAC和∠OCB都是锐角,∴∠DAC=∠OCB,∴∠DAC+∠CAO=∠BCO+∠OCA,即∠DAB=∠ACB;(3)令Q(x,y)且满足y=﹣x2﹣2x+3,A(﹣3,0),D(﹣1,4),∵△ADQ是以AD为底的等腰三角形,∴QD2=QA2,即(x+3)2+y2=(x+1)2+(y﹣4)2,化简得:x﹣2+2y=0,由,解得,.∴点Q的坐标是(,),(,).25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.【解答】解:(1)在Rt△ABC中,AC=6,BC=8,∠ACB=90°∴AB=10,如图1,过E作EH⊥AB于H,在Rt△ABC中,sinB=,cosB=在Rt△BEH中,BE=BF=x,∴EH=x,EH=x,∴FH=x,在Rt△EHF中,EF2=EH2+FH2=(x)2+(x)2=x2,∴y=x(0<x<8)(2)如图2,取的中点P,联结BP交ED于点G∵=2,P是的中点,EP=EF=PD.∴∠FBE=∠EBP=∠PBD.∵EP=EF,BP过圆心,∴BG⊥ED,ED=2EG=2DG,又∵∠CEA=∠DEB,∴∠CAE=∠EBP=∠ABC,又∵BE是公共边,∴△BEH≌△BEG.∴EH=EG=GD=x.在Rt△CEA中,∵AC=6,BC=8,tan∠CAE=tan∠ABC=,∴CE=AC•tan∠CAE==∴BE=8﹣=∴ED=2EG=x=,(3)四边形ABDC不可能为直角梯形,①当CD∥AB时,如图3,如果四边形ABDC是直角梯形,只可能∠ABD=∠CDB=90°.在Rt△CBD中,∵BC=8.∴CD=BC•cos∠BCD=,BD=BC•sin∠BCD==BE.∴=,;∴.∴CD不平行于AB,与CD∥AB矛盾.∴四边形ABDC不可能为直角梯形,②当AC∥BD时,如图4,如果四边形ABDC是直角梯形,只可能∠ACD=∠CDB=90°.∵AC∥BD,∠ACB=90°,∴∠ACB=∠CBD=90°.∴∠ABD=∠ACB+∠BCD>90o.与∠ACD=∠CDB=90°矛盾.∴四边形ABDC不可能为直角梯形.即:四边形ABDC不可能是直角梯形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 2 2 ( 1 ) 若 a, b互质 , 证明 a - b 与 a 、 b 都互
三 角 形 AB C 中 , AB = 3, B C
= 4, ∠AB C =
质; ( 2 ) 当 a, b互质时 , 求 k 的值 ; ( 3 ) 若 a, b的最大公约数为 5, 求 k 的值 .
参考答案 一、 1. A 2. B 3. B 4. C 5. C 6. C π cm2 二、 7. 17, 2 8. 3 9. 6
17. 在 7 × 7的单位正方形的网格中 , 共有 64个
格点 , 有许多以这些格点为顶点的正方形 , 这些正方形的面积有多少个不同的值 ?
18. k, a, b为正整数 , k 被 a 、 b 整除所得的商
2 2
涂相同的颜色 . 满足恰好 A 涂蓝色的概率为
.
13. 如图 , 在直角
分别为 m , m + 116.
( A ) 0 ( B ) 1 ( C ) 2 ( D ) 3
6. 图示某一岔路口交通环岛的简化模型 . 在某
高峰时段 , 单位时间进出路口 A、 B、 C 的机 动车辆数如图所示 , 图中 x1 , x2 , x3 分别表示 该时段单位时间通过路段 AB , B C, CA 的机 动车辆数 (假设单位时间内 , 在上述路段 中 , 同一路段上驶入与驶出的机动车辆数相 等 ) , 则 x1 , x2 , x3 的大小关系为 ( ) ( A ) x1 > x2 > x3 ( B ) x1 > x3 > x2 ( C ) x2 > x3 > x1 ( D ) x3 > x2 > x1
.
180 1 96 12. 13. 14. 8 13 3 41
14. 在一个 3 × 3的方格表中填有 1 ~ 9这 9个
三、 15. 若此等腰三角形以 OA 为一腰 , 且 A 为 顶点 , 则 AO = AC1 = 2. 设 C1 ( x, 2 x ) , 则得 x2 + ( 2 x - 2 ) 2 = 22 ,
因为 a, b互质 , 所以 a2 , b2 互质 , 可见 s = 1. 即 a2 - b2 与 a2 互质 . 同理可证 a2 - b2 与 b2 互质 .
( 2 ) k = m a2 = (m + 116 ) b2 ,
所以 , 满足题意的点 C 有 4 个 , 坐标分别为 :
8 16 , , 5 5
解得 x ′= 得 C2
2 5 4 5, 5
4 . 5 5.
与 ( 4, 3 ) 给 出 相 同 的 面积 . 检验可知 , 其他 ( a, b) 值所对应的正方形的面 积两两不同 , 所以 , 共有 18 个不同的面积 .
4 5, 5
2 2 2 18. ( 1 ) 设 s为 a - b 与 a 的最大公约数 .
数字 , 现将每行中数字最大的那个格子涂 红色 , 数字最小的那个格子涂绿色 . 设 M 为
・35・
初中数学教与学 2007 年
解得 x =
8 , 得 C1 5 8 16 . , 5 5
( 1, 1 ) , ( 2, 1 ) , ( 3, 1 ) , ( 4, 1 ) , ( 5, 1 ) , ( 6, 1 ) ; ( 2, 2 ) , ( 3, 2 ) , ( 4, 2 ) , ( 5, 2 ) ; ( 3, 3 ) , ( 4, 3 ) .
5 b1 , 则 a1 , b1 互质 .
同 ( 2 ) 有 m ( a2 - b2 ) = 116 b2 ,
2 2 即 m ( 25 a2 1 - 25 b1 ) = 116 ( 25 b1 ) , 2 2 所以 m ( a2 1 - b1 ) = 116 b1 , 且 a1 , b1 互质 .
17. 由于这些正方形的顶点都是方格网中的格
初中数学教与学 2007 年 ○ 竞赛园地 ○
江苏省第二十一届初中数学竞赛
初三年级 (第 2 试 )
.
一、 选择题 (共 6 题 , 每题 7 分 , 共 42 分 )
1. 若 x = 2
n +1
5. 方程 3 x + xy + y = 3 x - 2 y 的非负整数解
若此等腰三角形以 OA 为一腰 ,且以 O 为顶点 ,则
OC2 = OC3 = OA = 2. ) , 则得 设 C2 ( x ′ , 2x′
2 ) 2 = 22 , x′ + ( 2x′
其 中 ( 0, 0 ) 不 合 题意 , 舍去 . 此 外 , 52 = 42 +
2 3 , 即 ( a, b) 取 ( 5, 0 )
-
2 5 4 5
5,
5 , 1 ,1 . 2
2 5
5, -
5 ,
所以 m ( a2 - b2 ) = 116 b2 , a > b. 又 a, b, m 都 是正整 数 , 所 以 ( a2 - b2 ) 整 除
116 b .
2
16. ( 1 ) 连 PE、 PF、 EF. 因为 ∠EA F = 90 ° ,所
10. k ≥ 11. 2 - 1 或 k ≤2 2 +1 2
90 ° , 过 B 作
BA 1 ⊥ AC, 过 A1 作 A1 B 1 ⊥ B C, 得阴影直角三角形 A 1 B 1 B; 再过 B 1 作 B 1 A 2 ⊥ AC, 过 A 2 作 A 2 B 2 ⊥ B C, 得阴影直角
三角形 A 2 B 2 B 1 , …, 如此无限下去 . 请猜测 这样得到的所有阴影三角形的面积之和为
点 , 如图中的阴影正方形的面积为 a2 + b2. 其中 0 ≤ a + b ≤ 7. 不失一般性 , 设 a ≥ b, 可以枚举所有 可能的 ( a, b) 值 :
( 0, 0 ) , ( 1, 0 ) , ( 2, 0 ) , ( 3, 0 ) , ( 4, 0 ) , ( 5, 0 ) , ( 6, 0 ) , ( 7, 0 ) ;
又 A E2 + A F2 = EF2 = 3, 即 (A E + A F ) 2 2A E ・A F = 3.


a = 30, b = 28.
故 A E ・A F = 2. 于是 , A E, A F是方 程 x - ( 2 + 1) x + 2
= 0 的两个根 .
2
因为 a, b互质 , 所以 a = 15, b = 14. 所以 m =
图 5 所示 ) , 当 x = 0 或 x = 1 时 , & PCQ 是等 腰三角形 . 由上述诸题 , 可见 , 源于课本 , 挖掘引伸 , 拓展创新是中考命题的基本特点 , 我们应重 视课本中典型例习题的指导和训练 , 发展思 维能力 , 培养创新能力 , 提高解题能力 , 从而 达到良好的教学效果 .
二、 填空题 (共 8 题 , 每题 7 分 , 共 56 分 )
7. 若 p 和 q 为质数 , 且 5 p + 3 q = 91, 则 p =
,q = .
2 2
⊥ A E, 交 B C于点 F, 则 ∠1与 ∠2的大小关 系为 ( ) ( A ) ∠1 > ∠2 ( B ) ∠1 < ∠2 ( C ) ∠1 = ∠2
积差 , 或求出梯形 PHCQ 与 & PB H 的面积和 , 或求出矩形 EB CF与 2个 & PEB 的面积差 (如
・34・
第 4 期 初中数学教与学
9. 某工件的形状如图
三个红色方格中数字最小的那个数 , m 是三 个绿色方格中数字最大的那个数 , 则 M - m 可以有 个不同的值 . 三、 解答题 (共 4 题 , 每题 13 分 , 共 52 分 )
116 b
2 2 2
a - b
= 2 ×7 .4来自2故得 k = m a2 = 24 ×72 ×152 = 176400.
( 3 ) 若 a, b的最大公约数为 5, 设 a = 5 a1 , b =
解之得 , A E = 2, A F = 1; 或 A E = 1, A F = 2. 所以 ,
AE 2 = 2或 . ED 2
15. 如图 , 直线 OB 是一次函数 y = 2 x 的图象 ,
所示 , 圆弧 B C 的度 数 为
60 ° , AB
= AB , .
2
6cm , 点 B 与点 C 的
距 离 等 于 工件的面积为
∠BAC = 30 ° , 则此
1 - k 4
点 A 的坐标为 ( 0, 2 ) , 在直线 OB 上找点 C, 使得 & ACO 为等腰三角形 , 求点 C 的坐标 .
因 a2 - b2 与 b2 互质 , 所以 a2 - b2 整除 116, 即 ( a + b) ( a - b) 整除 116. 而 116 = 22 × 29, a + b与 a - b具有相同的奇 偶性 , 且 a + b > a - b > 0. 所以 , 解得
a + b = 29, a - b = 1; a = 15, b = 14; a + b = 2 ×29, a - b = 2.
( D ) 无法确定
8. 设 x, y均为实数 , 代数式 5 x + 4 y - 8 xy + 2 x
+ 4 的最小值为 .
顶点在对角线上直线运动 . 解题思路 1. 构造两个全等三角形 :过 P 作 EF ∥ AD, 有 & B EP ≌ & PFQ; 2. 把四边形
PB CQ 转化为特殊图形的和或差 , 即求正方形 PHCF 的面积 , 或求梯形 PB CF 与 & PFQ 的面
相关文档
最新文档