工控设备plc在氢气产品生产管理上的应用Small stationary reformers for H2 production from hydrocarbons
基于Modicon PLC的氢气点火自控系统设计

基于Modicon PLC的氢气点火自控系统设计
李小娟
【期刊名称】《科技视界》
【年(卷),期】2015(000)014
【摘要】本文根据氢气点火控制的目的与要求,从上位机监控、PLC集中控制、
下位控制执行三个部分详细介绍了基于Modicon PLC的点火自控系统的设计。
通过对系统的联动调试,得出Modicon PLC能结合点火执行器进行氢气点火控制具有较高的可靠性、灵活性、经济实用性,并对点火自控系统的进一步完善进行构想。
【总页数】2页(P79-80)
【作者】李小娟
【作者单位】中核建中核燃料元件有限公司,四川宜宾644000
【正文语种】中文
【相关文献】
1.基于PLC钕铁硼氢气粉碎工艺控制系统设计 [J], 孙方刚;纪志坚
2.基于PLC的火炬自动点火系统设计 [J], 任继红;刘敏层;高涵
3.基于Modicon984-785E型PLC入炉煤分计量系统设计 [J], 黄芳;刘济
4.基于Modicon 984-785E型PLC入炉煤分计量系统设计 [J], 黄芳;刘济
5.基于Modicon M340系列PLC的控制系统设计 [J], 马爽;孙晓福;王新宇;万继
华
因版权原因,仅展示原文概要,查看原文内容请购买。
PLC在化学工艺控制中的应用案例研究

PLC在化学工艺控制中的应用案例研究在现代化工领域,控制系统的稳定性和准确性对于生产过程的控制至关重要。
因此PLC(Programmable Logic Controller,可编程逻辑控制器)应运而生,成为化学工艺控制中的重要工具。
本文将通过探讨两个PLC在化学工艺控制中的应用案例,来展示PLC在提高生产效率、质量控制和安全性方面的巨大潜力。
案例一:化学反应器温度控制在化学反应过程中,温度控制是至关重要的,因为过高或过低的温度都可能导致反应物质的分解,产生意外情况或降低产量。
PLC作为控制器,可以通过传感器实时监测反应器内的温度,并根据预设的温度范围进行控制。
PLC利用自身的逻辑功能来判断温度是否超出了设定值,然后控制加热或冷却装置以实现温度的调节。
此外,PLC还可以根据实时采集的温度数据,结合预设算法,进行温度曲线分析,并及时报警或调整控制参数,以保证反应器温度的稳定性和精确性。
例如,某化学公司使用PLC控制系统对一个高温反应器的温度进行控制。
当反应器温度超过设定的上限时,PLC通过调节冷却装置的运行状态来降低温度。
反之,当反应器温度低于设定的下限时,PLC则控制加热设备加热以提高温度。
这种精确的温度控制,不仅能够提高生产过程中的产品质量,还能够降低能源消耗和生产成本。
案例二:液位控制在化工过程中,液位的控制是保证生产安全和质量的重要环节。
PLC可以通过传感器实时监测液位,并将信号传输到控制器进行处理。
根据液位信号,PLC可以判断是否需要开启或关闭液位控制阀门,从而实现液位的控制。
举例来说,某石油化工厂利用PLC控制系统对溶剂罐的液位进行控制。
当液位低于设定值时,PLC会自动打开补液阀门,补充足够的液位;当液位高于设定值时,PLC则会自动关闭进液阀门,停止液体的流入。
通过PLC的精确控制,可以避免溶剂溢出、液位过低造成的设备损坏或生产事故。
此外,PLC还可以与其他设备集成,如报警系统或安全控制系统,通过发送控制信号来触发相应的应急措施,保障生产过程的安全性。
浅析火电厂氢气干燥器 PLC 控制系统与 DCS 系统的应用

浅析火电厂氢气干燥器 PLC 控制系统与 DCS 系统的应用摘要:徐州华润电力有限公司#1机组1996年建成投产,其氢气干燥器设计采用PLC控制,此装置只实现本单元所具备的功能,而 PLC因为基本上都为单个小系统工作,在与别的PLC或上位机进行通讯时,所采用的网络形式基本都是单网结构,网络协议也经常与国际标准不符;DCS网络是整个系统的中枢神经,DCS系统通常采用的国际标准协议 TCP/IP。
它是安全可靠双冗余的高速通讯网络,系统的拓展性与开放性更好。
为此将#1机组氢气干燥器系统更改为安全可靠的新华DCS控制系统,实现远程操作和数据监控,保证了火电厂系统的可靠稳定的运行及启动机组的安全运行。
中国关键词:火力发电厂;氢气干燥器;PLC;DCS;应用研究一项目改造的必要性:徐州华润电力有限公司一号机氢气干燥器改造前均采用PLC控制系统(图1:改造之前系统设备图)。
PLC控制器存在逻辑查询不清晰,故障判断不直观的问题;同时由于使用时间长,设备已淘汰换型,备件难以采购。
为了实现设备的安全经济运行,同时方便检修维护人员及时准确的判断设备故障原因,需要将氢气干燥器由之前的PLC控制升级为更加安全可靠的新华DCS控制系统。
以氢气干燥器DCS控制改造为例,分析具体改造过程。
二逻辑设计1.氢气干燥器逻辑要求:氢气干燥器正常运行主要包含两个过程,即吸湿过程和再生过程。
其中再生过程又分为加热过程和冷却过程。
我厂使用的氢气改造器分为A、B两塔,每个塔都具备独立完成干燥和再生过程的设计。
正常运行时A塔进行吸湿时,B塔处于再生过程;A塔完成吸湿进入再生过程时,B塔开始吸湿过程。
其中循环切换时间包括8小时的吸湿过程和8小时的再生过程(再生包括4小的加热和4小时的冷却),也就是8个小时两个塔切换一次。
A/B塔工作方式切换采用电磁阀驱动气缸实现。
A塔、B塔风机随干燥器运行指令启动不间断运行直至系统停运指令发出。
2. 整改思路本氢气干燥器出厂使用就地PLC控制器进行系统控制。
PLC技术在化工制氢自动化中的应用

运行处理速度快、安装操作维护方便等优点。
PLC 基本都使用单片微型计算机,具有高度集成的特点,同时还具备自诊断功能,拥有特定的保护电路,使得系统的可靠性有保证;另外PLC 的运行由程序执行控制,运行处理速度快[2];PLC 有五种标准化编程语言,具体是三种图形语言:顺序功能流程图(SFC)、梯形图(LD)、功能模块图(FBD);两种文本语言:指令表(IL)、结构化文本(ST)。
此外,PLC 可以支持其他多种编程语言,包括C ,Basic 等等,能够广泛地使用在不同的场合[3]。
PLC 技术的应用一般都简易迅捷,在应用时,可以使用相对简单的编程语言系统将相关操作完成,对既定程序进行适当地修改,即可满足实际应用。
2 PLC技术在化工制氢自动化的应用2.1 PLC技术在工业制氢的应用实现以下以一个实例来说明PLC 技术在工业制氢的应用。
图1是某制氢系统原理图,包括以下部件:反应箱A 、反应箱B 、水箱2、换热器3,4、气液分离器5、活性炭吸附装置6、氢气泵7、氢气储存罐8,9、隔膜泵10,11、加热缓存罐12、循环离心泵13、管带式风冷器14、膨胀壶15、水流量计16、水流量计17、侧路进水阀18、阻火器19。
系统中反应釜1A 、1B 内有压力传感器,水箱2中有液位传感器。
系统装填物料后开始运行,由PLC 控制开启隔膜泵11,加水到加热缓存罐12加热到90℃停止加热,再开启进水管路上的隔膜泵和电磁阀,实行首次加水。
待反应物与水反应使反应0 引言随着科技发展和PLC 技术的日益成熟,PLC 技术在化工制氢方面的应用极大程度地推动了化工制氢领域的发展,在提升生产效率、降低生产成本、减少安全事故、保证生产安全方面优势巨大,因此对PLC 技术在化工制氢自动化上的实际运用进行深入研究是非常有必要的。
1 PLC技术概述1.1 PLC简介及发展可编程逻辑控制器(Programmable Logic Controller ,PLC),是一种为在工业环境下使用而专门研发、内置有微型处理器的自动化控制的数字运算操作电子系统,能够将控制指令即时写入内存进行存储和运行。
S7—200 PLC在氮氢气压缩机联锁中的应用

3 结束 语
通过 修理 和采 取 以上 一 系列 技 术 改 造 措 施 ,
消除了汽轮发 电机组存在 的隐患和缺陷,提高了 机 组 的运行 水平 ,为机组 安 全 、稳 定 、高效 运 行 打下 了坚实 的基础 。
维普资讯
・
5 0・
饥 励 洲 M ≤ 醐
维普资讯
第 5期 20 0 6年 9月
中 氮
肥
N O. 5
M — ie to e o s F r i z rPr g e s S z d Nir g n u e t i o r s" le
Se p.2 6 00
S —0 L 72 0P C在氮氢气压缩机联锁中的应用
2 2 联 锁 地 址 分 配 .
1 压 缩机 的联 锁 条件 根 据 工艺 条件 要求 ,我公 司对 氮氢气 压缩机 设 定 的报 警及 跳 车联锁 条 件见表 1 。
表 1 氮 氢 气 压 缩机 报 警 及 跳 车 联 锁 值
氮氢 气压缩 机 的联 锁地 址分 配示 意见 图 1 。
D L E L工业监 控机 ,配 有 通 讯线 缆为屏 蔽双 绞线 。 l e e 0 2激 光 a rJt1 2 s 打印机 1台 ,主 机 上 配 有 C 5 1 P 6 1通 讯 处 理 卡 ,
和 C U 模 块 ,导 致 备 件 准 备 困难 ;上 位 机 不 能 P 与 C U 通 讯 ,当 出现 异 常 时 ,不 能 通 过 上 位 机 P 查 找 、分 析 事 故 原 因 ;上 位 机 操 作 系 统 为 D S O
2 s .0 L 系统 的构 成 72 0P C
2 1 控制 网络 的构成 .
年改为可编程控制器 ( L )控制。目前 主要存 PC
QGZ-3型氢气循环干燥控制系统使用说明书(PLC)

QGZ-3型氢气循环干燥控制系统使用说明书一、概述:该套电气控制系统是专为QGZ-3型氢气循环干燥装置而研发配套使用。
为满足QGZ-3型氢气干燥装置安全正常运行的需要,该套电气控制是由功能完善的CP1H型PLC可编程序控制系统组成。
其中设备运行状态、加热温度、阀门开闭、运行时间等均显示在触摸屏上,以便于用户对设备监控、操作和维护。
二、触摸屏画面简介:如要观看氢气循环干燥控制系统运行状态的主要参数,则选择状态画面,即刻看到干燥器的上部温度、中部温度、露点、加热时间、吹冷时间及各阀门的开闭状态灯。
干燥器的工作与再生状态由程序控制器控制。
状态画面中 ⅠF1/F4此灯亮说明阀门F1和F4开F2和F3开, F13此灯亮说明阀门F13此灯亮说明三通阀门F11得电。
(此状态为停风机运行状态)的温度曲线。
即按查看温度曲线。
5)温度曲线画面:当干燥器Ⅰ(Ⅱ)上部,中部温度超温以及磁力风机过电流或超温时进入报警画面其相应的报警灯亮。
上部超温温度设定为350℃,中部超温温度设定为180℃。
只有在上部温度达到350℃温度时,系统自动关闭加热,说明系统加热回路部分出现故障。
当磁力风机过电流或超温时,磁力风机停止工作,等待检修。
待问题解决后,重新启动系统。
三、维修画面:(非专业维修人员禁止操作此部分)此画面仅供维修人员使用四、原理简述及操作:本电气控制是由PLC 可编程序控制器控制,运行时间、实测温度、露点及控制、加热、阀门开闭等状态均由触摸屏显示。
操作:系统画面。
按系统画面中的启动,随后可按需要来选择观看画面。
闭合控制柜内的总电源开关S1,闭合控制柜内各个断路器,打开面板上控制电源开关(S2)。
此时控制柜电源接通,触摸屏依次显示启动画面和系统画面。
(S3)为急停开关,(S4)为加热手动控制开关,(S5)为风机开关。
该程序控制周期为30小时(可调),设定四步:其中Ⅰ系统再生即:干燥器Ⅰ加热时间为6.5小时(可调),吹冷8.5小时(可调),干燥器Ⅱ工作。
PLC在工业生产中的作用和重要性

PLC在工业生产中的作用和重要性工业生产的自动化程度不断提高,PLC(可编程逻辑控制器)作为一种重要的自动化控制设备,在工业生产中发挥着巨大的作用和重要性。
本文将探讨PLC在工业生产中的作用和重要性。
一、什么是PLCPLC是一种专门用于控制生产过程的计算机硬件。
它由CPU、内存、输入输出(I/O)接口、通信接口等组成,可以实现对生产过程的监控和控制。
PLC与工业设备通过数字信号进行连接,通过运行特定的控制程序来实现自动化控制。
二、PLC在工业生产中的作用1.自动化控制PLC可以根据预设的控制程序对生产过程进行自动化控制。
它可以监测各种输入信号(例如传感器信号),根据程序逻辑判断并控制输出信号,实现对生产过程的自动控制。
这有助于提高生产效率,减少人为操作错误,并提供安全保护措施。
2.过程监控PLC不仅可以进行控制,还可以实时监测生产过程中各种参数和状态信息。
通过监控,可以及时发现问题并采取相应的措施,避免生产异常或设备故障造成的损失。
同时,监控数据也可以用于生产过程的优化和改进。
3.数据处理和存储PLC具有较强的数据处理和存储功能,可以对采集到的数据进行处理和分析。
这些数据可以用于生成报表、图表等,帮助管理人员做出决策。
此外,PLC还可以将数据存储在内部存储器或外部设备中,方便后续的回顾和分析。
4.通信和联网随着工业互联网的发展,PLC的通信能力也得到了进一步提升。
现代的PLC可以通过以太网、无线网络等方式与其他设备进行通信和联网,实现信息的共享和远程监控。
这使得生产过程的管理更加便捷和高效。
三、PLC在工业生产中的重要性1.提高生产效率和质量PLC可以实现对生产过程的精确控制和监测,避免了人为操作错误和不稳定因素的影响。
它能够以高速度和高精度进行数据处理和决策,保证生产过程的稳定性和可靠性。
通过自动化控制和优化,PLC能够大大提高生产效率和产品质量。
2.降低成本和风险PLC的自动化控制功能可以减少人工操作,降低了劳动力成本。
PLC控制系统在甲醇裂解制氢方面的应用设计

PLC控制系统在甲醇裂解制氢方面的应用设计发布时间:2022-09-13T02:26:06.631Z 来源:《科技新时代》2022年2月第4期作者:张晓平[导读] 本文着重阐述了PLC控制系统在甲醇裂解制氢方面的设计应用,实现了制氢智能化。
张晓平南京大桥机器有限公司南京 211101)摘要:本文着重阐述了PLC控制系统在甲醇裂解制氢方面的设计应用,实现了制氢智能化。
关键字: PLC控制系统自动化程度高安全性高节能环保正文一、引言目前,国内气象用制氢手段主要有化学制氢和水电解制氢。
化学制氢是目前部队气象保障主要采用的一种方式,该方法氢气制作简单、消耗材料供给保障畅通等优点,缺点是对环境污染大,安全系数小,制氢过程不可控;水电解制氢最主要缺点是的电能消耗极高,制氢效率低;随着人工智能化技术的发展,我国加强对环境污染源的控制和安全要求的提高,这种制氢方法将逐步被替代。
应用PLC控制系统在甲醇裂解制氢方式出现了,此PLC控制系统主导的甲醇裂解制氢优点是全程自动化,安全系数高,远程监控,制氢量大、能耗低、无污染,许多采用传统制氢工艺的厂家纷纷进行了技术改造。
通过各领域大量的实际应用,并且近年来不断的进行工艺技术改进,证明了PLC控制系统在甲醇裂解制氢方面的应用,智能化程度高、技术可靠,符合清洁能源、高效率、低能耗应用的发展趋势。
三、系统工作原理及组成功能(一)、系统工作原理制氢系统工作过程主要分为三部分:原料准备、原料蒸汽裂解与PSA变压吸附纯化。
原料分别有预热原料、裂解原料及空气,首先PLC系统控制原料输送及加压后进入裂解装置进行反应。
预热原料与空气在裂解装置的催化剂作用下发生放热反应,为裂解原料提供原料汽化的热量;其次控制裂解原料汽化后,在裂解装置中产生纯度为75%的高温氢气,高温氢气经过换热室、散热装置、气水分离器降温干燥后,输送至PSA提纯装置;最后控制 PSA提纯装置将75%的裂解气纯化至99.9%以上的优质氢气后,输送至储气装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Small stationary reformers for H 2production from hydrocarbons 5Eugenio Calo`*,Antonella Giannini,Giulia Monteleone ENEA e Italian National Agency for new Technologies,Energy and the Environment Energy Department,C.R.Casaccia,via Anguillarese,30100123Santa Maria di Galeria,Rome,Italya r t i c l e i n f oArticle history:Received 16June 2009Received in revised form 3March 2010Accepted 13March 2010Available online 10April 2010Keywords:Reformer Hydrogen LPGPolymer electrolyte fuel cella b s t r a c tThis paper describes the activities performed in ENEA (Italian National Agency for New Technologies,Energy and Environment)during the last years in order to investigate the hydrogen production from largely available hydrocarbons,such as natural gas [1]and LPG (Liquefied Petroleum Gas),aimed at feeding Polymer Electrolyte Fuel Cells (PEFC)in the 1e 5kW electric power range.Reformers in such a size will be used for small domestic CHP systems (residential,hotels,offices,shopping centres)and for APU on boats and caravans.A significant part of the problems related with residential CHP based on PEFC occurs in the fuel processor [2]:start-up time is to be reduced,efficiency and reliability are to be increased.For this purpose ENEA has tested two LPG fed small reformers with a hydrogen production capacity of about 1Nm 3/h of H 2equivalent,both based on the steam reforming process.The reformer test station was provided with instrumentation in order to evaluate the performances of the reformer in terms of H 2yield,CO content of the syn-gas,thermal and energy balance.The experimental results show the feasibility of such a reformer and indicate the lines for further improvements.In particular the methanation process looks like more suitable than PSA for reformate gas purification in reformers of such a size.The quality of the reformate gas,in term of low CO content,is quite good for feeding PEMFC.The duration and the stability of the start-up time must be improved.The reformer efficiency range is 75e 85%.ª2010Professor T.Nejat Veziroglu.Published by Elsevier Ltd.All rights reserved.1.IntroductionMarket perspectives for small-scale Fuel Processors aimed to feed PEMFC (Proton Exchange Membrane Fuel Cells)forresidential CHP systems,single power generation and small hydrogen filling stations seem to be interesting.With regard to small-scale residential CHP (Combined Heat and Power)the Fuel Processor/PEM Fuel Cell systems have toAbbreviations:APU,auxiliary power unit;CHP,combined heat and power;ENEA,Italian National Agency for new Technologies,Energy and the Environment;FISR,Italian Special Fund for Research;HHV,higher heat value;HIWAR,heat integrated wall reactor;HTS,high temperature shift reaction;LHV,lower heat value;LPG,liquefied petroleum gas;LTS,low temperature shift reaction;MS,mole sieve;PEFC,polymer electrolyte fuel cells;PEM,proton exchange membrane;PEMFC,proton exchange membrane fuel cells;PLC,program-mable logic controller;PNR,National Research Programme;PSA,pressure swinging adsorption;SEM,scanning electron microscope;SOFC,solid oxide fuel cell;WGSR,water gas shift reaction.5Research funded by FISR (Italian Special Fund for Research).*Corresponding author .Tel.:þ390630486231;fax:þ390630483190.E-mail addresses:eugenio.calo@casaccia.enea.it (E.Calo`),antonella.giannini@casaccia.enea.it (A.Giannini),giulia.monteleone@casaccia.enea.it (G.Monteleone).A v a i l a b l e a t w w w.s c i e n c e d i re ct.c o mj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /h ei n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 35(2010)9828e 98350360-3199/$e see front matter ª2010Professor T.Nejat Veziroglu.Published by Elsevier Ltd.All rights reserved.doi:10.1016/j.ijhydene.2010.03.067face,beside technical development problems(reliability, duration,purity of produced hydrogen,low temperature for useful heat exploitation,etc)even competition of systems based on SOFC(Solid Oxide Fuel Cells)or on internal combustion motor engines.Almost40%of the problems related with small-scale resi-dential PEMFC/CHP systems occur in the fuel processor[2].The most important requirement for stand-alone power generation is independency of the system from electric grid and possibly from any other network such as water or fuels. That means making systems which can be fed by easily available and easily transportable fuels(LPG,gas oil,gasoline, ethanol,liquid fuels in general).For the small hydrogenfilling station the most important requirements,in the long term view,are reliability,duration and cost of produced hydrogen.For a fuel cell-based system,the use of one single hydrogen generation unit must ensure the following features:rapidstart-up,good dynamic response,high-fuel conversion, simple construction and operation,and low cost[3].The choice of a suitable fuel processor and fuel,during the transition phase to a hydrogen economy,are the key aspects to the successful implementation of direct-hydrogen fuel cell systems[4].Fuel processors based on steam reforming appear as the most efficient option for H2rich gas production[5e8].The present paper describes the activities performed in ENEA during the last three years in order to investigate the hydrogen production from a largely available fuel such LPG (Liquefied Petroleum Gas),aimed at feeding Polymer Electro-lyte Fuel Cells(PEFC)in the1e5kW power range.The activities were funded by the national FISR(Italian Special Fund for Research)program.The mainfield of application of the tested devices,once developed,is expected to be that of stand-alone power generation and of local energy networks and apartment buildings.2.Tested reformers and results2.1.First LPG processor(2006e2007)Thefirst LPG Processor to be investigated was provided by Hydrogen/Arcotronics(Italy).The gross size(cm)of the fuel processor,shown in Fig.1,is 80(width)Â40(length)Â40(height).The amount of catalysts used in the different reaction vessels(and therefore the GHSV of reactions)was treated as confidential by manufacturers.LPG is fed to the fuel processor at a pressure of3,5bar (gauge).After a desulfurization unit(150 C e200 C;heated in counter-flow by exhaust gases from the burner,size diameter 34mm,length355mm,sorbent Zinc Cu and Al oxides),the device contains afirst reaction vessel made up by co-axial cylinders enveloped on one another(net size in cm is33of lengthÂ19of external diameter)where,beside the combus-tionflue gas path,there are mainly three different areas of chemical reaction(see Fig.2):1.LPG steam reforming(endothermic)C3H8þ3H2O>3COþ7H2C4H10þ4H2O>4COþ9H2Molar ratio:H2O/C3H85(only for steam reforming)and7 (taking into account reforming and shift),Catalyst:NiO(Johnson Matthey CRG LHR for pre-reforming and Katalco25e4M for reforming),the steam reforming reactor has a useful length of0.20m and an annular section with an equivalent radius of0,0343m, the temperature of reaction is>600 C2.Water Gas Shift Reaction(exothermic)COþH2O>CO2þH2Catalysts:Fe,Cr,Cu oxides(Katalco71e5M)for HTS(300 C e450 C)Cu,Zn oxides(Katalco83-3MX)for LTS(300 C)3.Methanation(exothermic)COþ3H2>CH4þH2OCatalyst:Ni on Calcium aluminate cement(Katalco 11e4MR)the temperature of reaction is300 C,the WGSR and methanation reactor has a useful length of 20cm and an annular section with an equivalent radius of 5,95cm.Outside this reaction vessel,the last part of the processor contains two purification units,based on the mole sieves principle,for alternate adsorption(PSA Pressure Swinging Adsorption)of residual CO.While one of the2mol sieve (MS)units purifies the syn-gas by adsorbing residual CO,the other MS unit is regenerated for180s by means of a LPG stream,and for17s by means of a quota of the reformate gas.Both the streams coming out the regenerating unit are afterwards sent to the burner for combustion.Each of the mole sieves unit is26cm in length and3,5cm in diameter.The pressure drop through each of the molesieves Fig.1e Hydrogen/Arcotronics LPG Processor.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y35(2010)9828e98359829unit was 0,26bar,and they did not need a compressor,the feeding pressure was 2,5bar gauge,the working temperature 70 C.The design performance (in term of removed CO)was:CO inlet 1.000ppm;CO outlet <50ppm.The design architecture of this LPG Processor was aimed to reduce the overall size of the device and to optimise the heat balance.The heat for the endothermic steam reforming reaction is provided both from the combustion of a small amount of LPG and from the exothermic WGSR (Water Gas Shift reaction)and Methanation reactions.In order to evaluate the performances of the LPG Processor a system for gas analysis is needed.The analysis system is made up by the following instruments:ABB Advance Optima URAS 14(infrared detector)for CO,CO 2,CH 4ABB Advance Optima Caldos 15(thermal conductivity)for H 2ABB Advance Optima electrochemical cell for O 2Varian CP-4900micro GC Molsieve 5A for O 2,N 2,CO,CH 4Varian CP-4900micro GC PoraPlot-U for C 3H 8,CO 2.The experimental performing of this fuel processor showed many key points to be improved:-burner-combustion flue gas tightness -reactants tightness -PSA purificationImproving the burner (Fig.3b)meant mainly to increase the size and the flow rate of the combustion air fan,and to duplicate the LPG inlet in order to control the reformer heating start-up,when a larger amount of LPG is needed.Nonetheless the warming up of the reformer took at least 2e 2,5h (with an average consumption of 2,24kg/h of LPG).Tightening some leakages in the combustion flue gas circuit (Fig.3c)and in the reactants cylinders (Fig.3d)wasn’t enough to ensure the design pressure and the expected performances inside the processor.As the repair would have required a heavy and mostly entirely destructive welding intervention,ENEA decided to check the PSA as a stand-alone device by using a proper gas mixture.2.1.1.Experimental results2.1.1.1.PSA section.PSA size:two cylinders each 26cm in length and 3,5cm in diameter,mole sieves with metal aluminum silicates.Operating temperature 70 C (by means of two electric heaters)P in 3bar gauge,P out 2,7bar gaugeInlet flow 1.000Nl/h (H 2with 1125ppm CO)CO inlet and outlet detected by ABB Caldos and Varian CP-4900micro GC Molsieve 5AExperimental D P:0.15bar (500Nl/h)-0.94bar (2.500Nl/h).The tests performed on the PSA section showed that a time span of 180(plus 17)seconds was enough for nearly complete CO adsorption (CO <10ppm),see Fig.4,while the same time (the two MS unit have to shift from adsorption to purification and vice versa simultaneously)was not sufficient for a complete regeneration of the adsorbent,probably due to an almost equal pressure in adsorption and regeneration phase.The gas-chromatograph method used for the micro GC column Molsieve 5A was: P column:150kPa T ¼80 CCO retention time:1749min.2.1.1.2.Catalyst layers arrangement.Another critical aspectof this processing design was due to the separation of different catalyst layers in the outer cylindrical reaction area (High Temperature WGSR,Low Temperature WGSR,Methanation).An after test SEM (Scanning Electron Microscope)analysis of the catalyst particles that the different catalytic layers had mixed-up with one another.2.2.Second LPG processor (2008)The second LPG Processor,with the commercial name of APS 1000(Fig.5a),was provided by Exergy (former Arco-tronics)(Italy)as a result of the integration of this latter firm and Helbio SA (Greece)into Morphic (Sweden)in the late 2007.The net size (cm)of the fuel processor,shown in Fig.5,is 60(width)Â60(length)Â115(height).Its weight is about 80kg.The hydrogen production is based on a first stage of Steam Reforming,followed by two stages of Water Gas Shift Reaction and two stages of methanation for COpurification.Fig.2e Hydrogen/Arcotronics LPG Processor:chemical reaction area scheme,2a)reactants inlet side 2b)burner inlet side.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 35(2010)9828e 98359830HELBIO’s solution for the endothermic steam reformer reactor is a heat exchanger type reactor:the Heat Integrated Wall Reactor (HIWAR International Patent PTC 98010080/22.05.98,Fig.6).The reactor consists of one or more tubes inside which reforming takes place on a catalyst deposited in a thin film on the inner surface of each tube.A combustion catalyst is deposited on the outer surface of the tube.In this manner,combustion is controlled very close to where the demand for heat is located while heat transfer is very efficient across the metallic tube wall.This translates to very efficient and compact reactor design [9].LPG is fed at 2bar gauge.The reactions taking place into HELBIO APS 1000Reformer are:-LPG steam reforming (endothermic),800 CC 3H 8þ3H 2O >3CO þ7H 2C 4H 10þ4H 2O >4CO þ9H 2-High Temperature Water Gas Shift Reaction (exothermic),285 CCO þH 2O >CO 2þH2Fig.3e Hydrogen/Arcotronics LPG Processor:3a)removing the burner;3b)improving the burner;3c)sealing the flue gas circuit;3d)leakages from reactantscylinder.Fig.4e Chromatograms (Varian CP-4900micro GC column:Molsieve 5A)of CO content before (1125ppm)and after (10ppm)purification column.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 35(2010)9828e 98359831-Low Temperature Water Gas Shift Reaction (exothermic),245 CCO þH 2O >CO 2þH 2-First Methanation (exothermic),200 CCO þ3H 2>CH 4þH 2O-Second Methanation (exothermic),165 CCO þ3H 2>CH 4þH 2OInformation about amount of catalysts used in the different reaction vessels,the size and the shape of each reactor (and therefore the GHSV of reactions)was treated as confidential by manufacturers.The Fuel Processor Helbio APS 1000came to ENEA labs in April 2008.During May and June 2008the test rig and the instrumen-tation were set up (Fig.5b and c).In order to calculate mass and energy balances and to evaluate the performances of Helbio APS 1000,gas analysis and mass flow measurements are needed.The analysis and data acquisition system is made up by Analysis systemABB Advance Optima URAS 14(infrared detector)for CO,CO 2,CH 4ABB Advance Optima Caldos 15(thermal conductivity)for H 2ABB Advance Optima electrochemical cell for O 2Data acquisition:Yokogawa Datum Y-XL 100,used for B Reformate gas composition (from ABB Advance Optima) Data acquisition:Yokogawa Datum CX 2000,used for B Reformate gas flow (from Mass Flow Meter Bronkhorst)B Weight of LPG bottle (in continuous,from a scale con-nected to Yokogawa Datum CX 2000)B Weight of demi water bottle (in continuous,from a scale connected to Yokogawa Datum CX 2000)Power-Meter Hameg HM8115-2for auxiliaries absorbed power and power factor measurements.The experimental tests have been conducted in the period June e September 2008.First of all the warming up time has been ascertained.The design start-up time is 1h 200.In Fig.7it can be seen the fast warming of the steam reforming reactor catalytic bed:T reformer and Tref out curves increase rapidly in the first 30min.Afterwards,due to LPG changeable composition and to the back-pressure of the exhaust flue gas circuit,two automatic stops and re-starts occur so that an overall time of 2h 300has been observed for reaching the stabilization of all the reactions (less than 10ppm CO,see Fig.9and a steady H 2content,see Fig.10)of the produced syn-gas.The temperatures were monitored from the reformer PLC mother-board;the main temperatures reported in Fig.7are T reformer :temperature at the reforming catalyst film; T ref out :temperature at the exit of reforming area; T burner out :temperature at the exit of the burner;T burner :temperature of theburner;Fig.5e a)Helbio/Exergy LPG Processor;b)test rig;c)test rig backview.Fig.6e Helbio HIWAR patent.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 35(2010)9828e 98359832T before1 meth:temperature before thefirst methanator;T after2 meth:temperature after the second methanator.The uneven shape of all the curves,particularly of the T burner and the T reformer curves,is due to the failures and automatic recoveries in the reformer start-up sequence,with subsequent raises and falls of the temperature values.The T after2 meth curve is less influenced by stops and re-startings because this temperature is measured last after all the reactions and shows a bigger response time.2.2.1.Experimental results(“ready to fuel cell”phase)The most meaningful data for calculating the reformer performances are reported hereafter:B Reformateflow rate:1,24Nm3/hB H2concentration in reformate gas:72%B H2flow rate:0,893Nm3/hB Overall LPGflow rate:0,25kg/hB Reactions LPGflow rate:0,138kg/hB Waterflow rate:0,851kg/hFig.7e Temperature paths in Helbio APS1000LPG Processor(from PLCmother-board).Fig.8e CO concentration(ppm)in the outlet reformate gas analyzed by ABB Advance Optima URAS14(collected by Yokogawa Datum Y-XL100).i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y35(2010)9828e98359833BWater/LPG molar ratio:15,8(15if referred to a pure C 3H 8stream)B Temperatures:see Fig.8;the shape of the curves,in particular the T burner and the T reformer curves are due tofailures and automatic recoveries,led by the PLC start-up sequenceB Auxiliaries absorbed power:120W.The syn-gas contains,on a dry base,more than 72%of hydrogen (Fig.9)and about 25%of CO 2and 1,5%of CH 4.The CO content in the reformate gas is less than 1ppm (Fig.8).2.2.2.Fuel processor efficiencyThe Fuel Processor efficiency is calculated as the ratio of useful energy produced (in terms of hydrogen)during a certain time compared to the energy supplied in the same time.At the steady state (“ready to fuel cell”phase)the energy produced as LHV of hydrogen stream is 0.893Nm 3/h Â0,0899kg/Nm 3Â120MJ/kg ¼9,63MJ/h (2,68kW).The energy supplied is made up by:the overall LPG feed:0.25kg/h Â49MJ/kg ¼12,25MJ/h (3,40kW),and the electricity needs of auxiliaries,120W,equivalent in terms of primary energy sources to 261W [10]that is 0,94MJ/h (0,261kW).The Fuel Processor efficiency,based on LHV base,is therefore calculated (all values in MJ/h)as 9,63/(12,25þ0,94)¼73%3.Conclusions and further developmentBased on the experimental results for Fuel Processor an enthalpy balance for a power generator producing 1electric kW has been workedout.Fig.9e H 2concentration in the outlet reformate gas analyzed by ABB Advance Optima Caldos 15(collected by Yokogawa Datum Y-XL100).Fig.10e Helbio/Exergy Fuel Processor/Fuel Cell integrated assembly.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 35(2010)9828e 98359834Such a power generator will be made up by coupling HEL-BIO APS1000reformer with an EXERGY Fuel Cell with a nominal electric production of1kW.B Reformer efficiency e based on Low Heat Values:at the steady state(“ready to fuel cell”phase)(H2out(kg/h)Â120MJ/kg)/(LPG in(kg/h)Â49MJ/kg)(1,24Â0,72Â0,0899Â120)/(0,25Â49)¼9,63/12,25¼78,6%(*)(*)without accounting the energy for the auxiliaries electric needsThe expected balance for a Fuel Processor-Fuel Cell system has been calculated based on a fuel cell efficiency h fc¼0,4[11]:the expected gross electric power produced by the Fuel Cell is9,63Â0,4¼3,85MJ/h¼1,07kWTo obtain the net electric power we have to subtract the auxiliaries needs for the reformer section(120W)and for the Fuel Cell and DC/AC inverter section(100W);the net electric power is therefore:1,07À(0,120þ0,100)¼0.85kW(3,06MJ/h)and the overall expected electric efficiency,attainable for such an equipment,is(values in MJ/h):3,06/12,25¼25%(based on Low Heat Value of LPG and taking into account all the auxiliary electric needs).This value is consistent with the design value for both in network and stand-alone performance.As a further development the integrated Fuel Processor Fuel Cell system(Fig.10)will be tested in ENEA laboratories during2009.The outlines for improvements aimed at industrialization of the system are:-Reducing times for(cold)start-up-Reducing size and weight of some components-Reducing the need of electric power consumption for auxiliaries(reducing instrumentation and controls)-Improving heat exchanges and H2recovery from anodic flue gas-Recovering(by re-circulation)the anodic exhaust(con-taining about20%of produced H2,plus some CH4)from PEM stack to feed the burner-Reducing LPG inlet to burner e after the start-up phase:a simulation modeling showed it could be lowered of10%without any problem.AcknowledgementsWe are grateful to:-EXERGY Fuel Cells /-HELBIO SA http://www.morphic.se/en/Helbio/This work has been realised with the contribution of FISR (Italian Special Fund for Research).The fund is aimed at financing strategic research themes,as stated within Italian National Research Programme(PNR).r e f e r e n c e s[1]Calo`E,Cruciani C,Galli S,Monteleone G.Small stationaryreformer for hydrogen production progress activities in ENEA Hypothesis V;7e10September2003[2]Aki Hirohisa.The penetration of micro CHP in residentialdwellings in Japan.IEEE;2006.[3]Ersoz A.Investigation of hydrocarbon reforming processesfor micro-cogeneration systems.International Journal ofHydrogen Energy;October2008.[4]Larminie J,Dicks A.Fuel cell systems explained.2nd ed.;2003.[5]Ogden JM.Review of small stationary reformers for hydrogenproduction.Task Development Workshop;2001.[6]Recupero V,Pino L,Vita A,Cipitı`F,Cordaro M,Lagana`M.Development of a LPG fuel processor for PEFC systems:laboratory scale evaluation of autothermal reforming andpreferential oxidation subunits.International Journal ofHydrogen Energy2005;30:963e71.[7]Laosiripojana N,Assabumrungrat S.Hydrogen productionfrom steam and autothermal reforming of LPG over highsurface area ceria.Journal of Power Sources2006;158:1348e57.[8]Cipitı`F,Pino L,Vita A,Lagana`M,Recupero V.Performance ofa5kWe fuel processor for polymer electrolyte fuel cells.International Journal of Hydrogen Energy2008;33:3197e203.[9]http://www.morphic.se/en/Helbio/Technology/Heat-Integrated-Wall-Reactor-HIWAR/.[10]Italian authority for electric energy and gas.AEEG;2008.data.[11]Cicconardi SP,Granati M.ENEA-MSE(Ministry forEconomical development)“Steady-state and dynamicsimulation for a5kW CHP system”.Italy:University ofCassino;March2009.RS/2009/179.i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y35(2010)9828e98359835。