保险精算李秀芳1-5章习题答案

合集下载

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)第一章:利息的基本概念 练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

6.设m >1,按从大到小的次序排列()()m m d d i i δ<<<<。

7.如果0.01t t δ=,求10 000元在第12年年末的积累值。

、8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。

9.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6t tδ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。

10. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。

11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。

A. 7.19B. 4.04C. 3.31D. 5.2112.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

保险精算习题答案

保险精算习题答案

第六章虫"^仏日&劳哲血」7---------------------------------d 曲__ ---------- ----- ---------------------------鼻0习* 匕叢轨g 4珂& _______________As二越丐十汹齟=陆①+ 4弘办血 ____ _____________ 7 v缶t~vfii¥尿弔n 2TI& “軀”哄心曲 -----------------------------------------------------“却L h兔购¥催停端約*松停鼠侖F询刖¥圭鳥杂f乩越曲咎任朋核保應/Alt丹袖E韦勺锁—迦缈貝必I£1L<己feo咄枷胡(皿皿虚鬲机⑹二豁 "£尊勺附)冷朴♦兹旳二也呦的乂枇区妊顶阮他彩药姐他蛆免泌纽型一無爷射柚探性X拥施柚蚪』中昭6”科朮剋霑例申變找缎冒姫務鱼和懾龙宜"120)二"«抵》4髯卩卜P【k? _h"龄虹血刍i——小二鴿人学"&也匕血吆ba "f呼虹沁严矶伽严P谕勿心显"£伽岸爲召少仲> 1(^(^ _胁阿' 拥纳—_|眼a注皿砒史他話血海对札恋乍曙戟冷确毎孫矗|弟豹貳dW Az攸初二D1题K1妙fitglaLM慢冲E4 闵速-- - ------ —-阿吐軾友沁良妇盘盘储业HSJftf橹找如__一_一姣旦曹豁J J £? ..4 h僞怜験沖钠缶花ill用E盘憾姒if Si li.fi 4熾盈赵扯St_(S 网-------------- ----- - ------------ --- 一一丄二屁广~肚砰二血沪■陶广哄叶#幻严1-召53=曲必用严)_ ¥----------------- ----------爲”显•磊二仙L一一—— .. -w VaM二血心3諾________ : ___________⑴也吋赠工十腐?土R卅* ■⑹ 血二£ k j £ A _____ ____ __ ____________包柱"“紘)L如任创二• “p“ ____________________________ 如山上£晒出栖皿L迦山丄也22Z”&乂知氐谆三也色.Ah他沖。

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。

(2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。

保险精算第二版习题及答案

保险精算第二版习题及答案

保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

800元在28%i =,第3为t (t=0),i 积累;11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。

A. 7.19B. 4.04C. 3.31D. 5.2112.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。

A.7 225B.7 213C.7 136D.6 987第二章:年金练习题1.证明()nmm n v v i a a -=-。

2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。

年计息12次的年名义利率为8.7% 。

计算购房首期付款额A 。

3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。

4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。

年利率为10%,计算其每年生活费用。

5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。

年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知1012v =,计算K 。

6. 化简()1020101a v v ++ ,并解释该式意义。

5 。

n 年每年,那么v=( 2. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求60q 。

保险精算李秀芳1-5章习题答案

保险精算李秀芳1-5章习题答案

第一章生命表1.给出生存函数()2 2500 xs x e-=,求:(1)人在50岁~60岁之间死亡的概率。

(2)50岁的人在60岁以前死亡的概率。

(3)人能活到70岁的概率。

(4)50岁的人能活到70岁的概率。

()()()10502050(5060)50(60)50(60)(50)(70)(70)70(50)P X s ss sqsP X ssps<<=--=>==2.已知生存函数S(x)=1000-x3/2 ,0≤x≤100,求(1)F(x)(2)f(x)(3)F T(t)(4)f T(f)(5)E(x)3. 已知Pr[5<T(60)≤6]=,Pr[T(60)>5]=,求q65。

()()()5|605606565(66)650.1895,0.92094(60)(60)65(66)0.2058(65)s s sq ps ss sqs-====-∴==4.已知Pr[T(30)>40]=,Pr[T(30)≤30]=,求10p60Pr[T(30)>40]=40P30=S(70)/S(30)= S(70)=×S(30)Pr[T(30)≤30]=S(30)-S(60)/S(30)= S(60)=×S(30)∴10p60= S(70)/S(60)==5.给出45岁人的取整余命分布如下表:k0 1 2 3 4 5 6 7 8 945kq .0050 .0060 .0075 .0095 .0120 .0130 .0165 .0205 .0250 .0300求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。

(1)5q 45=(++++)=6.这题so easy 就自己算吧7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整)(1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×()≈1492 (2)4d 36=l 36×4q 36=1500×(+)≈11(3)l 36×9|5q 36=l 36×9P 35×5q 45=1500××=1500×≈33 8. 已知800.07q =,803129d =,求81l 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 生命表1.给出生存函数()22500x s x e-=,求:(1)人在50岁~60岁之间死亡的概率。

(2)50岁的人在60岁以前死亡的概率。

(3)人能活到70岁的概率。

(4)50岁的人能活到70岁的概率。

()()()10502050(5060)50(60)50(60)(50)(70)(70)70(50)P X s s s s q s P X s s p s <<=--=>==2.已知生存函数S(x)=1000-x 3/2,0≤x ≤100,求(1)F (x )(2)f(x)(3)F T (t)(4)f T (f)(5)E(x)3. 已知Pr [5<T(60)≤6]=,Pr [T(60)>5]=,求q 65。

()()()5|605606565(66)650.1895,0.92094(60)(60)65(66)0.2058(65)s s s q p s s s s q s -====-∴==4. 已知Pr [T(30)>40]=,Pr [T(30)≤30]=,求10p 60 Pr [T(30)>40]=40P30=S(70)/S (30)= S (70)=×S(30) Pr [T(30)≤30]=S(30)-S(60)/S(30)= S(60)=×S(30) ∴10p 60= S(70)/S (60)==5.给出45岁人的取整余命分布如下表:求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。

(1)5q 45=(++++)=6.这题so easy 就自己算吧7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整)(1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×()≈1492 (2)4d 36=l 36×4q 36=1500×(+)≈11(3)l 36×9|5q 36=l 36×9P 35×5q 45=1500××=1500×≈33 8. 已知800.07q =,803129d =,求81l 。

8080818080800.07d l l q l l -=== 8080818080800.07d l l q l l -=== 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q .612P =(1-q 61)(1-q 62)= 60|2q =612P .q 62=10. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。

求生存函数s(x)在20岁、21岁和22岁的值。

120121122000(20)0.92,(21)0.915,(22)0.909d d d d d d s s s l l l ++++++======L L L13.设01000l =,1990l =,2980l =,…,9910l =,1000l =,求:1)人在70岁至80岁之间死亡的概率;2)30岁的人在70岁至80岁之间死亡的概率;3)30岁的人的取整平均余命。

18.19.20.24. 答:当年龄很小时,性别差异导致的死亡率差异基本不存在,因此此时不能用年龄倒退法。

.设选择期为10岁,请用生存人数表示概率5|3q [30]+329.第二章 趸缴纯保费1. 设生存函数为()1100xs x =-(0≤x ≤100),年利率i =,计算(保险金额为1元):(1)趸缴纯保费130:10Ā的值。

(2)这一保险给付额在签单时的现值随机变量Z 的方差Var(Z)。

1010130:101010211222230:1030:10()1()1100()100110.0921.17011()()0.0920.0920.0551.2170t x x t tt t x x t tt t x x t x s x t s x p s x xA v p dt dt Var Z A A v p dt dt μμμ+++'+=-⇒=-=-⎛⎫=== ⎪⎝⎭⎛⎫=-=-=-= ⎪⎝⎭⎰⎰⎰⎰g g g2.设利力0.210.05t tδ=+,75x l x =-,075x ≤≤,求x A 。

5. 设0.25x =A , 200.40x +=A , :200.55x =A , 试计算:(1) 1:20x A (2) 1:20x A 1 120:20:201 1:20:20:201 1:20:201 1:20:201:20 1:200.250.40.550.050.5x x x x x x x x x x x x x A A A A A A A A A A A A A +⎧=+⎪⎨=+⎪⎩⎧=+⎪⇒⎨=+⎪⎩⎧=⎪⇒⎨=⎪⎩g g 6.试证在UDD 假设条件下: (1) 11::x n x n iδ=A A (2) 11:::x x n n x niδ=+ĀA A8. 考虑在被保险人死亡时的那个1m年时段末给付1个单位的终身寿险,设k 是自保单生效起存活的完整年数,j 是死亡那年存活的完整1m年的时段数。

(1) 求该保险的趸缴纯保费 ()m x A 。

(2) 设每一年龄内的死亡服从均匀分布,证明()()m x x m i i=A A9.10.(x)购买了一份2年定期寿险保险单,据保单规定,若(x)在保险期限内发生保险责任范围内的死亡,则在死亡年末可得保险金1元,()0.5,0,0.1771x q i Var z === ,试求1x q +。

11.已知,767677770.8,400,360,0.03,D D i ====求A A12.设现年40岁的人购买一张保险金额为5000元的30年定期寿险保单,保险金于被保险人死亡时所处保单年度末支付,试用换算函数计算该保单的趸缴纯保费。

500030:140A =5000×(M40-M70)/D40=13.现年30岁的人,付趸缴纯保费5 000元,购买一张20年定期寿险保单,保险金于被保险人死亡时所处保单年度末支付,试求该保单的保险金额。

解:1130:2030:2050005000RA R A =⇒=191111303030303030:2030303030313249232030305030111111 ()1.06(1.06)(1.06)(1.06) k k k kk kk kk k k k ld Avp q vv d l l l d d d d l M M D ∞∞+++++++===+====++++-=∑∑∑L 例查(2000-2003)男性非养老金业务生命表中数据1232030:2011111(8679179773144)9846351.06(1.06)(1.06)(1.06)0.017785596281126.3727A R =++++==L = 14.现年35岁的人购买了一份终身寿险保单,保单规定:被保险人在10年内死亡,给付金额为15 000元;10年后死亡,给付金额为20 000元。

试求趸缴纯保费。

趸交纯保费为1110|3535:101500020000A A +991111353535353535:1035353535363744231035354535111111 ()1.06(1.06)(1.06)(1.06)13590.2212077.310.01187127469.03k k k kk kk kk k k k ld Avp q vv d l l l d d d d l M M D ∞+++++++===+====++++--===∑∑∑L7070701111353510|3535353510101035353545464710511121371354535111111 ()(1.06)(1.06)(1.06)(1.06)12077.310.09475127469.03k k k kk kk kk k k k ld A vp q vvd l l l d d d d l M D +++++++===+====++++===∑∑∑L 所以趸交纯保费为1110|3535:101500020000178.0518952073.05A A +=+=15.年龄为40岁的人,以现金10 000元购买一份寿险保单。

保单规定:被保险人在5年内死亡,则在其死亡的年末给付金额30 00元;如在5年后死亡,则在其死亡的年末给付数额R 元。

试求R 值。

17.设年龄为50岁的人购买一张寿险保单,保单规定:被保险人在70岁之前死亡,给付金额为3000元;如至70岁仍生存,给付金额为1500元。

试求该寿险保单的趸交纯保费。

解:该趸交纯保费为:1150:2050:2030001500A A +1919191111505050505050:20505050505152692320050507050111111 ()1.06(1.06)(1.06)(1.06) k k k kk kk kk k k k ld Avp q vvd l l l d d d d l M M D +++++++===+====++++-=∑∑∑L 1707070705050:20507050l A v p v l D D ===18.设某30岁的人购买一份寿险保单,该保单规定:若(30)在第一个保单年度内死亡,则在其死亡的保单年度末给付5000元,此后保额每年递增1000元。

求此递增终身寿险的趸交纯保费。

该趸交纯保费为:30303030303040001000()40001000M RA IA D D +=+= 75757511130303030303003030303031321052376303030111111 ()1.06(1.06)(1.06)(1.06) k k k kk kk kk k k k ld A vp q vv d l l l d d d d l M D +++++++===+====++++=∑∑∑L757575111303030303030030303030313210523763030301()(1)(1)(1)112376 ()1.06(1.06)(1.06)(1.06) k k k kk kk kk k k k ld IA k vp q k vk v d l l l d d d d l R D +++++++===+=+=+=+=++++=∑∑∑L19.20. 某一年龄支付下列保费将获得一个n 年期储蓄寿险保单:(1)1 000元储蓄寿险且死亡时返还趸缴纯保费,这个保险的趸缴纯保费为750元。

相关文档
最新文档