新北师大版八年级数学下册同步习题精选6.1平行四边形的性质(4)
北师大版八年级下册 第6章 平行四边形基础知识点及同步练习、含答案

学科:数学教学内容:平行四边形的特征与识别方法一.主要内容1.平行四边形的定义有两组对边分别平行的四边形叫做平行四边形。
平行四边形ABCD,记作:ABCD ,其中AB与DC、AD与BC是两组对边;AB与BC是邻边;∠A与∠C、∠B与∠D是两组对角;∠A与∠B是邻角。
边、角、对角线是平行四边形的基本元素。
AD BC 2.平行四边形的特征① 平行四边形是中心对称图形,对称中心是对角线的交点。
这是它的本质特征。
由它的本质特征决定了平行四边形的边、角、对角线的特征。
② 平行四边形的两组对边分别平行且相等③ 平行四边形的两组对角分别相等④ 平行四边形的两条对角线互相平分 3.平行四边形的识别方法方法1.用定义:有两组对边分别平行的四边形是平行四边形方法2.一组对边平行且相等的四边形是平行四边形方法3.对角线互相平分的四边形是平行四边形方法4.两组对角分别相等的四边形是平行四边形方法5.两组对边分别相等的四边形是平行四边形二.讲一讲0例1.ABCD中,∠A比∠B小20,求ABCD的四个角的度数。
分析:由于平行四边形的对角相等,邻角互补,因此只要给定一个角(内角、外角)或给出了两个角的数量关系(两邻角之比为2:3、两对角之和为140度等),就可以求平行四边形的四个角。
解:由于四边形ABCD是平行四边形,则∠A=∠C、∠B=∠D,AD//BC,由两直线平000行,同旁内角互补可知∠A+∠B=180。
又∠A比∠B小20,即∠B-∠A=20,解这两个方000 00 0程得:∠A=80∠B=100,则ABCD的四个角分别是80,100,80,100 例2.如图ABCD的对角线交于一点O,且AD≠CD,过O点作OM⊥AC,交AD ABCD的周长。
于点M。
如果△CDM的周长为a,求AMD OBC分析:ABCD的周长=2(AD+DC)=2(AM+MD+DC),又MC+MD+DC=a,因此只需要证明AM=MC,利用垂直平分线上的任意一点到线段两端点的距离相等即可。
北师大版八年级数学下册6.1《平行四边形的性质》典型例题

6.1《平行四边形的性质》典型例题一、选择题1、在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2、如图,□ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为( )A.BE = DFB.BF = DEC.AE = CFD.∠1= ∠23、如图,在□ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CDB.AB=CDC.AC=BDD.OA=OC4、如图,在□ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,□ABCD的周长是14,则DM等于()A.1B.2C.3D.4二、填空题5、在□ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数CD FGAB为 .6、如图,在□ABCD中,AC,BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB=______cm.7、如图,在平行四边形ABCD中,13AB,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕的长为__________.三、解答题8、如图,在□ABCD中,AE⊥BC,交边BC于点E,点F为CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.9、如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E,(1)求证:∠EDB=∠EBD;(2)判断AF与DB是否平行,并说明理由.10、在□ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.《6.1平行四边形的性质》典型例题解析BCDAEH一、选择题1、在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定解答:如图,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD+∠ADC=180°,∵∠EAD=∠BAD,∠ADE=∠ADC,∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°,∴∠E=90°,∴△ADE是直角三角形,故选:B.2、如图,□ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为( )A. BE = DFB. BF = DEC. AE = CFD.∠1= ∠2答案:C解答:∵四边形ABCD为平行四边形,∴AB=CD,∠ABE=∠CDF,若BE = DF,可由SAS判定△ABE≌△CDF;若BF = DE,则BE = DF,可由SAS判定△ABE≌△CDF;若AE = CF,是SSA,不能判定△ABE≌△CDF;若∠1= ∠2,可由ASA判定△ABE≌△CDF,故选择C.3、如图,在□ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CD B.AB=CD C.AC=BD D.OA=OC答案:C解答:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OA=OC,但是AC和BD不一定相等,故选C.4、如图,在□ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,□ABCD 的周长是14,则DM 等于( )A .1B .2C .3D .4 答案:C解答:∵在□ABCD 中,BM 是∠ABC 的平分线,∴∠CBM=∠CMB=∠ABM , ∴MC=BC=2,∵□ABCD 的周长是14,∴AB=CD=5,∴DM=3,故选C.二、填空题5、在□ABCD 中,AD =BD ,BE 是AD 边上的高,∠EBD =20°,则∠A 的度数为 . 答案:55°或35°解答:本题与□ABCD 无关,可以将本题修改为:在△ABD 中,AD =BD ,BE 是AD 边上的高,∠EBD =20°,求∠A 的度数.其实质为:已知等腰三角形一腰上的高与另一腰的夹角为20°,求等腰三角形底角的度数. 因此,本题分两种情况讨论:如图①,当BE 在△ABD 的内部时,∠1=90°-∠EBD =90°-20°=70°.∴∠A =∠ABD =21(180°-∠1)=55°.如图②,当BE 在△ABD 的外部时,∠1=90°+∠EBD =90°+20°=110°.∴∠A =∠ABD =21(180°-∠1)=35°.故答案为55°或35°.6、如图,在□ABCD 中,AC ,BD 相交于点O ,AB =10cm ,AD =8cm ,AC ⊥BC ,则OB =______cm .答案:73解答:∵AC ⊥BC ,∴∠ACB =90°. ∵AB =10cm ,AD =BC=8cm ,∴AC =∵四边形ABCD 是平行四边形,∴OC =12AC =3 cm. A∴OB =7、如图,在平行四边形ABCD 中,13=AB ,AD =4,将平行四边形ABCD 沿AE 翻折后,点B 恰好与点C 重合,则折痕AE 的长为__________.答案:3解答:点B 恰好与点C 重合,且四边形ABCD 是平行四边形,∴BC=AD =4,根据翻折的性质知AE ⊥BC ,BE =CE =2,在Rt △ABE中,由勾股定理得3AE ===,故答案为3.三、解答题8、如图,在□ABCD 中,AE ⊥BC ,交边BC 于点E ,点F 为CD 上一点,且DF =BE .过点F 作FG ⊥CD ,交边AD 于点G . 求证:DG =DC .证明:∵四边形ABCD 是平行四边形,∴AB =CD ,∠B =∠D . ∵AE ⊥BC ,FG ⊥CD ,∴∠AEB =∠GFD =90°. 又∵DF =BE ,∴△ABE ≌△GDF (ASA ). ∴AB =DG ,∴DG =CD .9、如图,将平行四边形ABCD 沿对角线BD 进行折叠,折叠后点C 落在点F 处,DF 交AB 于点E ,(1)求证:∠EDB =∠EBD ;(2)判断AF 与DB 是否平行,并说明理由.证明:(1)由折叠可知:∠CDB =∠EDB ,∵四边形ABCD 是平行四边形,∴DC ∥AB ,∴∠CDB =∠EBD ,∴∠EDB =∠EB D . 解:(2)AF ∥D B .∵∠EDB =∠EBD ,∴ED =EB .∵四边形ABCD 是平行四边形,∴AB =D C . 由折叠可知DF =DC ,∴AB =DF .∵ED =EB ,∴EA =EF ,∴∠EAF =∠EFA .BC DF GA在△AEF 中,∠EAF +∠EFA +∠AEF =180°,即2∠EAF +∠AEF =180°, 同理,在△BDE 中,即2∠EBD +∠BED =180°. ∵∠AEF =∠BED ,∴∠EAF =∠EBD ,∴AF ∥DB .10、在□ABCD 中,∠BCD 的平分线与BA 的延长线相交于点E ,BH ⊥EC 于点H ,求证:CH =EH .证明:∵在□ABCD 中BE ∥CD ,∴∠E =∠DCE .∵CE 平分∠BCD ,∴∠BCH =∠DCE . ∴∠BCH =∠E .∴BE =BC .又∵BH ⊥EC ,∴CH =EH .(三线合一)BCDAE H。
北师大版数学八年级下册:第六章 平行四边形 阶段测试(6.1-6.2)(附答案)

第六章平行四边形阶段测试(6.1-6.2)(时间:40分钟满分:100分)一、选择题(每小题4分,共40分)1.下面的性质中,平行四边形不一定具有的是()A.对角互补B.邻角互补C.对角相等D.对边相等2.如图,在▱ABCD中,E是AB延长线上的一点.若∠1=55°,则∠D的度数为()A.125°B.120°C.115°D.110°3.用一根6米长的绳子围成一个平行四边形,其中一边长1.6米,则其邻边长为()A.1.2米B.1.4米C.1.6米D.1.8米4.如图,在四边形ABCD中,对角线AC,BD相交于点O,AD∥BC,添加下列条件不能使四边形ABCD成为平行四边形的是()A.AD=BCB.OA=OCC.∠ABC+∠BCD=180°D.AB=CD第4题图第5题图5.如图,在▱ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°6.如图,在▱ABCD中,过点P作直线EF,GH分别平行于AB,BC,那么图中共有平行四边形()A.4个B.5个C.8个D.9个第6题图第7题图7.如图,在四边形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于()A.80°B.90°C.100°D.110°8.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12 B.15 C.18 D.21第8题图第9题图9.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AC=2,BD=4,则AE 的长为()A.32 B.32 C.217 D.221710.如图,已知▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠CFE=110°.则下列结论:①四边形ABFE 为平行四边形;②△ADE是等腰三角形;③▱ABCD与▱DCFE全等;④∠DAE=25°.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(每小题4分,共20分)11.在▱ABCD中,已知∠A-∠B=60°,则∠C=.12.如图,已知▱ABCD的对角线AC,BD相交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为14.第12题图第13题图13.如图,点E,F分别在▱ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是.14.如图,在△ABC中,∠A=∠B,D是AB上任意一点,DE∥BC,DF∥AC,AC=4 cm,则四边形DECF 的周长是.第14题图第15题图15.如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90°.将此三角形纸片沿AD剪开,得到两个三角形.若把这两个三角形拼成一个平行四边形,则能拼出种平行四边形.三、解答题(共50分)16.(10分)如图,已知在四边形ABCD中,AE⊥BD于点E,CF⊥BD于点F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.17.(12分)如图,将▱ABCD的对角线AC分别向两个方向延长至点E,F,且AE=CF,连接BE,DF.求证:BE=DF.18.(14分)提出命题:如图,在四边形ABCD中,∠A=∠C,∠ABC=∠ADC,求证:四边形ABCD是平行四边形.小明提供了如下证明过程:证明:连接BD.∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.∵∠ABC=∠ADC,∴∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).反思交流:(1)请问小明的解法正确吗?若正确,请说明理由;若不正确,请写出正确的证明过程;(2)用语言叙述上述命题.运用探究:下列条件中,能判定四边形ABCD是平行四边形的是()A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=1∶3∶1∶3C.∠A∶∠B∶∠C∶∠D=2∶3∶3∶2D.∠A∶∠B∶∠C∶∠D=1∶1∶3∶319.(14分)如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE 上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为93,求AB的长;(2)求证:AF=GE.参考答案:一、选择题(每小题4分,共40分)1.下面的性质中,平行四边形不一定具有的是(A)A.对角互补B.邻角互补C.对角相等D.对边相等2.如图,在▱ABCD中,E是AB延长线上的一点.若∠1=55°,则∠D的度数为(A)A.125°B.120°C.115°D.110°3.用一根6米长的绳子围成一个平行四边形,其中一边长1.6米,则其邻边长为(B)A.1.2米B.1.4米C.1.6米D.1.8米4.如图,在四边形ABCD中,对角线AC,BD相交于点O,AD∥BC,添加下列条件不能使四边形ABCD成为平行四边形的是(D)A.AD=BCB.OA=OCC.∠ABC+∠BCD=180°D.AB=CD第4题图第5题图5.如图,在▱ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于(D)A.100°B.80°C.60°D.40°6.如图,在▱ABCD中,过点P作直线EF,GH分别平行于AB,BC,那么图中共有平行四边形(D)A.4个B.5个C.8个D.9个第6题图第7题图7.如图,在四边形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于(C)A.80°B.90°C.100°D.110°8.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为(C)A.12 B.15 C.18 D.21第8题图第9题图9.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AC=2,BD=4,则AE 的长为(D)A.32 B.32 C.217 D.221710.如图,已知▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠CFE=110°.则下列结论:①四边形ABFE 为平行四边形;②△ADE是等腰三角形;③▱ABCD与▱DCFE全等;④∠DAE=25°.其中正确的有(B)A.4个B.3个C.2个D.1个二、填空题(每小题4分,共20分)11.在▱ABCD中,已知∠A-∠B=60°,则∠C=120°.12.如图,已知▱ABCD的对角线AC,BD相交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为14.第12题图第13题图13.如图,点E,F分别在▱ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是AF=CE(答案不唯一).14.如图,在△ABC中,∠A=∠B,D是AB上任意一点,DE∥BC,DF∥AC,AC=4 cm,则四边形DECF 的周长是8_cm.第14题图第15题图15.如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90°.将此三角形纸片沿AD剪开,得到两个三角形.若把这两个三角形拼成一个平行四边形,则能拼出3种平行四边形.三、解答题(共50分)16.(10分)如图,已知在四边形ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,AE =CF ,BF =DE ,求证:四边形ABCD 是平行四边形.证明:∵AE ⊥BD 于点E ,CF ⊥BD 于点F. ∴∠AED =∠CFB =90°. 在△AED 和△CFB 中,⎩⎨⎧DE =BF ,∠AED =∠CFB ,AE =CF ,∴△AED ≌△CFB (SAS ). ∴AD =BC ,∠ADE =∠CBF. ∴AD ∥BC.∴四边形ABCD 是平行四边形.17.(12分)如图,将▱ABCD 的对角线AC 分别向两个方向延长至点E ,F ,且AE =CF ,连接BE ,DF.求证:BE =DF.证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC. ∴∠BCE =∠DAF. ∵AE =CF ,∴CA +AE =AC +CF ,即CE =AF.在△BCE 和△DAF 中,⎩⎨⎧BC =DA ,∠BCE =∠DAF ,CE =AF ,∴△BCE ≌△DAF (SAS ). ∴BE =DF.18.(14分)提出命题:如图,在四边形ABCD 中,∠A =∠C ,∠ABC =∠ADC ,求证:四边形ABCD 是平行四边形. 小明提供了如下证明过程:证明:连接BD.∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.∵∠ABC=∠ADC,∴∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).反思交流:(1)请问小明的解法正确吗?若正确,请说明理由;若不正确,请写出正确的证明过程;(2)用语言叙述上述命题.运用探究:下列条件中,能判定四边形ABCD是平行四边形的是(B)A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=1∶3∶1∶3C.∠A∶∠B∶∠C∶∠D=2∶3∶3∶2D.∠A∶∠B∶∠C∶∠D=1∶1∶3∶3解:(1)正确.理由如下:∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.①∵∠ABC=∠ADC,即∠1+∠2=∠3+∠4,②由①②相加、相减,得∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).(2)两组对角分别相等的四边形是平行四边形.19.(14分)如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE 上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为93,求AB的长;(2)求证:AF=GE.解:(1)∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AB ∥CD. ∵∠BDC =60°, ∴∠ABD =60°.∵BD ⊥BC ,∴∠ADB =∠DBC =90°. ∴∠DAB =30°.∴在Rt △ADB 中,BD =12AB ,AD =AB 2-BD 2=32AB.∵S ▱ABCD =AD·BD =34AB 2=93,∴AB =6. (2)证明:连接BF.∵AE ,BE 分别平分∠BAD ,∠DBC ,∴∠BAE =12∠BAD =15°,∠DBE =12∠DBC =45°.∵∠ABE +∠BAE +∠AEB =180°,∠ABE =∠ABD +∠DBE =105°, ∴∠AEB =60°.∵EF =BE ,∴△BFE 为等边三角形. ∴BE =BF ,∠FBE =60°.∴∠ABD =∠FBE =60°.∴∠ABF =∠GBE.在△ABF 和△GBE 中,⎩⎨⎧AB =GB ,∠ABF =∠GBE ,BF =BE ,∴△ABF ≌△GBE (SAS ). ∴AF =GE.。
2021-2022学年北师大版八年级数学下册第六章平行四边形章节练习试题(精选)

北师大版八年级数学下册第六章平行四边形章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,小明从点A出发沿直线前进10m到达点B,向左转30,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了()米.A.80 B.100 C.120 D.1402、在平行四边形ABCD中,∠A=30°,那么∠B与∠A的度数之比为()A.4:1 B.5:1 C.6:1 D.7:13、若一个正多边形每个外角都是36°,则这个正多边形的边数为()A.8 B.9 C.10 D.114、如图,求∠A+∠B+∠C+∠D+∠E+∠F=()A.90°B.130°C.180°D.360°5、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是()A.75°B.60°C.55°D.40°6、如图,一张含有80°的三角形纸片,剪去这个80°角后,得到一个四边形,则∠1+∠2的度数是()A.200°B.240°C.260°D.300°7、如图,点O是▱ABCD的对称中心,l是过点O的任意一条直线,它将平行四边形分成甲、乙两部分,在这个图形上做扎针试验,则针头扎在甲、乙两个区域的可能性的大小是()A .甲大B .乙大C .一样大D .无法确定8、一个多边形每一个外角都等于30°,则这个多边形的边数为( )A .11B .12C .13D .149、如图,在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是( )A .AB BC = B .AD BC = C .A C ∠=∠ D .180B C ∠+=︒10、如图所示,在 ABCD 中,对角线AC ,BD 相交于点O ,过点O 的直线EF 分别交AD 于点E ,BC于点F , 35AOE BOF S S ==, ,则 ABCD 的面积为( )A .24B .32C .40D .48第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若正n 边形的每个内角都等于120°,则这个正n 边形的边数为________.2、点D 、E 、F 分别是△ABC 三边的中点,△ABC 的周长为24,则△DEF 的周长为______.3、已知一个正多边形的内角和为1080°,那么从它的一个顶点出发可以引 _____条对角线.4、如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,且∠BAD 、∠ADC 的角平分线AE 、DF 分别交BC 于点E 、F .若EF =2,AB =5,则AD 的长为_______.5、如图,四边形ABCD 中,∠C =58°,∠B =∠D =90°,E 、F 分别是BC 、DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为_____.三、解答题(5小题,每小题10分,共计50分)1、四边形ABCD 中,BAD ∠的平分线与边BC 交于点E ;ADC ∠的平分线交直线AE 于点O .(1)若点O 在四边形ABCD 的内部.①如图1,若AD BC ∥,50B ∠=︒,70C ∠=︒,则DOE ∠=______.②如图2,试探索B 、C ∠、DOE ∠之间的数量关系,并将你的探索过程写下来.(2)如图3,若点O 在四边形ABCD 的外部,请探究B 、C ∠、DOE ∠之间的数量关系,并说明理由.2、如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如下图所示就是一组正多边形.(1)观察上面每个正多边形中的∠a,填写下表:(2)是否存在正n边形使得∠a=12°?若存在,请求出n的值;若不存在,请说明理由.3、(问题情景)课外兴趣小组活动时,老师提出了如下问题:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:(1)由已知和作图能得到△ADC ≌△EDB ,其依据是 ,请选择正确的一项.A .SSS ;B .SAS ;C .AAS ;D .HL(2)由“三角形的三边关系”可求得AD 的取值范围是 .(初步运用)(3)如图2,在四边形ABCD 中,AB ∥CD ,点E 是BC 的中点,若AE 是∠BAD 的平分线,试猜想线段AB ,AD ,DC 之间的数量关系,并证明你的猜想.(灵活运用)(4)如图3,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE =EF ,若EF =5,EC =3,求线段BF 的长;(拓展延伸)(5)如图4,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC ,下列四个选项中:A .∠ACD =∠BCDB .CE =2CDC .∠BCD =∠BCE D .CD =CB所有正确选项的序号是 .4、已知:如图,在ABC 中,AD DB =,BE EC =,AF FC =.求证:AE DF、互相平分.5、若一个多边形的内角和与外角的和是1440°,求这个多边形的边数.-参考答案-一、单选题1、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为360︒,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案. 【详解】解:由360=12,30可得:小明第一次回到出发点A,一个要走1210=120⨯米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为360︒得到一共要走12个10米”是解本题的关键.2、B【分析】根据平行四边形的性质先求出∠B的度数,即可得到答案.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故选B.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补.3、C【分析】设这个正多边形的边数为n,正n边形有n个外角,外角和为360°,那么边数n=360°÷一个外角的度数.【详解】解:这个正多边形的边数为n,∵正n边形每个外角都是36°,∴n=360°÷36°=10.故选C.【点睛】本题考查的是正多边形的外角和,掌握正多边形的外角和是360度是解题的关键.4、D【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠ADE+∠DAF,由四边形内角和是360°,即可求∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°.【详解】解如图,连接AD,∵∠1=∠E+∠F,∠1=∠ADE+∠DAF,∴∠E+∠F=∠ADE+∠DAF,∵∠BAD+∠B+∠C+∠CDA=360°,∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°.∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°.故选:D.【点睛】本题考查三角形的外角的性质、四边形内角和定理等知识,解题的关键是灵活应用所学知识解决问题,属于基础题.5、C【分析】证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.【详解】解:∵点E,F分别是AB,AC的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠AEF =∠B =55°,故选:C .【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF ∥BC 是解题的关键.6、C【分析】三角形纸片中,剪去其中一个80°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°-80°=100°,则根据四边形的内角和定理得:∠1+∠2=360°-100°=260°.故选:C .【点睛】本题主要考查四边形的内角和,解题的关键是掌握四边形的内角和为360°及三角形的内角和为180°.7、C【分析】如图,连接,,AC BD 记过O 的直线交,AD BC 于,,N H 则O 为,AC BD 的中点,,,,OA OC OB OD AD BC ∥再证明,ANO CHO ≌ ,,DNO BHO AOB COD ≌≌ 可得,ANHB CHND S S 四边形四边形 从而可得答案.【详解】解:如图,连接,,AC BD 记过O 的直线交,AD BC 于,,N HO 为▱ABCD 的对称中心,O ∴为,AC BD 的中点,,,,OA OC OB OD AD BC ∥,,NAO HCO ANO CHO,ANO CHO ≌同理:,,DNO BHO AOB COD ≌≌,ANHB CHND S S 四边形四边形所以针头扎在甲、乙两个区域的可能性的大小是一样的,故选C【点睛】本题考查的是全等三角形的判定与性质,平行四边形的性质,随机事件发生的可能性的大小,几何概率的意义,理解几何概率的意义是解本题的关键.8、B【分析】根据一个多边形每一个外角都等于30°,多边形外角和360°,根据多边形外角和的性质求解即可.【详解】解:∵一个多边形每一个外角都等于30°,多边形外角和360°,∴多边形的边数为3603012︒÷︒=.故选B .【点睛】此题考查了多边形的外角和,关键是掌握多边形的外角和为360°.9、C【分析】由平行线的性质得180A D +=︒∠∠,再由A C ∠=∠,得180C D ∠+∠=︒,证出//AD BC ,即可得出结论.【详解】解:一定能判定四边形ABCD 是平行四边形的是A C ∠=∠,理由如下://AB CD ,180A D ∴∠+∠=︒,A C ∠=∠,180C D ∴∠+∠=︒,//AD BC ∴,又//AB CD ,∴四边形ABCD 是平行四边形,故选:C .【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出//AD BC .10、B【分析】先根据平行四边形的性质可得,OB OD AD BC =,再根据三角形全等的判定定理证出DOE BOF ≅,根据全等三角形的性质可得5DOE BOF S S ==,从而可得8AOD S =△,然后根据平行四边形的性质即可得.【详解】解:∵四边形ABCD 是平行四边形,,OB OD AD BC ∴=,EDO FBO ∴∠=∠,在DOE △和BOF 中,∵EDO FBO OD OB DOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()DOE BOF ASA ∴≅,5DOE BOFS S ∴==, 358AOD AOE DOE S S S ∴=+=+=,则ABCD 的面积为44832AOD S=⨯=,故选:B .【点睛】 本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键.二、填空题1、6【分析】多边形的内角和可以表示成(2)180n -⋅︒,因为所给多边形的每个内角均相等,故又可表示成120n ︒,列方程可求解.解:设所求正n 边形边数为n ,则120(2)180n n ︒=-⋅︒,解得6n =,故答案是:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.2、12【分析】据D 、E 、F 分别是AB 、AC 、BC 的中点,可以判断DF 、FE 、DE 为三角形中位线,利用中位线定理求出DF 、FE 、DE 与AB 、BC 、CA 的长度关系即可解答.【详解】解:∵如图所示,D 、E 、F 分别是AB 、BC 、AC 的中点,∴ED 、FE 、DF 为△ABC 中位线,∴DF 12=BC ,FE 12=AB ,DE 12=AC , ∴△DEF 的周长=DF +FE +DE 12=BC 12+AB 12+AC 12=(AB +BC +CA )12=⨯24=12.故答案为:12.本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.3、5【分析】n解方程求解,n结合从n边形的一个顶点出发设这个正多边形有n条边,再建立方程21801080,n-条对角线,从而可得答案.可以引()3【详解】解:设这个正多边形有n条边,则n21801080,∴-=26,nn=解得:8,所以从一个正八边形的一个顶点出发可以引835-=条对角线,故答案为:5【点睛】本题考查的是正多边形的内角和定理的应用,正多边形的对角线问题,掌握“多边形的内角和公式为()2180,n-条对角线”是解本题的关键.n-︒从n边形的一个顶点出发可以引()34、8【分析】根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是平行四边形,最后由平行四边形的性质得到AB=CD,AD=BC,即可得到结论.【详解】解:∵AD∥BC,∴∠ADF=∠DFC,∵DF平分∠ADC,∴∠ADF=∠CDF,∴∠DFC=∠CDF,∴CF=CD,同理BE=AB,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴AB=BE=CF=CD=5,∴BC=BE+CF﹣EF=5+5﹣2=8,∴AD=BC=8,故答案为:8.【点睛】本题考查等腰三角形的判定和性质和平行线的性质以及平行四边形的性质等知识,解答本题的关键是熟练掌握平行线的性质以及平行四边形的性质.5、64°【分析】根据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD 的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=58°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.【详解】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=58°,∴∠ABC=∠ADC=90°,∴∠DAB=360°-∠ABC=∠ADC -∠C=122°,∴∠HAA′=58°,∴∠AA′E+∠A″=∠HAA′=58°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=58°,∵∠AEF=∠FAD+∠A″,∠AFE=∠EA′A+∠EAA′,∴∠AEF+∠AFE+∠AFE=2(∠AA′E+∠A″)=116°∴∠EAF=180°-∠AEF-∠AFE=64°,故答案为:64°.【点睛】本题考查平面内最短路线问题求法、三角形的外角的性质和垂直平分线的性质,根据已知得出E,F 的位置是解题关键.三、解答题1、(1)120°;(2)1118022DOE B C ︒∠=-∠-∠;(3)1122DOE B C ∠=∠+∠ 【分析】(1)①根据平行线的性质和角平分线的定义可求∠BAE ,∠CDO ,再根据三角形外角的性质可求∠AEC ,再根据四边形内角和等于360°可求∠DOE 的度数;②根据三角形外角的性质和角平分线的定义可得∠DOE 和∠BAD 、∠ADC 的关系,再根据四边形内角和等于360°可求∠B 、∠C 、∠DOE 之间的数量关系;(2)根据四边形和三角形的内角和得到∠BAD +∠ADC =360°-∠B -∠C ,∠EAD +∠ADO =180°-∠DOE ,根据角平分线的定义得到∠BAD =2∠EAD ,∠ADC =2∠ADO ,于是得到结论.【详解】解:(1)①∵//AD BC∴180,180B BAD C ADC ∠+∠=∠+∠=又∵∠B =50°,∠C =70°∴∠BAD =130°,∠ADC =110°∵AE 、DO 分别平分∠BAD 、∠ADC∴∠BAE =65°,∠ODC =55°∴∠AEC =115°∴∠DOE =360°-115°-70°-55°=120°故答案为:120° ②1118022DOE B C ︒∠=-∠-∠,理由如下: AE ∵平分BAD ∠12DAE BAD ∴∠=∠ DO 平分ADC ∠12ADO ADC ∠= DAE ADO ∴∠+∠ 1122BAD ADC =∠+()12BAD ADC =∠+∠360B C BAD ADC ︒∠+∠+∠+∠=360BAD ADC B C ︒∴∠+∠=-∠-∠DAE ADO ∴∠+∠ ()13602B C ︒=-∠-∠1118022B C ︒=-∠-∠ ()180AOD DAE ADO ︒∴∠=-∠+∠1122B C =∠+∠ 180DOE AOD ︒∴∠=-∠1118022B C ︒=-∠-∠ 即1118022DOE B C ︒∠=-∠-∠ (2)1122DOE B C ∠=∠+∠,理由如下: AE ∵平分BAD ∠12DAE BAD ∴∠=∠ DO 平分ADC ∠12ADO ADC ∠= DAE ADO ∴∠+∠ 1122BAD ADC =∠+ ()12BAD ADC =∠+∠ 360B C BAD ADC ︒∠+∠+∠+∠=360BAD ADC B C ︒∴∠+∠=-∠-∠DAE ADO ∴∠+∠ ()13602B C ︒=-∠-∠ 1118022B C ︒=-∠-∠ ()180AOD DAE ADO ︒∴∠=-∠+∠1122B C =∠+∠ 即:1122DOE B C ∠=∠+∠. 【点睛】本题考查多边形内角与外角平行线的性质,角平分线的定义,关键是熟练掌握四边形内角和等于360°,这是解题的重点.2、(1)18045,3630,(),n︒︒︒︒;(2)存在,15 【分析】(1)根据正多边形的外角和,求得内角的度数,根据等腰三角形性质和三角形内角和定理即可求得α∠的度数;(2)根据(1)的结论,将12α∠=︒代入求得n 的值即可【详解】解:(1)正多边形的每一个外角都相等,且等于360n ︒ 则正多边形的每个内角为360180n︒︒-, 根据题意,正多边形的每一条边都相等,则α∠所在的等腰三角形的顶角为:360180n ︒︒-,另一个底角为α∠,1360180=1801802n n α⎡︒⎤⎛⎫⎛⎫∴∠︒-︒-=︒ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 当4n =时,45α∠=︒当5n =时,α∠=36︒当6n =时,α∠=30 故答案为:18045,3630,(),n ︒︒︒︒(2)存在.设存在正n 边形使得12a ∠=︒, ∴180()12n︒=︒,解得15n =. 【点睛】本题考查了正多边形的外角和与内角的关系,等腰三角形的性质和三角形内角和定理,根据正多边形的外角与内角互补求得内角是解题的关键.3、(1)B ,(2)2<AD <8,(3)AD =AB+DC ;证明见解析,(4)8(5)B 、C【分析】(1)根据全等三角形的判定定理解答;(2)根据三角形的三边关系计算;(3)延长AE 交DC 延长线于点M ,类似(1)证明三角形全等,根据全等三角形的性质解答;(4)延长AD 到M ,使AD =DM ,连接BM ,证明△ADC ≌△MDB ,根据全等三角形的性质解答;(5)根据三角形的中线的概念、等腰三角形的性质、三角形的中位线定理以及全等三角形的判定和性质进行分析判断.【详解】解:(1)在△ADC 和△EDB 中,CD BD CDA BDE AD DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADC ≌△EDB (SAS ),故选:B ;(2)由(1)得:△ADC ≌△EDB ,∴AC =BE =6,在△ABE 中,AB ﹣BE <AE <AB +BE ,即10﹣6<2AD <10+6,∴2<AD <8,故答案为:2<AD <8;(3)AD =AB+DC ;延长AE 交DC 延长线于点N ,∵点E 是BC 的中点,,∴CE =BE ,∵AB ∥CD ,∴∠NCE =∠ABE ,∵在△NCE 和△ABE 中,EC EB CEN BEA NCE ABE =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴△NCE ≌△ABE (SAS ),∴CN =AB ,∠BAE =∠N ,∵AE 是∠BAD 的平分线,∴∠BAE =∠DAE ,,∴∠EAD =∠N ,∴AD =DN =AB+DC ;(4)延长AD 到M ,使AD =DM ,连接BM ,如图②所示:∵AE =EF .EF =5,∴AC =AE +EC =5+3=8,∵AD 是△ABC 中线,∴CD =BD ,∵在△ADC 和△MDB 中,DC DB ADC MDB DA DM =⎧⎪∠=∠⎨⎪=⎩, ∴△ADC ≌△MDB (SAS ),∴BM =AC ,∠CAD =∠M ,∵AE =EF ,∴∠CAD =∠AFE ,∵∠AFE =∠BFD ,∴∠BFD =∠CAD =∠M ,∴BF =BM =AC =8;(5)取CE的中点F,连接BF.∵AB=BE,CF=EF,∴BF∥AC,BF=0.5AC.∴∠CBF=∠ACB.∵AC=AB,∴∠ACB=∠ABC.∴∠CBF=∠DBC.又∵CD是三角形ABC的中线,∴AC=AB=2BD.∴BD=BF.又∵BC=BC,∴△BCD≌△BCF,∴CF=CD.∠BCD=∠BCE.∴CE=2CD.故B、C选项正确.若要∠ACD=∠BCE,则需∠ACB=∠DCE,又∠ACB=∠ABC=∠BCE+∠E=∠DCE,则需∠E=∠BCD.根据全等,得∠BCD=∠BCE,则需∠E=∠BCE,则需BC=BE,显然不成立,故A选项错误;若要CD=CB,则需∠A=∠BCD,也不一定成立,故D选项错误;故答案为:B 、C .【点睛】本题以阅读为背景考查了三角形的全等和四边形等知识,解题的关键是通过辅助线构造全等三角形.4、证明见解析【分析】连接,DE EF ,由三角形中位线定理可得DE AC ∥,EF AB ∥,可证四边形ADEF 是平行四边形,由平行四边形的性质可得AE ,DF 互相平分;【详解】证明:连接,DE EF ,∵AD =DB ,BE =EC ,∴DE AC ∥,∵BE =EC ,AF =FC ,∴EF AB ∥,∴四边形ADEF是平行四边形,∴AE,DF互相平分.【点睛】本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键.5、这个多边形的边数为8【分析】设这个多边形的边数为n,根据多边形内角和及外角和可进行求解.【详解】解:设这个多边形的边数为n,由题意得:()21803601440n-⨯︒+︒=︒,解得:8n=,∴这个多边形的边数为8.【点睛】本题主要考查多边形内角和与外角和,熟练掌握多边形的内角和与外角和是解题的关键.。
北师大版八年级下册数学第六章平行四边形练习题以及答案

北师大版八年级下册平行四边形练习题参考答案与试题解析一.选择题(共6小题)1.平行四边形的两条对角线一定()A.互相平分B.互相垂直C.相等D.以上都不对【分析】根据平行四边形的性质即可进行判断.【解答】解:因为平行四边形的两条对角线一定互相平分,菱形的对角线互相垂直,矩形的对角线相等,所以A选项正确.故选:A.【点评】本题考查了平行四边形的性质,解决本题的关键是掌握平行四边形的性质.2.如图,在▱ABCD中,∠ABC、∠BCD的平分线BE、CF分别与AD相交于点E、F,BE 与CF相交于点G,若AB=6,BC=10,CF=4,则BE的长为()A.4B.8C.8D.10【分析】根据平行四边形两组对边分别平行可得∠ABC+∠BCD=180°,再根据角平分线的性质可得∠EBC+∠FCB=90°,可得BE⊥CF;过A作AM∥FC,交BC于M,交BE于O,证明△ABE是等腰三角形,进而得到BO=EO,再利用勾股定理计算出EO的长,进而可得答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC、∠BCD的平分线BE、CF分别与AD相交于点E、F,∴∠EBC+∠FCB=∠ABC+∠DCB=90°,∴EB⊥FC,∴∠FGB=90°.过A作AM∥FC,交BC于M,交BE于O,如图所示:∵AM∥FC,∴∠AOB=∠FGB=90°,∵BE平分∠ABC,∴∠ABE=∠EBC,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AB=AE=6,∵AO⊥BE,∴BO=EO,在△AOE和△MOB中,,∴△AOE≌△MOB(ASA),∴AO=MO,∵AF∥CM,AM∥FC,∴四边形AMCF是平行四边形,∴AM=FC=4,∴AO=2,∴EO===4,∴BE=8.故选:C.【点评】此题考查了平行四边形的性质与判定、全等三角形的判定与性质、等腰三角形的判定和性质以及勾股定理;证明AO=MO,BO=EO是解决问题的关键.3.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长是30,OE=3,则四边形ABFE的周长是()A.21B.24C.27D.18【分析】先由ASA证明△AOE≌△COF,得OE=OF,AE=CF,再求得AB+BC=15,由平行四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE,即可求得答案.【解答】解:∵四边形ABCD为平行四边形,对角线的交点为O,∴AB=CD,AD=BC,OA=OC,AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,AE=CF,∵平行四边形ABCD的周长为30,∴AB+BC=×30=15,∴四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE=AB+BC+2×3=15+6=21,故选:A.【点评】本题考查了平行四边形的性质及全等三角形的判定与性质,熟练掌握平行四边形的性质,证明三角形全等是解题的关键.4.如图,在▱ABCD中,AC,BD为对角线,BC=10,BC边上的高为6,则图中阴影部分的面积为()A.6B.15C.30D.60【分析】观察并结合平行四边形的性质可知,图中下半部分的阴影面积等于上半部分的空白面积,从而可得阴影面积等于▱ABCD面积的一半;利用底×高计算出▱ABCD面积,再乘以,即可得出答案.【解答】解:观察并结合平行四边形的性质可知,图中下半部分的阴影面积等于上半部分的空白面积,∴S阴影=S▱ABCD,∵BC=10,BC边上的高为6,∴S▱ABCD=10×6=60,∴S阴影=×60=30.故选:C.【点评】本题考查了平行四边形的性质,数形结合并熟练掌握平行四边形的性质是解题的关键.5.如图,在△ABC中,∠ACB=90°,AC=4,AB=5,D为AC上的动点,连接BD以AD、BD为边作平行四边形ADBE,则DE长的最小值为()A.2B.3C.4D.5【分析】由勾股定理可去BC=3,由平行四边形的性质可得BE∥AC,由平行线之间的距离和垂线段最短可得当DE⊥AD时,DE有最小值,即可求解.【解答】解:如图,∵∠ACB=90°,AC=4,AB=5,∴BC===3,∵四边形ADBE是平行四边形,∴BE∥AC,∴当DE⊥AD时,DE有最小值,∴DE有最小值为3,故选:B.【点评】本题考查了平行四边形的性质,勾股定理,平行线之间的距离,灵活运用这些性质是本题的关键.6.如图,在▱ABCD中,点E在BC上,且CD=CE,连接DE,过点A作AF⊥DE,垂足为F,若∠DAF=48°,则∠C的度数为()A.84°B.96°C.98°D.106°【分析】首先根据AF⊥DE,∠DAF=48°得到∠ADE=90°﹣∠DAF=90°﹣48°=42°,然后利用四边形ABCD是平行四边形得到∠CED=∠ADF=42°,再根据CD=CE,得到∠CDE=∠DEC=42°,从而利用三角形的内角和定理求得∠C=180°﹣∠DEC﹣∠EDC=180°﹣42°﹣42°=96°即可.【解答】解:∵AF⊥DE,∠DAF=48°,∴∠ADE=90°﹣∠DAF=90°﹣48°=42°,∵四边形ABCD是平行四边形,∴∠CED=∠ADF=42°,∵CD=CE,∴∠CDE=∠DEC=42°,∴∠C=180°﹣∠DEC﹣∠EDC=180°﹣42°﹣42°=96°,故选:B.【点评】考查了平行四边形的性质,解题的关键是根据平行四边形的对边平行且相等得到相关结论,难度不大.二.填空题(共18小题)7.如图,Rt△ABC中,∠BAC=90°,D,E,F分别为AB,BC,AC的中点,已知DF=5,则AE=5.【分析】根据三角形中位线定理求出BC,根据直角三角形的性质解答即可.【解答】解:∵D,F分别为AB,AC的中点,∴DF是△ABC的中位线,∴BC=2DF=10,在Rt△ABC中,E为BC的中点,∴AE=BC=5,故答案为:5.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.如图,在△ABC中,点D、E分别是边AB、AC的中点,连接DE,∠ABC的平分线BF 交DE于点F,若AB=4,BC=6,则EF的长为1.【分析】延长AF交BC于H,根据三角形中位线定理得到DE∥BC,DE=BC=3,AF =FH,证明△BF A≌△BFH,根据全等三角形的性质求出BH,结合图形计算即可.【解答】解:连接AF并延长交BC于H,∵点D、E分别为边AB、AC的中点,∴DE∥BC,DE=BC=3,AF=FH,在△BF A和△BFH中,,∴△BF A≌△BFH(AAS),∴BH=AB=4,∵AD=DB,AF=FH,∴DF=BH=2,∴EF=DE﹣DF=1,故答案为:1.【点评】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=4,则DN=2.【分析】连接CM,根据直角三角形的性质求出CM,根据三角形中位线定理得到MN=BC,MN∥BC,证明四边形NDCM是平行四边形,根据平行四边形的性质解答.【解答】解:连接CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=2,∵M、N分别是AB、AC的中点,∴MN=BC,MN∥BC,∵CD=BD,CD=BC,∴MN=CD,又MN∥BC,∴四边形NDCM是平行四边形,∴DN=CM=2,故答案为:2.【点评】本题考查的是直角三角形的性质和三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.10.如图,在△ABC中,AB=5,BC=6,AC=4,D,E,F分别为AB,BC,AC的中点,连接DF,FE,则四边形DBEF的周长为11.【分析】根据三角形中位线定理分别求出DF、EF,根据线段中点的定义分别求出BD、BE,根据四边形的周长公式计算,得到答案.【解答】解:∵D,E,F分别为AB,BC,AC的中点,∴DF=BC=3,EF=AB=2.5,BD=AB=2.5,BE=BC=3,∴四边形DBEF的周长=DB+BE+EF+DF=11,故答案为:11.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11.如图,在△ABC中,点D,E,F分别是边AB,BC,CA上的中点,且AB=10cm,AC =16cm,则四边形ADEF的周长等于26cm.【分析】根据三角形中位线定理,证明四边形ADEF是平行四边形,根据三角形中位线定理,求出DE、EF的长,即可解决问题.【解答】解:∵点D,E,F分别是边AB,BC,CA上的中点,∴DE,EF都是△ABC的中位线,∴DE=AC=8cm,DE∥AC,EF=AB=5cm,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=2×13=26(cm).故答案为:26.【点评】本题主要考查三角形中位线定理、平行四边形的判定和性质等,解题的关键是运用三角形中位线平行于第三边且等于第三边的一半.12.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别为AB、AC、AD的中点.若AB =6,则EF的长度为.【分析】根据直角三角形的性质求出CD,根据三角形中位线定理求出EF.【解答】解:在Rt△ABC中,D为AB的中点,∴CD=AB=3,∵E、F分别为AC、AD的中点,∴EF是△ACD的中位线,∴EF=CD=,故答案为:.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线等于第三边的一半是解题的关键.13.如图,在△ABC中,AB=13,BC=12,D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的面积是15.【分析】根据三角形中位线定理求出AC,根据勾股定理的逆定理得到∠ACB=90°,根据三角形的面积公式计算,得到答案.【解答】解:∵D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴AC=2DE=5,∵AC2+BC2=52+122=169,AB2=169,∴AC2+BC2=AB2,∴∠ACB=90°,∴△ABC的面积=×5×12=30,∵D是AB的中点,∴△ACD的面积=△ABC的面积×=15.故答案为:15.【点评】本题考查的是三角形中位线定理、勾股定理的逆定理,掌握三角形的中位线等于第三边的一半是解题的关键.14.如图,在△ABC中,D,E,F分别是AB、CA、BC的中点,若CF=3,CE=4,EF=5,则CD的长为5.【分析】根据三角形中位线定理得到AB=2EF=10,根据勾股定理的逆定理得到∠ACB =90°,根据直角三角形的性质计算,得到答案.【解答】解:∵E,F分别是CA、BC的中点,∴AC=2CE=8,BC=2CF=6,AB=2EF=10,∵AC2+BC2=36+64=100,AB2=100,∴AC2+BC2=AB2,∴∠ACB=90°,在Rt△ACB中,D是AB的中点,∴CD=AB=5,故答案为:5.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线等于第三边的一半是解题的关键.15.如图是一块正多边形的碎瓷片,经测得∠ACB=30°,则这个正多边形的边数是12.【分析】根据∠ACB=30°推知该多边形的外角是30°,进而求得这个正多边形的边数.【解答】解:如图,延长CB,可知∠1是正多边形的外角,∵该瓷片是正多边形,∴AD=BD=BC,∠ADB=∠DBC,∴四边形ACBD是等腰梯形,∴BD∥AC.∴∠1=∠ACB=30°,∴该正多边形的边数为=12.故答案是:12.【点评】本题主要考查正多边形的外角和,掌握相关知识点是解题的关键,难度不大.16.如图,把△ABC纸片沿DE折叠,当点C落在四边形ABDE的外部时,此时测得∠1=108°,∠C=35°,则∠2=38°.【分析】根据折叠性质得出∠C′=∠C=35°,根据三角形外角性质得出∠DOC=∠1﹣∠C=73°,∠2=∠DOC﹣∠C′=73°﹣35°=38°.【解答】解:如图,设C′D与AC交于点O.∵根据折叠性质得出∠C′=∠C=35°,∵∠1=∠DOC+∠C,∴∠DOC=∠1﹣∠C=108°﹣35°=73°,∴∠2=∠DOC﹣∠C′=73°﹣35°=38°.故答案为:38°.【点评】本题考查了折叠的性质,三角形外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.17.一个n边形从一个顶点出发引出的对角线可将其分割成5个三角形,则n的值为7.【分析】一个n边形,把一个顶点与其它各顶点连接起来,形成的三角形个数为n﹣2,从而可得出答案.【解答】解:依题意有n﹣2=5,解得n=7.故答案为:7.【点评】本题主要考查多边形的对角线,一个n边形,把一个顶点与其它各顶点连接起来,形成的三角形个数为n﹣2.18.如图,在四边形ABDC中,CD∥AB,AC⊥BC于点C,若∠A=40°,则∠DCB的度数为50°.【分析】根据平行线的性质定理,垂线的定义,三角形的内角和定理即可得到结论.【解答】解:∵AC⊥BC,∴∠ACB=90°,∵CD∥AB,∴∠ACD+∠A=180°,即∠ACB+∠DCB+∠A=180°,∵∠A=40°,∴∠DCB=180°﹣∠ACB﹣∠A=180°﹣90°﹣40°=50°.故答案为:50.【点评】本题考查了三角形的内角和,平行线的性质,垂线的定义,熟练掌握平行线的性质定理,三角形的内角和定理是解题的关键.19.一个正五边形和一个正六边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠1+∠2=132°.【分析】利用正多边形的性质求出∠AOE、∠BOF、∠2,即可解决问题.【解答】解:如图:由题意:∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∴∠2=180°﹣72°﹣60°=48°,∴∠1=360°﹣108°﹣48°﹣120°=84°,∴∠1+∠2=84°+48°=132°,故答案为:132.【点评】本题考查正多边形与圆,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.一个多边形的内角和与外角和之和为2520°,则这个多边形的边数为14.【分析】依据多边形的内角和公式列方程求解即可.【解答】解:设这个多边形的边数为n.根据题意得:(n﹣2)×180°+360°=2520°.解得:n=14.故这个多边形的边数为14.故答案为:14.【点评】本题主要考查的是多边形的内角和与外角和,依据题意列出方程是解题的关键.21.一个多边形的内角和是它外角和的2倍,则它的边数是6.【分析】根据多边形的内角和公式(n﹣2)•180°以及外角和定理列出方程,然后求解即可.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.【点评】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.22.从一个多边形的一个顶点出发一共有7条对角线,则这个多边形的边数为10.【分析】根据从多边形的一个顶点可以作对角线的条数公式(n﹣3)求出边数即可得解.【解答】解:∵多边形从一个顶点出发可引出7条对角线,∴n﹣3=7,解得n=10.故答案为:10.【点评】本题考查了一个顶点出发的对角线条数,牢记公式是解题的关键.23.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=240°.【分析】利用∠1、∠2是△ADE的外角,利用外角性质,可得∠1=∠ADE+∠A,∠2=∠AED+∠A,利用等式性质可求∠1+∠2的值.【解答】解:∵∠1、∠2是△ADE的外角,∴∠1=∠ADE+∠A,∠2=∠AED+∠A,∴∠1+∠2=∠ADE+∠A+∠AED+∠A,又∵∠ADE+∠A+∠AED=180°,∴∠1+∠2=180°+60°=240°.故答案为:240.【点评】本题考查了了三角形内角和定理和三角形外角的性质,注意掌握三角形三个内角的和等于180°,三角形的外角等于与它不相邻的两个内角之和.24.如图,六边形ABCDEF的各角都相等,若m∥n,则∠1+∠2=180°.【分析】根据六边形ABCDEF的各角都相等,可得六边形ABCDEF的对边平行;延长DC,交直线n于点G,再根据平行线的性质解答即可.【解答】解:延长DC,交直线n于点G,∵六边形ABCDEF的各角都相等,∴AF∥DC,∴∠2=∠3,又∵m∥n,∴∠3+∠4=180°,∵∠4=∠1,∴∠1+∠2=180°,故答案为:180.【点评】本题考查了多边形的内角与外角以及平行线的判定与性质,得出AF∥DC是本题的关键.三.解答题(共6小题)25.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.【分析】(1)根据平行四边形的性质得到AO=BO,BO=CO,AB∥CD,AD∥BC,根据三角形中位线的性质得到∴MO∥BC,NO∥CD,根据平行四边形的判定可证得结论;(2)由勾股定理求得AB=,根据直角三角形斜边的中线等于斜边的一半得到OM =AM=,进而可求得结论.【解答】(1)根据平行四边形的性质得到AO=OC,BO=OD,AB∥CD,AD∥BC,由三角形的中位线的性质得到MO∥BC,NO∥CD,∴MO∥AN,NO∥AM,∴四边形AMON是平行四边形;(2)解:∵AC=6,BD=4,∴AO=3,BO=2,∵∠AOB=90°,∴AB===,∴OM=AM=MB=,∴NO=AN=,四边形AMON的周长=AM+OM+AN+NO=2.【点评】本题主要考查了平行四边形的性质和判定,三角形中位线的性质,直角三角形斜边的中线的性质,勾股定理,根据直角三角形斜边的中线等于斜边的一半得到OM=AM=是解决问题的关键.26.如图,已知▱ABCD中,对角线AC、BD相交于点O.点E、F在对角线BD上,且EB =FD.求证:四边形AECF是平行四边形.【分析】证明四边形AECF的对角线互相平分,即可得出四边形AECF是平行四边形.【解答】证明:∵平行四边形ABCD,∴AO=CO,BO=DO,∵BE=DF,∴BO﹣BE=DO﹣DF,∴EO=FO,∴四边形AECF是平行四边形.【点评】此题主要考查了平行四边形的判定和性质:平行四边形的对角线互相平分;对角线互相平分的四边形是平行四边形.27.如图,在四边形ABCD中,对角线AC、BD相交于点O,OA=OC,AB∥CD.(1)求证:四边形ABCD是平行四边形;(2)若BE平分∠ABC,交AD于E,BC﹣AB=2,求DE长.(3)若∠AOB=2∠ADB时,则平行四边形ABCD为矩形.【分析】(1)运用ASA证明△ABO≌△CDO得AB=CD,根据“一组对边平行且相等的四边形是平行四边形”可证得结论;(2)根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度;(3)由∠AOB=2∠ADB可得∠OAD=∠ADO,由平行四边形的性质可得AC=BD,从而可得结论.【解答】解:(1)∵AB∥CD,∴∠BAO=∠DCO,在△ABO和△DCO中,,∴△ABO≌△DCO(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴DE=AD﹣AE=BC﹣AB,∵BC﹣AB=2,∴DE=2;(3)∵∠AOB是△ADO的外角,∴∠AOB=∠OAD+∠ODA,∵∠AOB=2∠ADB,∠OAD=∠ODA,∴AO=DO,∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,∴AC=BD,∴四边形ABCD是矩形.故答案为:矩.【点评】本题考查了平行四边形的判定与性质,矩形的判定以及等腰三角形的判定与性质,解题的关键是灵活运用所学知识解决问题.28.如图,已知BE∥DF,∠ADF=∠CBE,AD=BC.求证:四边形DEBF是平行四边形.【分析】根据平行线的性质可得∠BEF=∠DFE,利用AAS证明△BEF≌△DFE,可得BE=DF,利用一组对边平行且相等可证明结论.【解答】证明:∵BE∥DF,∴∠BEF=∠DFE,又∵∠ADF=∠CBE,AD=BC,∴△BEC≌△DF A(AAS),∴BE=DF,∴四边形BFDE是平行四边形.【点评】本题主要考查平行四边形的判定,掌握平行四边形的判定定理是解题的关键.29.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠C =∠D.(1)求证:四边形BCED是平行四边形;(2)已知DE=3,连接BN,若BN平分∠DBC,求CN的长.【分析】(1)根据两组对边分别平行的四边形是平行四边形即可证明;(2)根据平行四边形的性质和角平分线定义可以证明CN=CB=DE.【解答】解:(1)证明:∵∠A=∠F,∴DF∥AC,∴∠C=∠FEC,又∵∠C=∠D,∴∠FEC=∠D,∴DB∥EC,∴四边形BCED是平行四边形;(2)∵BN平分∠DBC,∴∠DBN=∠CBN,∵BD∥EC,∴∠DBN=∠BNC,∴∠CBN=∠BNC,∴CN=BC,又∵BC=DE=3,∴CN=3.【点评】本题考查了平行四边形的判定与性质,解决本题的关键是掌握平行四边形的判定与性质.30.如图,平行四边形ABCD的对角线AC、BD相交于点O、E、F是AC上的两点,且BF ∥DE.(1)求证:△BFO≌△DEO;(2)求证:四边形BFDE是平行四边形.【分析】(1)根据四边形ABCD是平行四边形,可得OB=OD,根据BF∥DE,可得∠OFB=∠OED,进而可以证明△BFO≌△DEO;(2)结合(1)根据对角线互相平分的四边形是平行四边形即可证明四边形BFDE是平行四边形.【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴OB=OD,∵BF∥DE,∴∠OFB=∠OED,在△BFO和△DEO中,,∴△BFO≌△DEO(AAS);(2)证明:∵△BFO≌△DEO,∴OE=OF,又OB=OD,∴四边形BFDE是平行四边形.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质,解决本题的关键是熟练运用平行四边形的判定与性质、全等三角形的判定与性质.第21 页共21 页。
北师大版八年级数学下册利用四边形对角线的性质判定平行四边形同步练习题

D A CB 6.2 平行四边形的判定第2课时 平行四边形的判定定理3与两平行线间的距离【学习内容】平行四边形的判定(P143—P145页)【学习目标】1、理解平行四边形的另一种判定方法,并学会简单运用。
2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展逻辑思维能力和推理论证的表达能力。
【学习重难点】重点:平行四边形判定方法理解运用;难点:平行四边形判 定方法运用【自研课】定向导学 (15分钟)复习引入1.平行四边形的定义是什么?平行四边形的定义: 的四边形,叫做平行四边形2.判定四边形是平行四边形的方法有哪些?(1)两组对边分别 的四边形是平行四边形. (2)两组对边 的四边形是平行四边形.(3)一组对边 的四边形是平行四边形.探究 活动:工具:两根不同长度的细木条.动手:能否合理摆放这两根细木条,使得连接四个顶点后成为平行四边形? 思考:你能说明你得到的四边形是平行四边形吗?已知:如图,四边形ABCD 的对角线AC 、BD 相交于点O,并且OA=OC,OB=OD.求证:四边形ABCD 是平行四边形.已知:如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O,点E 、F 在对角线AC 上,并且AE=CF .求证:四边形BFDE 是平行四边形【训练课】(时段:晚自习,时间20分钟)基础题:1、如图,四边形ABCD中,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是______ ___ ,根据是。
A DOB C2、四边形ABCD中,AC、BD相交于点O,且OA=OC,如果要使四边形ABCD 是平行四边形,则还需补充的条件是()A.AC⊥BD B. OA=OB C.OC=OD D.OB=OD3、下列条件中,能判定四边形是平行四边形的是()A.一组对角相等 B. 对角线互相平分C.一组对边相等 D. 对角线互相相等4、如图,在平行四边形ABCD中,O是AC,BD的交点,点E,F,G,H分别是AO,BO,CO,DO的中点,四边形EFGH是平行四边形吗?说说你的理由.A DE O HF GB C发展题5、下列条件中不能确定四边形ABCD是平行四边形的是()A.AB=CD,AD∥BCB.AB=CD,AB∥CDC.AB∥CD,AD∥BCD.AB=CD,AD=BC6、A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC=AD;④BC∥AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()A.3种 B.4种 C.5种 D.6种提高题:7、已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分)1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是 ①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定 5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..二、填空题(本题共6小题,每小题4分,共24分)11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果;(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y 与销售单价x 之间的函数关系式;(2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x.23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
北师大版八下数学《平行四边形的性质》典型例题(含答案)

《平行四边形的性质》典型例题例1 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度?例2 已知:如图,ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,AOB ∆的周长比BOC ∆的周长多8cm ,求这个平行四边形各边的长.例3 已知:如图,在ABCD 中,BD AC 、交于点O ,过O 点作EF 交AB 、CD 于E 、F ,那么OE 、OF 是否相等,说明理由.例4 已知:如图,点E 在矩形ABCD 的边BC 上,且DE AF AD DE ⊥=,,垂足为F 。
求证:.DC AF =例5 O 是ABCD 对角线的交点,OBC ∆的周长为59,38=BD ,24=AC ,则=AD ________,若OBC ∆与OAB ∆的周长之差为15,则=AB ______,ABCD 的周长=______.例6 已知:如图,ABCD 的周长是cm 36,由钝角顶点D 向AB ,BC 引两条高DE ,DF ,且cm DE 34=,cm DF 35=. 求这个平行四边形的面积.例7 如图,已知:ABCD 中,BC AE ⊥于E ,CD AF ⊥于F ,若︒=∠60EAF ,cm BE 2=,cm FD 3=.求:AB 、BC 的长和ABCD 的面积.参考答案例1 分析 根据平行四边形的对角相等,邻角互补可以求出四个内角的度数.解 设平行四边形的一个内角的度数为x ,则它的邻角的度数为3x ,根据题意,得1803=+x x ,解得45=x ,∴.1353=x∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°.例2 分析 由平行四边形对边相等,可知=+BC AB 平行四边形周长的一半=30cm ,又由AOB ∆的周长比BOC ∆的周长多8cm ,可知8=-BC AB cm ,由此两式,可求得各边的长.解 ∵四边形ABCD 为平行四边形,∴.,,OO AO BC AD CD AB ===60=+++BC AD CD AB Θ,∴.30=+BC AB8)(=++-++OC BC OB OB AB AO ,∴.8=-BC AB∴.11,19====AD BC CD AB答:这个平行四边形各边长分别为19cm ,11cm ,19cm ,11cm .说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.例3 分析 观察图形,DOF BOE CFO AEO CDO ABO ∆≅∆∆≅∆∆≅∆,,,从而可说明.OF OE =证明 在ABCD 中,BD AC 、Θ交于O ,∴.OC AO =CD AB //Θ,∴CFO AEO FCO EAO ∠=∠∠=∠,,∴)(AAS CFO AEO ∆≅∆,∴.OF OE =例4 分析 观察图形,AFD ∆与DCE ∆都是直角三角形,且锐角DEC ADF ∠=∠,斜边DE AD =,因此这两个直角三角形全等。
2020-2021学年八年级数学北师大版下册第六章 6.1.1平行四边形的性质(一) 同步练习题

2020-2021学年北师大版八年级数学下册第六章 6.1.1平行四边形的性质(一) 同步练习题A组(基础题)一、填空题1.如图,在▱ABCD中,AB=CD,AD=BC;∠A=∠C,∠B=∠D;∠A+∠B=______,∠A+∠D=______.2.小斌用一根50 m长的绳子围成了一个平行四边形场地,其中一边长16 m,则它的邻边长为______.3.(1)如图,在▱ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则ED等于______;(2)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=50°,则∠B的度数为______.4.(1)平行四边形的一个角比它的邻角大32°,则最大内角的度数为______;(2)如图,在▱ABCD中,E,F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD =63°,则∠ADE的大小为______.二、选择题5.在▱ABCD中,∠A∶∠B∶∠C∶∠D的度数比可能是( )A.2∶3∶3∶2 B.2∶3∶2∶3 C.1∶2∶3∶4 D.2∶2∶1∶16.如图,在▱ABCD中,已知AC=6 cm.若△ACD的周长为15 cm,则▱ABCD的周长为( ) A.26 cm B.24 cm C.20 cm D.18 cm7.如图,在▱ABCD中,CE⊥CD,C为垂足.如果∠A=120°,那么∠BCE的度数为( ) A.55°B.35°C.25°D.30°8.如图,在▱ABCD中,∠ADO=30°,AB=6,点A的坐标为(-2,0),则点C的坐标为( )A.(6,3) B.(3,23) C.(6,23) D.(6,3)三、解答题9.(1)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E 处.若∠B=60°,AB=3,求△ADE的周长.10.(1)如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB.求证:△AEF≌△DFC.(2)如图,在▱ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,求AP的长.B组(中档题)一、填空题11.如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4,则CE的长是______.12.如图,以▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE,BE,则∠AEB的度数是______.13.如图,在▱ABCD中,∠ABC=135°,AD=42,AB=8,作对角线AC的垂直平分线EF,分别交对边AB,CD于点E和点F,则AE的长为______.二、解答题14.如图,已知▱ABCD中,AB=5,BC=3,AC=213.(1)求▱ABCD的面积;(2)求证:BD⊥BC.C组(综合题)15.如图,在▱ABCD中,过点C作CH⊥AB,过点B作AC的垂线,分别交CH,AC,AD于点E,F,G,且∠ABC=∠BEH,BG=BC.(1)若BE=10,BC=25,求DG的值;(2)连接HF,求证:HA=2HF-HE.参考答案2020-2021学年北师大版八年级数学下册第六章 6.1.1平行四边形的性质(一) 同步练习题A组(基础题)一、填空题1.如图,在▱ABCD中,AB=CD,AD=BC;∠A=∠C,∠B=∠D;∠A+∠B=180°,∠A+∠D=180°.2.小斌用一根50 m长的绳子围成了一个平行四边形场地,其中一边长16 m,则它的邻边长为9_m.3.(1)如图,在▱ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则ED等于3;(2)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=50°,则∠B的度数为50°.4.(1)平行四边形的一个角比它的邻角大32°,则最大内角的度数为106°;(2)如图,在▱ABCD中,E,F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD =63°,则∠ADE的大小为21°.二、选择题5.在▱ABCD中,∠A∶∠B∶∠C∶∠D的度数比可能是(B)A.2∶3∶3∶2 B.2∶3∶2∶3 C.1∶2∶3∶4 D.2∶2∶1∶16.如图,在▱ABCD中,已知AC=6 cm.若△ACD的周长为15 cm,则▱ABCD的周长为(D) A.26 cm B.24 cm C.20 cm D.18 cm7.如图,在▱ABCD中,CE⊥CD,C为垂足.如果∠A=120°,那么∠BCE的度数为(D) A.55°B.35°C.25°D.30°8.如图,在▱ABCD中,∠ADO=30°,AB=6,点A的坐标为(-2,0),则点C的坐标为(C)A.(6,3) B.(3,23) C.(6,23) D.(6,3)三、解答题9.(1)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E 处.若∠B=60°,AB=3,求△ADE的周长.解:由折叠可得,∠ACD =∠ACE =90°. ∴∠BAC =90°.又∵∠B =60°,∴∠ACB =30°. ∴BC =2AB =6.∴AD =6.由折叠可得,∠E =∠D =∠B =60°, ∴∠DAE =60°.∴△ADE 是等边三角形. ∴△ADE 的周长为6×3=18.(2)如图,在▱ABCD 中,BE ,DF 分别平分∠ABC ,∠ADC.求证:BE =DF.证明:∵四边形ABCD 为平行四边形,∴∠A =∠C ,∠ABC =∠ADC ,AB =CD. 又∵BE ,DF 分别平分∠ABC ,∠ADC ,∴∠CBE =∠ADF. 又∵AD ∥BC ,∴∠ADF =∠DFC. ∴∠CBE =∠DFC.∴BE ∥DF.又∵DE ∥BF ,∴四边形DFBE 为平行四边形. ∴BE =DF.10.(1)如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,且BE =AD ,点F 在AD 上,AF =AB.求证:△AEF ≌△DFC.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD. ∴∠EAF =∠ADC.又∵AF =AB ,BE =AD , ∴AF =CD ,AE =DF.在△AEF 和△DFC 中,⎩⎪⎨⎪⎧AF =DC ,∠EAF =∠FDC ,AE =DF ,∴△AEF ≌△DFC.(2)如图,在▱ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,求AP 的长.解:∵BD =CD ,BA =CD , ∴BD =BA.又∵AM ⊥BD ,DN ⊥AB ,∴DN =AM =3 2.又∵∠ABD =∠MAP +∠PAB ,∠ABD =∠P +∠PAB , ∴∠P =∠PAM.∴△APM 是等腰直角三角形. ∴AP =2AM =6.B 组(中档题)一、填空题11.如图,在▱ABCD 中,CE 平分∠BCD ,交AB 于点E ,EA =3,EB =5,ED =4,则CE 的长是45.12.如图,以▱ABCD 的边CD 为斜边向内作等腰直角△CDE ,使AD =DE =CE ,∠DEC =90°,且点E 在平行四边形内部,连接AE ,BE ,则∠AEB 的度数是135°.13.如图,在▱ABCD 中,∠ABC =135°,AD =42,AB =8,作对角线AC 的垂直平分线EF ,分别交对边AB ,CD 于点E 和点F ,则AE 的长为203.二、解答题14.如图,已知▱ABCD 中,AB =5,BC =3,AC =213. (1)求▱ABCD 的面积; (2)求证:BD ⊥BC.解:(1)过点C 作CE ⊥AB 交AB 的延长线于点E , 设BE =x ,CE =h.在Rt △CEB 中,由勾股定理,得x 2+h 2=9.①在Rt △CEA 中,由勾股定理,得(5+x)2+h 2=52.② 联立①②,解得x =95,h =125.∴S ▱ABCD =AB ·h =12.(2)证明:过点D 作DF ⊥AB ,垂足为F. ∴∠DFA =∠CEB =90°.在▱ABCD 中,AD =BC ,AD ∥BC , ∴∠DAF =∠CBE.又∵∠DFA =∠CEB =90°,AD =BC , ∴△ADF ≌△BCE(AAS).∴AF =BE =95,BF =5-95=165,DF =CE =125.在Rt △DFB 中,由勾股定理,得 BD 2=DF 2+BF 2=(125)2+(165)2=16,∴BD =4.∵BC =3,DC =5,∴CD 2=DB 2+BC 2. ∴BD ⊥BC.C 组(综合题)15.如图,在▱ABCD 中,过点C 作CH ⊥AB ,过点B 作AC 的垂线,分别交CH ,AC ,AD 于点E ,F ,G ,且∠ABC =∠BEH ,BG =BC.(1)若BE =10,BC =25,求DG 的值;(2)连接HF ,求证:HA =2HF -HE.解:(1)∵四边形ABCD 是平行四边形, ∴AD =BC =25,∠ABC +∠BAG =180°. ∵∠ABC =∠BEH ,∴∠CEB +∠ABC =180°. ∴∠BAG =∠CEB.∵∠ABG +∠BEH =90°,∠ECB +∠ABC =90°, ∴∠ABG =∠ECB.在△BAG 和△CEB 中,⎩⎪⎨⎪⎧∠BAG =∠CEB ,∠ABG =∠ECB ,BG =CB ,∴△BAG ≌△CEB(AAS).∴AG =BE =10.∴DG =AD -AG =25-10=15.(2)证明:过点F 作FN ⊥HF ,交BA 的延长线于点N , ∵△BAG ≌△CEB ,∴CE =AB.∵∠ABG +∠BAC =∠ECB +∠ABC =90°,∠ABG =∠ECB , ∴∠BAC =∠ABC. ∴AC =BC.∵CH ⊥AB ,∴∠ACH =∠ECB =∠ABG. 在△ABF 和△ECF 中,⎩⎪⎨⎪⎧∠CFE =∠BFA ,∠ABF =∠ECF ,AB =EC ,∴△ABF ≌△ECF(AAS).∴AF =EF.∵∠HFN =∠EFA =90°,∴∠AFN =∠EFH. ∵∠BAC =∠ABC ,∠ABC =∠BEH , ∴∠NAF =∠HEF.在△ANF 和△EHF 中,⎩⎪⎨⎪⎧∠NAF =∠HEF ,AF =EF ,∠AFN =∠EFH ,∴△ANF ≌△EHF(ASA).∴HE =AN ,HF =NF.∴△HFN 是等腰直角三角形. ∴HN =2HF.∴HA +AN =HA +HE =2HF. ∴HA =2HF -HE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《1 平行四边形的性质》习题
1.平行四边形的对角线_________.
2.如图1所示,在ABCD中,对角线AC,BD交于点O,若AO=4,BO=3,则CO=____,BD=_____.
图1 图2 图3
3.如图2所示,在ABCD中,两条对角线交于点O,有△AOB≌△_____,△AOD≌△_____.4.如图3所示,在ABCD中,两条对角线交于点O,若AO=2cm,△ABC的周长为13cm,则ABCD的周长为______cm.
5.在ABCD中,对角线AC,BD交于点O,若△AOB的面积为3,则ABCD的面积为______.
6.平行四边形不一定具有的性质是()
A.对角线互相平分B.对边平行C.对角线互相垂直D.对边相等
7.如图4所示,在ABCD中,对角线AC,BD交于点O,图中全等三角形有()A.5对B.4对C.3对D.2对
图4 图5
8.如图5所示,在ABCD中,对角线AC,BC相交于点O,已知△BOC与△AOB的周长之差为3,ABCD的周长为26,则BC的长度为()
A.5 B.6 C.7 D.8
9.已知ABCD的一条边长是5,则两条对角线的长可能是()
A.6和16 B.6和6 C.5和5 D.8和18
10.将一张平行四边形纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法有()
A.1种B.2种C.3种D.无数种
11.如图所示,在ABCD中,AD⊥BD,AD=4,DO=3.(1)求△COD的周长;(2)直接写出ABCD的面积.
12.如图所示,在ABCD中,对角线AC与BD相交于点O,M,N在对角线AC上,且AM=CN.求证:BM∥DN.
13.如图所示,在ABCD中,对角线AC与BD相交于点O,过点O任作一条直线分别交AB,CD于点E,F.
(1)求证:OE=OF;(2)若AB=7,BC=5,OE=2,求四边形BCFE的周长.
14.如图所示,在形状为平行四边形的一块地ABCD中,有一条小折路EFG.现在想把它改为经过点E的直路,要求小路两侧土地的面积都不变,请在图中画出改动后的小路.。