有限元分析程序设计
有限元单元法程序设计

有限元单元法程序设计是有限元分析(FEA)中的重要环节,它通过将连续的物理问题离散化为大量的、相互之间仅按特定方式相互联系的有限个单元的组合,从而进行求解。
以下是一个简单的有限元单元法程序设计的例子:
1.定义节点和单元:首先,我们需要定义模型的节点(nodes)和单元(elements)。
节点是空间中的点,而单元是由节点连接而成的物理实体。
2.建立网格:然后,我们需要根据模型的形状和大小,建立起一个合适的网格。
这个网格应该能够捕捉到模型的主要特征,并且足够细以捕捉到细节。
3.定义材料属性:接下来,我们需要为每个单元定义材料属性,比如弹性模量、泊松比、密度等。
4.施加载荷和约束:然后,我们需要根据问题的要求,对模型施加载荷和约束。
例如,我们可能需要施加压力、重力等载荷,以及位移、转动等约束。
5.进行有限元分析:最后,我们使用有限元方法进行求解。
这包括计算每个节点的位移和应力,以及根据这些结果进行后处理,比如生成报告、生成可视化图像等。
以上就是一个简单的有限元单元法程序设计的过程。
在实际应用
中,还需要考虑很多其他的因素,比如模型的复杂性、计算资源的限制等。
因此,编写一个有效的有限元程序需要深入理解有限元方法、计算机科学和工程知识。
UG有限元分析步骤精选整理.doc

UG有限元分析步骤精选整理.doc
1. 准备模型:首先,在UG中绘制需要分析的零件或装配体的3D模型。
确保模型的几何尺寸和材料等参数设置正确。
2. 网格划分:将模型分割成许多小单元,称为网格单元。
这些单元的大小和形状应
该足够小和简单,以便于计算程序的处理。
3. 材料属性定义:为每个网格单元定义材料性质。
这些属性包括弹性模量、泊松比、密度等。
4. 约束条件设置:定义所有约束条件,如边界约束、支撑条件等。
这些条件对应于
被分析部件的实际使用场景。
5. 载荷应用:将载荷应用于模型。
这些载荷可以是静态或动态载荷、温度载荷等,
也可以模拟外部力或压力。
6. 求解模型:选定求解器,使用许多数学方法解决数学方程,以有效地计算应力、
应变和变形等设计参数。
7. 结果分析:对有限元分析的各个方面进行评估和评估,检查计算的准确性和可靠性。
这些结果可以用于优化设计,以改进零件或装配体的性能。
8. 优化设计:如果有必要,使用有限元分析的结果来重新设计零件或装配体,并在
再次进行分析前进行修改。
总之,UG有限元分析是一种重要的工具,用于设计和生产过程中的性能优化和验证。
这个步骤需要正确的建模和分析,以确保计算是精确和可靠的。
fortran有限元程序课程设计

fortran有限元程序课程设计一、课程目标知识目标:1. 掌握Fortran语言的基本语法和程序结构;2. 理解有限元方法的基本原理及其在工程问题中的应用;3. 学会使用Fortran编写有限元程序,解决简单的物理问题;4. 了解有限元程序的调试与优化方法。
技能目标:1. 能够运用Fortran语言编写简单的有限元程序;2. 能够对有限元程序进行调试和性能优化;3. 能够运用所学知识解决实际工程问题,具备一定的编程实践能力;4. 能够通过团队合作,共同完成较复杂的有限元程序编写。
情感态度价值观目标:1. 培养学生对编程和计算物理学的兴趣,激发学生的求知欲和探索精神;2. 培养学生严谨、细致、勤奋的学习态度,提高学生的问题解决能力;3. 培养学生的团队合作精神,提高沟通与协作能力;4. 增强学生的民族自豪感,认识我国在有限元领域的发展成果。
课程性质:本课程为高年级专业选修课,旨在使学生掌握Fortran有限元程序的编写和应用,提高学生的编程实践能力和解决实际问题的能力。
学生特点:学生已具备一定的数学、物理和编程基础,具有较强的逻辑思维能力和动手能力。
教学要求:结合课本内容,注重理论与实践相结合,强化编程实践,提高学生的实际操作能力。
同时,注重培养学生的团队合作精神,提高学生的综合素质。
通过本课程的学习,使学生能够独立编写和优化有限元程序,为后续学习和工作打下坚实基础。
二、教学内容1. Fortran语言基础:变量定义、数据类型、运算符、控制结构、数组、函数与子程序等;2. 有限元方法原理:有限元离散化、单元划分、形函数、刚度矩阵、载荷向量、边界条件处理等;3. 有限元程序编写:根据实际问题,运用Fortran语言编写有限元程序,包括前处理、核心计算和后处理;4. 程序调试与优化:调试技巧、性能分析、优化方法等;5. 实际工程案例:选取具有代表性的工程问题,运用所学的Fortran有限元程序解决。
有限元单元法程序设计

有限元单元法程序设计有限元单元法是一种用于工程结构分析和设计的计算方法,它将大型结构分解为许多小的离散单元,通过分析单元之间的相互作用来预测结构的力学行为。
有限元单元法程序设计是指针对特定工程问题,编写计算机程序来实现有限元分析的过程。
下面将介绍有限元单元法程序设计的基本流程和关键要点。
一、问题建模和网格划分有限元单元法程序设计的第一步是对工程结构进行合理的建模和网格划分。
建模的目的是将实际结构抽象为适用于有限元分析的数学模型,包括定义结构的几何特征、材料属性、边界条件等。
网格划分是将结构分解为许多小的单元,每个单元具有一定的形状和尺寸,以便于数值计算。
常用的单元形状包括三角形、四边形、四面体、六面体等,根据结构的特点选择合适的单元形状和尺寸。
二、单元刚度矩阵和载荷矩阵的求解在有限元单元法程序设计中,需要编写算法来求解每个单元的刚度矩阵和载荷矩阵。
单元刚度矩阵描述了单元内部的力学性能,包括刚度、弹性模量、泊松比等,它们通常通过数学公式或有限元理论推导得到。
载荷矩阵描述了单元受到的外部荷载,可以是均匀分布载荷、集中载荷或者边界条件引起的约束力。
通过合适的数值积分方法,可以计算得到每个单元的刚度矩阵和载荷矩阵。
三、组装全局刚度矩阵和载荷向量在有限元单元法程序设计中,需要将所有单元的刚度矩阵和载荷向量组装成整个结构的全局刚度矩阵和载荷向量。
这涉及到单元之间的连接关系以及边界条件的处理。
采用适当的组装算法,可以将各个单元的刚度矩阵和载荷向量叠加在一起,形成整个结构的刚度矩阵和载荷向量。
四、求解位移和应力有限元单元法程序设计的最后一步是求解结构的位移和应力。
通过斯蒂芬-泰勒算法或者其他迭代算法,可以得到整个结构的位移分布,然后根据位移场计算各个点的应变和应力。
这一过程涉及到对整个结构刚度矩阵的求解和对位移的后处理。
有限元单元法程序设计是一个复杂而又精密的工作,需要深入理解有限元原理、结构力学知识和数学方法。
有限元分析程序设计

结构有限元分析程序设计绪论§0.1 开设“有限元程序设计”课程的意义和目的§0.2 课程特点§0.3 课程安排§0.4 课程要求§0.5 基本方法复习$0.1 意义和目的1.有限元数值分析技术本身要求工程设计研究人员掌握1). 有限元数值分析技术的完善标志着现代计算力学的真正成熟和实用化,已在各种力学中得到了广泛的应用。
比如:,已杨为工程结构分析中最得以收敛的技术手段,现代功用大致有:a). 现代结构论证。
对结构设计从内力,位移等方面进行优劣评定,从而进行结构优化设计。
b)可取代部份实验,局部实验+有限元分析,是现代工程设计研究方法的一大特点。
c)结构的各种功能分析(疲劳断裂,可靠性分析等)都以有限元分析工具作为核心的计算工具。
2). 有限元数值分析本身包括着理论+技术实现(本身功用所绝定的)有限元数值分析本身包括着泛函理论+分片插值函数+程序设计2. 有限元分析的技术实现(近十佘年的事)更依赖于计算机程序设计有限元分析的技术取得的巨大的成就,从某种意义上说,得益于计算机硬件技术的发展和程序设计技术的发展,这两者的依赖性在当代表现得更加突出。
(如可视化技术)3.从学习的角度,不仅要学习理论,而且要从程序设计设计角度对这些理论的技术实现有一个深入的了解,应当致力于掌握这些技术实现能力,从而开发它,发展它。
(理论本身还有待于进一步完美相应的程序设计必须去开发)4.程序设计不仅是实现有限元数值分析的工具和桥梁,而且在以下诸方面也有意义:1). 精通基本概念,深化理论认识;2). 锻炼实际工程分析,实际动手的能力;3). 获得以后工作中必备的工具。
(作业+老师给元素库)目的:通过讲述有限元程序设计的技术与技巧,便能达到自编自读的能力。
§0.2 课程特点总描述:理论+算法+数据结构(程序设计的意义)理论:有限元算法,构造,步骤,解的等外性,收敛性,稳定性,误差分析算法;指求解过程的技术方法,含两方面的含义;a. 有限元数值分析算法,b, 与数据结构有关的算法(总刚稀疏存贮,提取,节点优化编号等)数据结构:指各向量矩阵存贮管理与实现,辅助管理结构(指针,数据记录等)具体特点:理论性强:能量泛函理论+有限元构造算法+数据结构构造算法内容繁杂:理论方法+技术方法+技术技巧技巧性强:排序,管理结构(指针生成,整型运算等)§0.3 课程安排①. 单元刚度矩阵及元素设计(单元刚阵算法,杆梁平面分析,板弯非协调元等)②. 总刚的形式及程序设计(单刚提前准备,技术复杂)③. l边界条件及程序设计(等效荷载计算,位移边界条件置入,多工况的对称性)④. 总刚线性方程组求解(LDL T分解,分块算法,子结构算法,波前法)⑤.单元应力计算+应力处理与改善。
有限元教材-第十章 有限元程序设计

第十章有限元程序设计有限元方法作为一门系统的技术,仅学会了它的基本理论是远远不够的,只有形成完整的计算程序,问题才最终得到了解决。
完成这样的有限元程序设计是一项工作量很大的工程。
本章就是要结合简单的有限元教学程序FEMED,简要介绍有限元程序设计技术。
FEMED是专为有限元程序设计教学编制的程序,它不包含复杂的前后处理功能,可进行平面问题及平面桁架的线弹性静力分析,在程序结构上与大型程序类似,具有计算单元的任意扩充功能,在方程的组集和求解上也采用了较为流行的变带宽存储方式。
有限元程序大致可分为两类,第一类是专用程序,主要用于研究或教学,一般这类程序规模较小,前后处理功能较弱。
用于研究的程序能够解一些特殊的问题,满足研究工作的需要。
而教学程序则是为了学生了解有限元的主要结构和设计方法设计的,程序比较简单,FEMED就属于这类程序。
第二类是大型通用程序,是大型结构分析的得力工具,目前国际上流行的大约有2000多种。
常用的有NASTRAN、MARC、ANSYS、ADINA和ABAQUS等。
这类程序一般前后处理功能比较强,有友好的界面,能进行大型计算,但往往无法完成具有特殊要求的计算。
通过本章的学习,使读者初步掌握有限元编程的基本方法,具有开发特殊功能的专用程序或为通用程序开发具有特殊功能的计算模块的能力。
§10.1有限元程序的基本结构有限元程序一般包括三项基本内容:前处理、结构分析和后处理。
早期有限元分析软件的研究重点在于推导新的高效率求解方法和高精度的单元,随着数值分析方法的逐步完善,尤其是计算机内存和运算速度的飞速发展,整个计算系统用于求解运算的时间越来越少,加之求解问题的日益大型化和复杂化,使得数据准备和运算结果的表现问题日益突出。
因此目前几乎所有的商业化有限元程序系统都有功能很强的前后处理模块,这直接关系到分析软件的可推广性。
它是商用有限元软件不可或缺的部分,但它不是有限元的中心部分,在本书中不作详细介绍。
《有限元程序设计》课件

有限元程序设计的前景展望
广泛应用
随着计算机技术的不断发展,有 限元程序设计将在更多领域得到 广泛应用,为工程设计和科学研 究提供有力支持。
技术创新
未来有限元程序设计将不断涌现 出新的技术和方法,推动该领域 不断发展壮大。
国际化发展
随着国际化交流的加强,有限元 程序设计将实现国际化发展,推 动国际合作和共同进步。
求解
求解整体方程组得到近似解。
有限元方法的应用领域
01
02
03
04
结构力学
用于分析各种结构的力学行为 ,如桥梁、建筑、机械零件等
。
流体动力学
用于模拟流体在各种介质中的 流动行为,如流体动力学、渗
流等。
热传导
用于分析温度场在各种介质中 的分布和变化。
电磁场
用于分析电磁场在各种介质中 的分布和变化,如电磁场、电
磁波等。
02
有限元程序设计的关键技术
网格生成技术
网格生成技术是有限元分析中 的重要步骤,它涉及到将连续 的物理空间离散化为有限个小 的单元,以便进行数值计算。
网格的生成需要满足一定的规 则和条件,以保证计算的精度
和稳定性。
常见的网格生成方法包括结构 化网格、非结构化网格和自适 应网格等。
网格生成技术需要考虑的问题 包括网格大小、形状、方向和 连接方式等。
02
详细描述
弹性地基板的有限元分析是一 个二维问题,需要考虑复杂的 边界条件和非线性方程的求解 。通过将地基板划分为若干个 四边形单元,可以建立非线性 方程组进行求解。
03
计算过程
04
首先将地基板划分为若干个四边 形单元,然后根据每个单元的物 理性质和边界条件建立非线性方 程组。最后通过迭代方法求解非 线性方程组得到每个节点的位移 和应力。
有限元分析基础课程设计

有限元分析基础课程设计1. 课程背景1.1 课程简介有限元分析是一种数值分析方法,可以用于解决工程应用中的各种问题。
有限元方法已经在工程设计和科学研究中得到广泛应用。
这门课程将重点介绍有限元分析的基本原理,包括离散化方法、材料本构关系、装配方法、求解方法和后处理方法等。
1.2 先修课程•工程数学(高等数学、线性代数和概率论与数理统计等);•工程力学、材料力学等基础力学课程;•计算机程序设计(C/C++或Matlab等相关编程语言)。
2. 课程目标本课程旨在让学生:1.掌握有限元分析的基本原理;2.学会使用商业有限元软件进行工程分析;3.了解有限元分析的应用前景。
3. 课程大纲3.1 有限元基础•数学基础(向量、矩阵、微积分等);•物理基础(应力、应变、力学平衡方程等);•有限元离散化基本概念。
3.2 有限元分析•有限元材料本构关系;•刚度矩阵和荷载向量的组装;•求解方程组;•后处理及应用。
3.3 应用案例•基础应用:悬臂梁的有限元分析、平板的有限元分析、轴对称体的有限元分析等;•工程应用:汽车碰撞仿真、航空发动机的有限元分析、人体骨骼的有限元分析等。
4. 课程评估4.1 课程作业悬臂梁的有限元分析或平板的有限元分析,学生可以使用商业有限元软件或自编程序进行计算。
4.2 期末考试考试内容包括有限元方法的基本原理、离散化方法、材料本构关系、装配方法、求解方法和后处理方法等。
5. 教学方法本课程采用理论教学、案例分析、计算机仿真等多种教学方法。
理论教学主要采用讲授和讨论相结合的方式,案例分析将从实际问题入手,使学生能够领会有限元分析的具体应用过程。
6. 参考书目1.有限元法基础,郑凤来,北京理工大学出版社;2.有限元应用,PCHu 等著,清华大学出版社;3.细说有限元,萨克雷著,高等教育出版社。
7. 结语有限元分析作为一项重要的数值计算方法,在工程应用领域已经发挥出了重要的作用。
本课程将为学生们深入了解有限元分析提供一定的指导和帮助,让学生们能够掌握有限元分析的基础知识并运用其解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元分析程序设计学校:燕山大学院系:建筑工程与力学学院专业:01级工程力学姓名:张任良学号:010*********指导老师:杜国君完成时间2004年12月31日连续体平面问题的有限元程序分析[题目]:如图所示的正方形薄板四周受均匀载荷的作用,该结构在边界上受正向分布压力,mkNp 1=,同时在沿对角线y 轴上受一对集中压力,载荷为2KN ,若取板厚1=t,泊松比0=v 。
[分析过程]:由于连续平板的对称性,只需要取其在第一象限的四分之一部分参加分析,然后人为作出一些辅助线将平板“分割”成若干部分,再为每个部分选择分析单元。
采用将此模型化分为4个全等的直角三角型单元。
利用其对称性,四分之一部分的边界约束,载荷可等效如图所示。
[程序原理及实现]:用FORTRAN程序的实现。
由节点信息文件NODE.IN和单元信息文件ELEMENT.IN,经过计算分析后输出一个一般性的文件DATA.OUT。
模型基本信息由文件为BASIC.IN生成。
该程序的特点如下:问题类型:可用于计算弹性力学平面问题和平面应变问题单元类型:采用常应变三角形单元位移模式:用用线性位移模式载荷类型:节点载荷,非节点载荷应先换算为等效节点载荷材料性质:弹性体由单一的均匀材料组成约束方式:为“0”位移固定约束,为保证无刚体位移,弹性体至少应有对三个自由度的独立约束方程求解:针对半带宽刚度方程的Gauss消元法输入文件:由手工生成节点信息文件NODE.IN,和单元信息文件ELEMENT.IN结果文件:输出一般的结果文件DATA.OUT程序的原理如框图:(1)主要变量:ID:问题类型码,ID=1时为平面应力问题,ID=2时为平面应变问题N_NODE:节点个数N_LOAD:节点载荷个数N_DOF:自由度,N_DOF=N_NODE*2(平面问题)N_ELE:单元个数N_BAND:矩阵半带宽N_BC:有约束的节点个数PE:弹性模量PR:泊松比PT:厚度LJK_ELE(I,3):单元节点编号数组,LJK_ELE(I,1),LJK_ELE(I,2),LJK_ELE(I,3)分别放单元I的三个节点的整体编号X(N_NODE), Y(N_NODE):节点坐标数组,X(I),Y(I)分别存放节点I的x,y 坐标值LJK_U(N_BC,3):节点载荷数组,P_LJK(I,1)表示第I个作用有节点载荷的节点的编号,P_LJK(I,2),P_LJK(I,3)分别为该节点沿x,y方向的节点载荷数值AK(N_DOF,N_BAND):整体刚度矩阵AKE(6,6):单元刚度矩阵BB(3,6):位移……应变转换矩阵(三节点单元的几何矩阵)DD(3,3):弹性矩阵SS(3,6);应力矩阵RESULT_N(N_NOF):节点载荷数组,存放节点载荷向量,解方程后该矩阵存放节点位移DISP_E(6)::单元的节点位移向量STS_ELE(N_ELE,3):单元的应力分量STS_ND(N_NODE,3):节点的应力分量(2)子程序说明:READ_IN:读入数据BAND_K:形成半带宽的整体刚度矩阵FORM_KE:计算单元刚度矩阵FORM_P:计算节点载荷CAL_AREA:计算单元面积DO_BC:处理边界条件CLA_DD:计算单元弹性矩阵SOLVE:计算节点位移CLA_BB:计算单元位移……应变关系矩阵CAL_STS:计算单元和节点应力(3)文件管理:源程序文件:chengxu.for程序需读入的数据文件:BASIC.IN,NODE.IN,ELEMENT.IN(需要手工生成)程序输出的数据文件:DA TA.OUT(4)数据文件格式:需读入的模型基本信息文件BASIC.IN的格式如下表需读入的节点信息文件NODE.IN的格式如下表需读入的单元信息文件ELEMENT.IN的格式如下表输出结果文件DA TA.OUT格式如下表[算例原始数据和程序分析]:(1)模型基本信息文件BASIC.IN的数据为1,4,6,5,31.,0.,1.1,1,0,2,1,0,4,1,1,5,0,1,6,0,11,-0.5,-1.5,3.,-1.,-1,6,-0.5,-0.5(2)手工准备的节点信息文件NODE.IN的数据为1 0.0 2.02 0.0 1.03 1.0 1.04 0. 0.5 1.0 0.6 2.0 0.(3)手工准备的单元信息文件ELEMENT.IN的数据为1 2 3 3 0 0 0 0 1 1 1 1 0 12 4 5 5 0 0 0 0 1 1 1 1 0 25 3 2 2 0 0 0 0 1 1 1 1 0 33 5 6 6 0 0 0 0 1 1 1 1 04 (4)源程序文件chengxu.for为:PROGRAM FEM2DDIMENSION IJK_ELE(500,3),X(500),Y(500),IJK_U(50,3),P_IJK(50,3),&RESULT_N(500),AK(500,100)D IMENSION STS_ELE(500,3),STS_ND(500,3)OPEN(4,FILE='BASIC.IN')OPEN(5,FILE='NODE.IN')OPEN(6,FILE='ELEMENT.IN')OPEN(8,FILE='DA TA.OUT')OPEN(9,FILE='FOR_POST.DA T')READ(4,*)ID,N_ELE,N_NODE,N_BC,N_LOADIF(ID.EQ.1)WRITE(8,20)IF(ID.EQ.2)WRITE(8,25)20 FORMA T(/5X,'=========PLANE STRESS PROBLEM========')25 FORMA T(/5X,'=========PLANE STRAIN PROBLEM========')CALL READ_IN(ID,N_ELE,N_NODE,N_BC,N_BAND,N_LOAD,PE,PR,PT, & IJK_ELE,X,Y,IJK_U,P_IJK)CALL BAND_K(N_DOF,N_BAND,N_ELE,IE,N_NODE,& IJK_ELE,X,Y,PE,PR,PT,AK)CALL FORM_P(N_ELE,N_NODE,N_LOAD,N_DOF,IJK_ELE,X,Y,P_IJK, & RESULT_N)CALL DO_BC(N_BC,N_BAND,N_DOF,IJK_U,AK,RESULT_N)CALL SOLVE(N_NODE,N_DOF,N_BAND,AK,RESULT_N)CALL CAL_STS(N_ELE,N_NODE,N_DOF,PE,PR,IJK_ELE,X,Y,RESULT_N, & STS_ELE,STS_ND)c to putout a data fileWRITE(9,70)REAL(N_NODE),REAL(N_ELE)70 FORMA T(2f9.4)WRITE(9,71)(X(I),Y(I),RESULT_N(2*I-1),RESULT_N(2*I),& STS_ND(I,1),STS_ND(I,2),STS_ND(I,3),I=1,N_NODE)71 FORMA T(7F9.4)WRITE(9,72)(REAL(IJK_ELE(I,1)),REAL(IJK_ELE(I,2)),&REAL(IJK_ELE(I,3)),REAL(IJK_ELE(I,3)),&STS_ELE(I,1),STS_ELE(I,2),STS_ELE(I,3),I=1, N_ELE)72 FORMA T(7f9.4)cCLOSE(4)CLOSE(5)CLOSE(6)CLOSE(8)CLOSE(9)E NDcc to get the original data in order to model the problemSUBROUTINE READ_IN(ID,N_ELE,N_NODE,N_BC,N_BAND,N_LOAD,PE,PR, &PT,IJK_ELE,X,Y,IJK_U,P_IJK)DIMENSION IJK_ELE(500,3),X(N_NODE),Y(N_NODE),IJK_U(N_BC,3), & P_IJK(N_LOAD,3),NE_ANSYS(N_ELE,14)REAL ND_ANSYS(N_NODE,3)READ(4,*)PE,PR,PTREAD(4,*)((IJK_U(I,J),J=1,3),I=1,N_BC)READ(4,*)((P_IJK(I,J),J=1,3),I=1,N_LOAD)READ(5,*)((ND_ANSYS(I,J),J=1,3),I=1,N_NODE)READ(6,*)((NE_ANSYS(I,J),J=1,14),I=1,N_ELE)DO 10 I=1,N_NODEX(I)=ND_ANSYS(I,2)Y(I)=ND_ANSYS(I,3)10 CONTINUEDO 11 I=1,N_ELEDO 11 J=1,3IJK_ELE(I,J)=NE_ANSYS(I,J)11 CONTINUEN_BAND=0DO 20 IE=1,N_ELEDO 20 I=1,3DO 20 J=1,3IW=IABS(IJK_ELE(IE,I)-IJK_ELE(IE,J))IF(N_BAND.LT.IW)N_BAND=IW20 CONTINUEN_BAND=(N_BAND+1)*2IF(ID.EQ.1) THENELSEPE=PE/(1.0-PR*PR)PR=PR/(1.0-PR)END IFR ETURNENDcC to form the stiffness matrix of elementSUBROUTINE FORM_KE(IE,N_NODE,N_ELE,IJK_ELE,X,Y,PE,PR,PT,AKE) DIMENSION IJK_ELE(500,3),X(N_NODE),Y(N_NODE),BB(3,6),DD(3,3), & AKE(6,6), SS(6,6)CALL CAL_DD(PE,PR,DD)CALL CAL_BB(IE,N_NODE,N_ELE,IJK_ELE,X,Y,AE,BB)DO 10 I=1,3DO 10 J=1,6SS(I,J)=0.0DO 10 K=1,310 SS(I,J)=SS(I,J)+DD(I,K)*BB(K,J)DO 20 I=1,6DO 20 J=1,6AKE(I,J)=0.0DO 20 K=1,320 AKE(I,J)=AKE(I,J)+SS(K,I)*BB(K,J)*AE*PTRETURNENDcc to form banded global stiffness matrixSUBROUTINE BAND_K(N_DOF,N_BAND,N_ELE,IE,N_NODE,IJK_ELE,X,Y,PE, & PR,PT,AK)DIMENSIONIJK_ELE(500,3),X(N_NODE),Y(N_NODE),AKE(6,6),AK(500,100)N_DOF=2*N_NODEDO 40 I=1,N_DOFDO 40 J=1,N_BAND40 AK(I,J)=0DO 50 IE=1,N_ELECALL FORM_KE(IE,N_NODE,N_ELE,IJK_ELE,X,Y,PE,PR,PT,AKE)DO 50 I=1,3DO 50 II=1,2IH=2*(I-1)+IIIDH=2*(IJK_ELE(IE,I)-1)+IIDO 50 J=1,3DO 50 JJ=1,2IL=2*(J-1)+JJIZL=2*(IJK_ELE(IE,J)-1)+JJIDL=IZL-IDH+1IF(IDL.LE.0) THENELSEAK(IDH,IDL)=AK(IDH,IDL)+AKE(IH,IL)END IF50 CONTINUERETURNENDcc to calculate the area of elementSUBROUTINE CAL_AREA(IE,N_NODE,IJK_ELE,X,Y,AE) DIMENSION IJK_ELE(500,3),X(N_NODE),Y(N_NODE)I=IJK_ELE(IE,1)J=IJK_ELE(IE,2)K=IJK_ELE(IE,3)XIJ=X(J)-X(I)YIJ=Y(J)-Y(I)XIK=X(K)-X(I)YIK=Y(K)-Y(I)AE=(XIJ*YIK-XIK*YIJ)/2.0RETURNENDcc to calculate the elastic matrix of elementSUBROUTINE CAL_DD(PE,PR,DD)DIMENSION DD(3,3)DO 10 I=1,3DO 10 J=1,310 DD(I,J)=0.0DD(1,1)=PE/(1.0-PR*PR)DD(1,2)=PE*PR/(1.0-PR*PR)DD(2,1)=DD(1,2)DD(2,2)=DD(1,1)DD(3,3)=PE/((1.0+PR)*2.0)RETURNENDcc to calculate the strain-displacement matrix of elementSUBROUTINE CAL_BB(IE,N_NODE,N_ELE,IJK_ELE,X,Y,AE,BB) DIMENSION IJK_ELE(500,3),X(N_NODE),Y(N_NODE),BB(3,6)I=IJK_ELE(IE,1)J=IJK_ELE(IE,2)K=IJK_ELE(IE,3)DO 10 II=1,3DO 10 JJ=1,310 BB(II,JJ)=0.0BB(1,1)=Y(J)-Y(K)BB(1,3)=Y(K)-Y(I)BB(1,5)=Y(I)-Y(J)BB(2,2)=X(K)-X(J)BB(2,4)=X(I)-X(K)BB(2,6)=X(J)-X(I)BB(3,1)=BB(2,2)BB(3,2)=BB(1,1)BB(3,3)=BB(2,4)BB(3,4)=BB(1,3)BB(3,5)=BB(2,6)BB(3,6)=BB(1,5)CALL CAL_AREA(IE,N_NODE,IJK_ELE,X,Y,AE)DO 20 I1=1,3DO 20 J1=1,620 BB(I1,J1)=BB(I1,J1)/(2.0*AE)RETURNENDcc to form the global load matrixSUBROUTINE FORM_P(N_ELE,N_NODE,N_LOAD,N_DOF,IJK_ELE,X,Y,P_IJK, & RESULT_N)DIMENSION IJK_ELE(500,3),X(N_NODE),Y(N_NODE),P_IJK(N_LOAD,3), & RESULT_N(N_DOF)DO 10 I=1,N_DOF10 RESULT_N(I)=0.0DO 20 I=1,N_LOADII=P_IJK(I,1)RESULT_N(2*II-1)=P_IJK(I,2)20 RESULT_N(2*II)=P_IJK(I,3)RETURNENDcc to deal with BC(u) (here only for fixed displacement) using "1-0" method SUBROUTINE DO_BC(N_BC,N_BAND,N_DOF,IJK_U,AK,RESULT_N) DIMENSION RESULT_N(N_DOF),IJK_U(N_BC,3),AK(500,100)DO 30 I=1,N_BCIR=IJK_U(I,1)DO 30 J=2,3IF(IJK_U(I,J).EQ.0)THENELSEII=2*IR+J-3AK(II,1)=1.0RESULT_N(II)=0.0DO 10 JJ=2,N_BAND10 AK(II,JJ)=0.0DO 20 JJ=2,II20 AK(II-JJ+1,JJ)=0.0END IF30 CONTINUERETURNENDcc to solve the banded FEM equation by GAUSS eliminationSUBROUTINE SOLVE(N_NODE,N_DOF,N_BAND,AK,RESULT_N) DIMENSION RESULT_N(N_DOF),AK(500,100)DO 20 K=1,N_DOF-1IF(N_DOF.GT.K+N_BAND-1)IM=K+N_BAND-1IF(N_DOF.LE.K+N_BAND-1)IM=N_DOFDO 20 I=K+1,IML=I-K+1C=AK(K,L)/AK(K,1)IW=N_BAND-L+1DO 10 J=1,IWM=J+I-K10 AK(I,J)=AK(I,J)-C*AK(K,M)20 RESULT_N(I)=RESULT_N(I)-C*RESULT_N(K)RESULT_N(N_DOF)=RESULT_N(N_DOF)/AK(N_DOF,1)DO 40 I1=1,N_DOF-1I=N_DOF-I1IF(N_BAND.GT.N_DOF-I-1)JQ=N_DOF-I+1IF(N_BAND.LE.N_DOF-I-1)JQ=N_BANDDO 30 J=2,JQK=J+I-130 RESULT_N(I)=RESULT_N(I)-AK(I,J)*RESULT_N(K)40 RESULT_N(I)=RESULT_N(I)/AK(I,1)WRITE(8,50)50 FORMA T(/12X,'* * * * * RESULTS BY FEM2D * * * * *',//8X,&'--DISPLACEMENT OF NODE--'//5X,'NODE NO',8X,'X-DISP',8X,'Y-DISP') DO 60 I=1,N_NODE60 WRITE(8,70) I,RESULT_N(2*I-1),RESULT_N(2*I)70 FORMA T(8X,I5,7X,2E15.6)RETURNENDcc calculate the stress components of element and nodeSUBROUTINECAL_STS(N_ELE,N_NODE,N_DOF,PE,PR,IJK_ELE,X,Y,RESULT_N, &STS_ELE,STS_ND)DIMENSION IJK_ELE(500,3),X(N_NODE),Y(N_NODE),DD(3,3),BB(3,6), &SS(3,6),RESULT_N(N_DOF),DISP_E(6)DIMENSION STS_ELE(500,3),STS_ND(500,3)WRITE(8,10)10 FORMA T(//8X,'--STRESSES OF ELEMENT--')CALL CAL_DD(PE,PR,DD)DO 50 IE=1,N_ELECALL CAL_BB(IE,N_NODE,N_ELE,IJK_ELE,X,Y,AE,BB)DO 20 I=1,3DO 20 J=1,6SS(I,J)=0.0DO 20 K=1,320 SS(I,J)=SS(I,J)+DD(I,K)*BB(K,J)DO 30 I=1,3DO 30 J=1,2IH=2*(I-1)+JIW=2*(IJK_ELE(IE,I)-1)+J30 DISP_E(IH)=RESULT_N(IW)STX=0STY=0TXY=0DO 40 J=1,6STX=STX+SS(1,J)*DISP_E(J)STY=STY+SS(2,J)*DISP_E(J)40 TXY=TXY+SS(3,J)*DISP_E(J)STS_ELE(IE,1)=STXSTS_ELE(IE,2)=STYSTS_ELE(IE,3)=TXY50 WRITE(8,60)IE,STX,STY,TXY60 FORMA T(1X,'ELEMENT NO.=',I5/18X,'STX=',E12.6,5X,'STY=',&E12.6,2X,'TXY=',E12.6)c the following part is to calculate stress components of nodeWRITE(8,55)55 FORMA T(//8X,'--STRESSES OF NODE--')DO 90 I=1,N_NODEA=0.B=0.C=0.II=0DO 70 K=1,N_ELEDO 70 J=1,3IF(IJK_ELE(K,J).EQ.I) THENII=II+1A=A+STS_ELE(K,1)B=B+STS_ELE(K,2)C=C+STS_ELE(K,3)END IF70 CONTINUESTS_ND(I,1)=A/IISTS_ND(I,2)=B/IISTS_ND(I,3)=C/IIWRITE(8,75)I,STS_ND(I,1),STS_ND(I,2),STS_ND(I,3)75 FORMA T(1X,'NODE NO.=',I5/18X,'STX=',E12.6,5X,'STY=',&E12.6,2X,'TXY=',E12.6)90 CONTINUERETURNENDc FEM2D programm end[算例结果]:chengxu.for所输出的数据文件DA TA.OUT数据内容如下:=========PLANE STRESS PROBLEM========* * * * * RESULTS BY FEM2D * * * * *--DISPLACEMENT OF NODE--NODE NO X-DISP Y-DISP1 .000000E+00 -.525275E+012 .000000E+00 -.225275E+013 -.108791E+01 -.137363E+014 .000000E+00 .000000E+005 -.824176E+00 .000000E+006 -.182418E+01 .000000E+00--STRESSES OF ELEMENT--ELEMENT NO.= 1STX=-.108791E+01 STY=-.300000E+01 TXY= .439560E+00ELEMENT NO.= 2STX=-.824176E+00 STY=-.225275E+01 TXY= .000000E+00ELEMENT NO.= 3STX=-.108791E+01 STY=-.137363E+01 TXY= .307692E+00ELEMENT NO.= 4STX=-.100000E+01 STY=-.137363E+01 TXY=-.131868E+00--STRESSES OF NODE--NODE NO.= 1STX=-.108791E+01 STY=-.300000E+01 TXY= .439560E+00NODE NO.= 2STX=-.100000E+01 STY=-.220879E+01 TXY= .249084E+00NODE NO.= 3STX=-.105861E+01 STY=-.191575E+01 TXY= .205128E+00NODE NO.= 4STX=-.824176E+00 STY=-.225275E+01 TXY= .000000E+00NODE NO.= 5STX=-.970696E+00 STY=-.166667E+01 TXY= .586081E-01NODE NO.= 6STX=-.100000E+01 STY=-.137363E+01 TXY=-.131868E+00[结论与体会]:通过本次的课程设计,我对有限元的概念有了更加深刻的理解,同时也弥补了平时学习是疏忽的地方,充实了有限元知识。