ABAQUS有限元分析实例详解

合集下载

ABAQUS有限元分析方法

ABAQUS有限元分析方法

一. 有限单元法的基本原理
有限元方法的基本思路是:化整为零,积零为整。即应用有限元
二 ABAQUS简介
ABAQUS是建立在有限元方法上的强大的工程计算软件。 能解决从简单的线性问题和困难的非线性问题,可以绘画任何 存在的几何形状,而且能够模拟大多数工程材料的行为,是一 个通用的计算工具。 它不仅能解决结构力学问题,而且能够模拟热传导,辐射 和声音传播。它能解决一大批工程实际中所遇到的结构分析问 题,对固体,结构及结构-流体系统做静、动位移和应力进行 线性和非线性分析。 程序包括的单元类型有:桁元、二维平面应力和平面应变 元、三维平面应力元、等参梁元、板/壳元及二维、三维流体 元等。 交异性线弹性、弹塑性材料(包 括等向强化,随动强化和混合强化)等。 ABAQUS是一个模块存贮计算的解题程序。方程是按块处 理的,输入数据分成许多模块,各种复杂的分析都可以通过不 同的模块的组合来处理,因此,它可以求解很大的有限元系统。
ABAQUS/CAE 模块: 用于分析对象的建模,特性及约束条件
的给定,网格的划分以及数据传输等。
1. ABAQUS/CAE前处理模块:
(1)建立几何力学模型。 (2)给模型赋予材料参数。 (3)建立边界条件。 (4)施加载荷。 (5)划分网格。 (6)定义加载步。 (7)形成Input文件。
非对称四点弯曲试验装置图
能解决从简单的线性问题和困难的非线性问题可以绘画任何存在的几何形状而且能够模拟大多数工程材料的行为是一个通用的计算工具
ABAQUS有限元分析方法简介
有限单元法(The Finite Element Method)简称有限元 (FEM),它是利用电子计算机进行的一种数值分析方法。它在工 程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动 力学问题都可用它求得满意的数值结果。

悬臂梁—有限元ABAQUS线性静力学分析报告实例

悬臂梁—有限元ABAQUS线性静力学分析报告实例

线性静力学分析实例——以悬臂梁为例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。

在ABAQUS 中,该类问题通常采用静态通用(Static ,General )分析步或静态线性摄动(Static ,Linear perturbation )分析步进行分析。

线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。

这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。

在一般的分析中,应尽量选用精度和效率都较高的二次四边形/ 六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。

对于复杂模型,可以采用分割模型的方法划分二次四边形/ 六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/ 四面体单元进行网格划分。

悬臂梁的线性静力学分析1.1 问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1 所示,求梁受载后的Mises 应力、位移分布。

材料性质:弹性模量 E 2e3 ,泊松比0.3均布载荷:F=103N图1-1 悬臂梁受均布载荷图1.2 启动ABAQUS启动ABAQUS有两种方法,用户可以任选一种1)在Windows 操作系统中单击“开始” -- “程序” --ABAQUS 6.10 -- ABAQUS/CA。

E(2)在操作系统的DOS窗口中输入命令:abaqus cae 。

启动ABAQUS/CA后E ,在出现的Start Section (开始任务)对话框中选择Create Model Database 。

1.3 创建部件在ABAQUS/CA顶E 部的环境栏中,可以看到模块列表:Module:Part ,这表示当前处在Part (部件)模块,在这个模块中可以定义模型各部分的几何形体。

abaqus有限元分析简支梁解析

abaqus有限元分析简支梁解析

1.梁C 的主要参数:其中:梁长3000mm ,高为406mm ,上下部保护层厚度为38mm ,纵筋端部保护层厚度为25mm 抗压强度:35.1MPa 抗拉强度:2.721MPa受拉钢筋为2Y16,受压钢筋为2Y9.5,屈服强度均为440MPa 箍筋:Y7@102,屈服强度为596MPa2.混凝土及钢筋的本构关系1、运用陈光明老师的论文(Chen et al. 2011)来确定混凝土的本构关系: 受压强度:其中C a E ==28020,c f ρσ'=,0.002ρε= 2、受压强度与开裂位移的相互关系:其中123.0, 6.93c c == 3、损伤因子:其中2c h e = e=10(选取网格为10mm ) 4、钢筋取理想弹塑性5、名义应力应变和真实应力及对数应变的转换:ln (1)ln(1)true nom nom Pltruenom Eσσεσεε=+=+- 6、混凝土最终输入的本构关系如下:compressive behaviortensile behaviortension damageyield stress inelastic strain yield stress displacement parameter displacement21.50274036 02.721 025.56359281 2.72247E-05 2.683556882 0.0003129 0.18766492 0.0003129 28.88477336 8.85105E-05 2.646628319 0.0006258 0.31902609 0.0006258 31.43501884 0.000177278 2.610210508 0.0009387 0.41606933 0.0009387 33.24951537 0.000292271 2.574299562 0.0012516 0.49065237 0.0012516 34.40787673 0.000430648 2.538891515 0.0015645 0.54973463 0.0015645 35.01203181 0.000588772 2.503982327 0.0018774 0.5976698 0.0018774 35.16872106 0.000762833 2.46956789 0.0021903 0.63732097 0.0021903 34.97805548 0.000949259 2.435644029 0.0025032 0.67064827 0.0025032 34.52749204 0.001144928 2.402206512 0.0028161 0.69903885 0.0028161 33.88973649 0.001347245 2.369251048 0.003129 0.72350194 0.003129 33.17350898 0.001541185 2.336773294 0.0034419 0.74478941 0.0034419 32.38173508 0.001737792 2.30476886 0.0037548 0.76347284 0.0037548 31.54367693 30.68161799 0.001936023 0.002135082 2.27323331 2.242162167 0.0040677 0.0043806 0.77999451 0.79470205 0.0040677 0.004380629.81223971 0.002334374 2.211550916 0.0046935 0.8078724 0.0046935 28.94780823 0.002533461 2.181395011 0.0050064 0.81972898 0.0050064 28.09715868 0.002732028 2.151689871 0.0053193 0.83045397 0.0053193 27.26649041 0.002929854 2.12243089 0.0056322 0.84019745 0.0056322 26.45999792 0.003126788 2.093613436 0.0059451 0.84908413 0.0059451 25.68036458 0.003322736 2.065232857 0.006258 0.85721852 0.006258 24.9291453 0.003517641 1.811529794 0.00929484 0.91044231 0.00929484 24.20706088 0.003711478 1.594228557 0.01233168 0.93874748 0.01233168 23.51422292 0.003904244 1.409074138 0.01536852 0.95577145 0.01536852 22.85030486 0.004095949 1.251989877 0.01840536 0.96680725 0.01840536 22.21467144 0.004286616 1.119164686 0.0214422 0.97433278 0.0214422 21.60647616 0.004476276 1.007104262 0.02447904 0.97965764 0.02447904 21.02473425 0.004664963 0.912655765 0.02751588 0.98353505 0.02751588 19.46615199 0.005211136 0.83301335 0.03055272 0.98642583 0.03055272 18.09649573 0.005750325 0.76571027 0.03358956 0.98862533 0.03358956 16.88924056 0.006283479 0.70860194 0.0366264 0.99032981 0.0366264 15.82079897 0.006811438 0.659843281 0.03966324 0.99167339 0.03966324 14.87092257 0.007334926 0.617862826 0.04270008 0.9927498 0.04270008 14.0225145 0.007854553 0.581335427 0.04573692 0.99362574 0.04573692 13.26124068 0.008370831 0.549154863 0.04877376 0.9943494 0.04877376 12.57510634 0.008884188 0.520407288 0.0518106 0.994956 0.0518106 11.95406409 0.009394984 0.494346111 0.05484744 0.99547154 0.05484744 11.38967485 0.009903518 0.470368707 0.05788428 0.99591542 0.05788428 10.8748243 0.010410047 0.447995166 0.06092112 0.9963022 0.06092112 10.40348957 0.010914784 0.426849151 0.06395796 0.99664288 0.06395796 9.970548886 0.011417913 0.406640876 0.0669948 0.99694586 0.0669948 9.571626813 0.01191959 0.387152119 0.07003164 0.99721757 0.07003164 9.202968392 0.01241995 0.368223154 0.07306848 0.99746298 0.07306848 8.861336697 0.012919108 0.349741479 0.07610532 0.99768595 0.07610532 8.543929179 0.013417164 0.331632153 0.07914216 0.99788954 0.07914216 8.248309139 0.013914206 0.313849623 0.082179 0.99807615 0.082179 7.972349361 0.01441031 0.296370844 0.08521584 0.99824773 0.08521584 7.714185579 0.014905542 0.279189562 0.08825268 0.99840586 0.08825268 7.472177877 0.015399962 0.262311613 0.09128952 0.99855185 0.09128952 7.244878552 0.015893621 0.245751087 0.09432636 0.99868678 0.09432636 7.03100523 0.016386565 0.229527257 0.0973632 0.99881158 0.0973632 6.829418289 0.016878835 0.21366215 0.10040004 0.99892706 0.10040004 6.639101829 0.017370468 0.19817866 0.10343688 0.99903393 0.10343688 6.459147548 0.017861496 0.183099114 0.10647372 0.99913281 0.10647372 6.28874105 0.018351948 0.168444224 0.10951056 0.99922427 0.10951056 6.127150156 0.018841851 0.154232347 0.1125474 0.99930883 0.1125474 5.973714902 0.019331229 0.140478996 0.11558424 0.99938695 0.115584245.827838946 5.688982154 0.0198201040.0203084930.1271965570.114394170.118621080.121657920.999459090.999525640.118621080.121657925.556654195 0.020796417 0.102077724 0.12469476 0.999587 0.12469476 5.430408983 0.021283889 0.09024996 0.1277316 0.99964352 0.1277316 5.309839835 0.021770927 0.078910632 0.13076844 0.99969553 0.13076844 5.194575252 0.022257541 0.068056727 0.13380528 0.99974335 0.133805280.057682705 0.13684212 0.99978729 0.136842120.047780771 0.13987896 0.99982763 0.139878960.038341146 0.1429158 0.99986461 0.14291580.02935234 0.14595264 0.99989851 0.14595264 3.建模过程1、Part梁和垫块选择shell,钢筋选择wire2、Property混凝土:density以及Elastic的数值参考老师的论文Concrete damaged plasticity:数值为前面的本构关系值。

abaqus有限元分析过程.doc

abaqus有限元分析过程.doc

一、有限单元法的基本原理有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。

它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。

有限元方法的基本思路是:化整为零,积零为整。

即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。

由位移求出应变, 由应变求出应力二、ABAQUS有限元分析过程有限元分析过程可以分为以下几个阶段1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。

有限元建模的中心任务是结构离散,即划分网格。

但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。

由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。

下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。

“Part(部件)用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。

应用固体力学有限元Abaqus算例分析

应用固体力学有限元Abaqus算例分析

问题描述:(1)计算出两种工况下的解析解; (2)用有限元软件解决以下问题:探究单元数量对计算结果的影响; 探究边界条件的影响。

工况(a ),令u (L )=0改变到u (L )=±0.02m 工况(b ),令σ(L )=P 改变到σ(L )=P ±0.1P (1)两种工况下的解析解推导过程及结果如下看成是平面应力问题来解决,只有板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化,板很薄,外力又不沿厚度变化应力沿着板的厚度又是连续分布的,所以,可以认为在整个薄板的所有各点都有z 0,0,0zx zy σττ=== (1) 同时,根据剪应力互等定理0,0xz yz ττ== (2)由平衡微分方程,可以知道0;0yxx y xyX x yY y xτσστ∂∂++=∂∂∂∂++=∂∂ (3)几何方程,,x y xy u v v ux y x yεεγ∂∂∂∂===+∂∂∂∂ (4) 物理方程如下:1()1()2(1)x x y y y x xy xyE EEεσμσεσμσμγτ=-=-+= (5)由此可以得到22()1()1()2(1)x y xy E u vx y E v uy x E v ux yσμμσμμτμ∂∂=+-∂∂∂∂=+-∂∂∂∂=+-∂∂ (6)代入平衡微分方程 得到22222222222211()012211()0122E u u vX x y x y E v v uY y x x yμμμμμμ∂-∂+∂+++=-∂∂∂∂∂-∂+∂+++=-∂∂∂∂ (7)0;X Y g ρ==因此根据以上式子可以得到 22200()()01E d v y g dy ρμ=+=- (8)对(8)式积分,得到22()0(1)()2u x g v y y Ay BE μρ=-=++ (9)第1种情况:物体在全部边界上的位移分量是已知的,因此边界条件为位移边界条件在边界上,我们有0;()s y u u v v v y ==== (10)(0)0,()0v v L == (11)得到参数:2(1)0;2gLB A E μρ-==(12)22()(1)()()2()2y g v y Ly y E L g y ρμσρ-=-=- (13)将数据代入式(13)得到22274()(1)()()=(y-y ) 1.691021()()7.6441022y g v y Ly y mE L g y y Paρμσρ--=-⨯⨯=-=-⨯⨯ (14)第2种情况:物体在全部边界上的部分位移分量和应力分量是已知的,因此边界条件为混合边界条件(0)0;()y v L p σ== (15)210;()B A p gL Eμρ-==+⨯ (16)所以有221()[()]2()()y v y p gL y E y p g L y μρσρ-=+-=+- (17)将数据代入(17)可以得到22772541()[()]=8.5110 2.06102()()107.64410(1)y v y p gL y g y y E y p g L y y μρρσρ---=+-⨯-⨯=+-=+⨯- (18)(2)计算中采用Abaqus有限元商业计算软件来模拟题目中的工况材料参数见下表名称数量材料密度ρ7800kg/m3物体长度L 1m物体宽度W 0.1m弹性模量E 2.1*1011重力加速度g 9.8泊松比0.3载荷P 0.1MPa计算单元类型为S4R,单元数量为250工况(a)计算参数设置及结果如下由计算结果可知,最大应力在固定端处取得,最大值为3.798*104Pa由解析解22274()(1)()()=(y-y) 1.691021()()7.6441022ygv y Ly y mELg y y Paρμσρ--=-⨯⨯=-=-⨯⨯得到的固定端点处最大应力为3.822*104Pa;在中间位置位移最大为4.533*10-8m 应力误差为4443.82210-3.79810=100%=0.62%3.82210η⨯⨯⨯⨯位移误差为8884.53310-4.22510=100%=7.28%4.22510η---⨯⨯⨯⨯工况(b )计算参数设置及结果如下由计算结果可知,最大应力在固定端处取得,最大值为1.791*105Pa 由解析解22772541()[()]=8.51102.06102()()107.64410(1)y v y p gL y g y y E y p g L y y μρρσρ---=+-⨯-⨯=+-=+⨯- 得到的固定端点处最大应力为1.7644*105Pa ;自由端最大位移为6.45*10-7m应力误差为5551.79110-1.764410=100%=1.5%1.764410η⨯⨯⨯⨯ 位移误差为7776.57210-6.4510=100%=1.89%6.4510η---⨯⨯⨯⨯通过有限元计算,可以得到和解析解很接近的结果,通过误差分析表明,有限元计算此类平面应力问题可以很好地满足计算精度的要求。

石亦平ABAQUS有限元分析实例详解之读后小结完整版.pdf

石亦平ABAQUS有限元分析实例详解之读后小结完整版.pdf

目录第一章ABAQUS简介 (1)第二章ABAQUS基本使用方法 (1)第三章线性静力分析实例 (6)第四章 ABAQUS的主要文件类型 (8)第五章接触分析实例 (9)第六章弹塑性分析实例 (13)第七章热应力分析实例 (15)第八章多体分析实例 (16)第九章动态分析实例 (17)第十章复杂工程分析综合实例 (20)第一章ABAQUS简介[1] (pp7) 在[开始] →[程序] →[ABAQUS 6.5-1]→[ABAQUS COMMAND],DOS提示符下输入命令Abaqus fetch job = <file name>可以提取想要的算例input文件。

第二章ABAQUS基本使用方法[2] (pp15) 快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。

(pp16) ABAQUS/CAE不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。

[3] (pp17) 平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。

ABAQUS/CAE推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。

载荷类型Pressure的含义是单位面积上的力,正值表示压力,负值表示拉力。

[4] (pp22) 对于应力集中问题,使用二次单元可以提高应力结果的精度。

[5] (pp23) Dismiss和Cancel按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel按钮可关闭对话框,而不保存所修改的内容。

[6] (pp26) 每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance)是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。

材料和截面属性定义在部件上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制参数定义在整个模型上。

ABAQUS有限元分析实例详解 3PPT课件

ABAQUS有限元分析实例详解 3PPT课件

L
F2EA(U2U1) L
11

F F1 2 E LA1 , 1,1 1 U U1 2
FKU
[K]单元刚度阵,{F}载荷,{U}位移向量
每一种类型单元都有自己的单元刚度 矩阵,对于复杂的单元是基于能量原理 来确定的。
12
3)总刚度矩阵 结构有限元是用有限个基本单元来
逼近结构模型,把有限个基本单元的单 元刚度矩阵组装到一起,形成总刚度矩 阵。
四或八节点四边形板元 CQUAD4、CQUAD8 四节点剪力板元 CSHEAR
21
体单元 六面体单元 CHEXA 五面体单元 CPENTA 四面体单元 CTETRA
约束元(刚体元 RBE2) 其它单元 质量元 CONM2
22
2、输入文件结构 执行控制(求解类型、允许时间、系统 诊断) 情况控制(输出请求、选择模型数据集) 数据:节点、单元(结构模型定义)、 几何和材料性质、载荷、约束(求解条 件参数)
一、简介
一般来说工程分析可分为两大类: 数值法
(有限元法是数值法的一种)
1
经典法:
经典法直接采用控制微分方程来求 解场问题,其方法是基于物理原理而建 立的。闭合性的精确解仅对于几何、载 荷与边界条件最简单的情况才有可能得 到。精确解离大多数实际工程问题较远。 经典法可以验证数值解的解题精度。
2
AP1_2000计算结果与理论解对比
\\ 执行控制\\
TITLE=FIXED PLATE DISP=ALL STRESS=ALL SPC=1 LOAD=1
\\4种控制\\
25
BEGIN BULK
\\数据集\\
GRID 1 0 0. 0. 0.
GRID 2 0 2. 0. 0.

基于ABAQUS的轻型商用车前车门有限元分析

基于ABAQUS的轻型商用车前车门有限元分析

(i=l,2 3 … 一,n),分别 称 为特 征值 和特 征 向量 。广 义 特征值 问题 有 n个 实特 征值 ,他们有 下列关 系 :
0 砰 ≤ ·· 1
(5)
其 中 co。,co:,… … ∞ 分别称 为 结构 的第 一 ,第
二 ,…第 n阶 固有频 率 ,与其 对应 的特 征 向量 { 1,
组合 上面 两式得 到 :

= 件
3)
计单元质量阵: =f ,『 v按照有限元通常的
集合过程 ,最后得 到动力平衡 方程 :
(4)
求 动 平 衡方 程 组 的 问题称 为 广 义特 征 值 问题 ;
满足 方程 组 的解 Ca) =∞ i及 其对 应 的矢量 {8)=f i}
一 p{jI=
12 技 术纵横
轻 型汽 车技 术 2010(11/12)总 255/256
式 中 P— — 单元 质量 密度 设 单元 中 的体 积 力 (以体 单 元 为 例 )是 fP】,计
及惯性 力后 有 :
r 、 e
)={P卜JD 】{占}
(2)
又由虚功原理有:f州 v+f 白 +料 =
费 品进入千 家万 户 。车 门作 为车身 的重 要部 件 ,承担 用 Beam 单元 模拟 。使 模 型更加 地符 合 实 际条件 。整
着整 车密封 ,并 且安装 承 载 了大量 的功 能键 ,例 如玻 个车 门的有 限元模 型 如 图 1所 示 。
璃 、玻 璃 胶 条 、车 门锁 、车 门升 降 器 及 电机 、玻 璃 导
{ ),…{ )称为 第一 ,第二 ,… ,第 n阶固有 振型 。
3 关键 作 用 点介 绍
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档