abaqus有限元分析

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Abaqus分析报告

(齿轮轴)

名称:Abaqus齿轮轴

姓名:

班级:

学号:

指导教师:

一、简介

所分析齿轮轴来自一种齿轮泵,通过用abaqus软件对齿轮轴进行有限元分析和优化。齿轮轴装配结构图如图1,分析图1中较长的齿轮轴。

图1.齿轮轴装配结构图

二、模型建立与分析

通过part、property、Assembly、step、Load、Mesh、Job等步骤建立齿轮轴模型,并对其进行分析。

1.part

针对该齿轮轴,拟定使用可变型的3D实体单元,挤压成型方式。

2.材料属性

材料为钢材,弹性模量210Gpa,泊松比0.3。

3.截面属性

截面类型定义为solid,homogeneous。

4.组装

组装时选择dependent方式。

5.建立分析步

本例用通用分析中的静态通用分析(Static,General)。

6.施加边界条件与载荷

对于齿轮轴,因为采用静力学分析,考虑到前端盖、轴套约束,而且根据理论,对受力部分和轴径突变的部分进行重点分析。

边界条件:分别在三个轴径突变处采用固定约束,如图2。

载荷:在Abaqus中约束类型为pressure,载荷类型为均布载荷,分别施加到齿轮接触面和键槽面,根据实际平衡情况,两力所产生的绕轴线的力矩方向相反,大小按比例分配。

均布载荷比计算:

矩形键槽数据:

长度:8mm、宽度:5mm、高度:3mm、键槽所在轴半径:7mm

键槽压力面积:S1 = 8x3=24mm2 平均受力半径:R1=6.5mm

齿轮数据:=

齿轮分度圆半径:R2 =14.7mm、压力角:20°、

单个齿轮受力面积:S2 ≈72mm2

通过理论计算分析,S1xR1xP1=S2xR2xP2,其中,P1为键槽均布载荷

幅值,P2为齿轮均布载荷幅值。

键槽均布载荷幅值和齿轮均布载荷幅值之比约为P1:P2≈6.3 。取键槽均布载荷幅值为1260,齿轮载荷幅值为200.

由于键槽不是平面,所以需要切割,再施加均布载荷。

图3 键槽载荷施加

比较保守考虑,此处齿轮载荷只施加到一个齿轮上。

图4 齿轮载荷施加

图5.施加约束条件和载荷的齿轮轴模型

7.网格划分

采用六面体划分的网格如下图:

图6 六面体网格划分图六面体划分网格部分细节图:

经过各种划分没能成功,转而采用四面体结构划分,如下图:

图7 四面体网格划分图

8.提交分析(iob)、结果(Visualization)

图8 应力分析图

图9 位移分析图

从应力分析图看出,在齿轮轴轴径突变的地方应力值大,与理论相符合,在键槽施加力的面应力值大,符合圣维南原理。

从位移分析图看出,在齿轮施加力的地方位移最大,因为轴径大。

部分细节形变图:

变形前变形后

从细节图中可以看出,轴在变形过程中还会产生弯曲变形,与受力分析的弯矩相符合。

三、优化

通过上述分析可以看出,齿轮轴轴径突变地方的应力突变比较明显,采用边倒圆进行优化。另外,齿轮位移明显的地方可以通过调整齿轮变位系数和压力角进行优化;在条件允许情况下,键槽受力处可以通过改变键槽的尺寸进行优化。

当然,还可以通过采用先进的材料、加工工艺等增强材料性能。

另一方面,在能满足条件情况下,可以通过减小尺寸来进行减重等优化,优先考虑非应力集中处。

下面以采用边倒圆进行优化为例分析,并对优化前和优化后的模型进行对比分析。主要从优化前后的应力图与位移图对比分析。

优化前应力分析图

优化后应力分析图

优化前位移分析图

优化后位移分析图

从优化前后的应力分析图和位移分析图中,可以看出优化前,应力分布幅值为2.804x10^3,优化后应力分布幅值为2.228x10^3,而且应力幅值的分布也有所变化,应力幅值从优化前的齿轮轴轴径突变处转移到键槽处,说明优化效果明显,即采用边倒圆进行优化,可以显著减少齿轮轴轴径突变地方的应力。另外,从优化前后的位移分析图中,可以看出优化前,位移分布幅值为0.1162,优化后位移分布幅值,0.09492。

相关文档
最新文档