九年级上册数学阶段性检测

合集下载

2022-2023学年人教版九年级数学上册第一次阶段性(21-1-23-3)综合测试题(附答案)

2022-2023学年人教版九年级数学上册第一次阶段性(21-1-23-3)综合测试题(附答案)

2022-2023学年人教版九年级数学上册第一次阶段性(21.1-23.3)综合测试题(附答案)一、选择题:(本大题共10个小题,每小题3分,共30分)1.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列函数表达式中,是二次函数的是()A.y=B.y=x+2 C.y=x2+1 D.y=(x+3)2﹣x23.若α和β是关于x的方程x2+bx﹣1=0的两根,且αβ﹣2α﹣2β=﹣11,则b的值是()A.﹣3B.3C.﹣5D.54.“玉兔”在月球表面行走的动力主要来自于太阳光能,要使接收太阳光能最多,就要使光线垂直照射在太阳光板上.某一时刻太阳光的照射角度如图所示,要使得此时接收的光能最多,那么太阳光板绕支点A逆时针旋转的最小角度为()A.44°B.46°C.36°D.54°5.已知点P(m2,n),点Q(4m+5,n),下列关于点P与点Q的位置关系说法正确的是()A.点P在点Q的右边B.点P在点Q的左边C.点P与点Q重合D.点P与点Q的位置关系无法确定6.在同一直角坐标系中,函数y=ax+a和函数y=ax2+x+2(a是常数,且a≠0)的图象可能是()A.B.C.D.7.抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为()①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.A.②③④B.①②④C.①③D.①②③④8.有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了x个人,下列结论错误的是()A.1轮后有(x+1)个人患了流感B.第2轮又增加(x+1)•x个人患流感C.依题意可得方程(x+1)2=121D.不考虑其他因素经过三轮一共会有1210人感染9.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以cm/s的速度匀速运动到点B,同时动点N从点C 出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为ts,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.10.如图,将抛物线y=x2﹣2x﹣3在x轴下方部分沿x轴翻折,其余部分保持不变,得到图形C1,当直线y=x+b(b<1)与图形C1恰有两个公共点时,则b的取值范围是()A.﹣3<b<1B.﹣3≤b<1C.﹣1≤b<1D.﹣1<b<1二、填空题:(本大题共6个小题,每题3分,共18分)11.已知二次函数y=﹣x2+ax﹣a+1的图象顶点在x轴上,则a=.12.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=63°,∠E=71°,且AD⊥BC,则∠BAC的度数为.13.直线y=x+2关于原点中心对称的直线的方程为.14.如果一元二次方程x2+3x﹣2=0的两个根为x1,x2,则x13+3x12﹣x1x2+2x2=.15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是.16.如图,抛物线y=x2﹣ax与函数y=x的图象在第一象限交点的横坐标为4,点A(t,y1)在抛物线上,点B(t+1,y2)在正比例函数的图象上,当0≤t≤3时,y2﹣y1的最大值为.三、解答题(本大题共9个小题,共72分)17.解方程:2x2﹣2=3x.18.如图,在等腰直角△ACF中,AC=AF,△ABE是由△ACF绕点A按顺时针方向旋转得到的,连接EF、BC.(1)求证:EF=BC;(2)当旋转角为40°时,求∠BCF的度数.19.已知关于x的方程x2﹣(k+1)x+k2+1=0(1)k取什么值时,方程有两个实数根;(2)如果方程的两个实数根x1、x2满足|x1|=x2,求k的值.20.如图,在△ABC中,AC=BC,∠ACB=90°,D是线段AC延长线上一点,连接BD,过点A作AE⊥BD于E.(1)求证:∠CAE=∠CBD.(2)将射线AE绕点A顺时针旋转45°后,所得的射线与线段BD的延长线交于点F,连接CE.①依题意补全图形;②用等式表示线段EF,CE,BE之间的数量关系,并证明.21.如图,抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),与y轴交于点C,抛物线的顶点为D.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使△PBC的面积是△BCD面积的4倍,若存在,请直接写出点P的坐标;若不存在,请说明理由.22.成都市将在2022年举办第31届世界大学生夏季运动会,成都大运会吉祥物是一只名叫“蓉宝”的大熊猫.(1)据市场调研发现,某工厂今年四月份共生产200个“蓉宝”,该工厂为增大生产量,平均每月生产量增加20%,则该工厂在今年第二季度(4、5、6月)共生产个“蓉宝”;(2)已知某商店以30元的单价购入一批吉祥物“蓉宝”准备进行销售,据市场分析,若每个“蓉宝”售价为60元,则每天可售出40个.商店经过调研发现,如果每个“蓉宝”降价1元,那么平均每天可多售出8个,若商店想平均每天盈利2000元,销售单价应定为多少元?23.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为;(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;②若a=﹣时,运动员落地点要超过K点,则b的取值范围为;(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.24.在平面直角坐标系xOy中,抛物线G:y=ax2+ax+c(a、c为常数且a<c)过点A(1,0),顶点为B.(1)用含a的式子表示c;(2)判断点B所在象限,并说明理由;(3)若直线l:y=2x﹣b经过点A,且与抛物线G交于另一点C,当△ABC的面积为时,求y=ax2+ax+c在﹣1<x<1时的取值范围.25.如图,在平面直角坐标系中,抛物线C1:y=﹣x2+2x+3分别交x轴,y轴于点A,B和点C,抛物线C2与抛物线C1关于直线y=对称,两条抛物线的交点为E,F(点E在点F的左侧).(1)求抛物线C2的表达式;(2)将抛物线C2沿x轴正方向平移,使点E与点C重合,求平移的距离;(3)在(2)的条件下:规定抛物线C1和抛物线C2在直线EF下方的图象所组成的图象为C3,点F(x1,y1)和Q(x2,y2)在函数C3上(点P在点Q的右侧),在(2)的条件下,若y1=y2,且x1﹣x2=1,求点P坐标.参考答案一、选择题:(本大题共10个小题,每小题3分,共30分)1.解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、既是轴对称图形,也是中心对称图形,故此选项符合题意.故选:D.2.解:∵y=中y与x成反比例函数关系,∴选项A不符合题意;∵y=x+2中y与x成一次函数关系,∴选项B不符合题意;∵y=x2+1中y与x成二次函数关系,∴选项C符合题意;∵y=(x+3)2﹣x2=6x+9,是一次函数定义,∴选项D不符合题意;故选:C.3.解:∵α和β是关于x的方程x2+bx﹣1=0的两根,∴α+β=﹣b,αβ=﹣1,∴αβ﹣2α﹣2β=αβ﹣2(α+β)=﹣1+2b=﹣11.∴b=﹣5.故选:C.4.解:一束光线与太阳光板的夹角为134°,要使光线垂直照射在太阳光板上,则太阳光板绕支点A逆时针旋转的最小角度为134°﹣90°=44°,故选:A.5.解:∵m2﹣(4m+5)=(m﹣2)2﹣9,∴无法确定点P与点Q的位置关系,故选:D.6.解:当a>0时,一次函数过一二三象限,抛物线开口向上,对称轴x=<0,故B、C不符合题意,当a<0时,一次函数过二三四象限,抛物线开口向下,对称轴x=>0,故A不符合题意.故选:D.7.解:∵y=(x﹣2)2﹣9,∴抛物线对称轴为直线x=2,抛物线开口向上,顶点坐标为(2,﹣9),∴x=2时,y取最小值﹣9,①正确.∵x>2时,y随x增大而增大,∴y2>y1,②正确.将函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x+1)2﹣5,③错误.令(x﹣2)2﹣9=0,解得x1=﹣1,x2=5,∴5﹣(﹣1)=6,④正确.故选:B.8.解:患流感的人把病毒传染给别人,自己仍然患病,包括在总数中.设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人,第一轮后共有(x+1)人患流感,故A正确,不符合题意;第二轮作为传染源的是(x+1)人,则增加传染x(x+1)人,故B正确,不符合题意;根据题意列方程得到(x+1)2=121,故C正确,不符合题意;解(x+1)2=121得x1=10,x2=﹣12.经检验,x=10符合题意.答:平均一个人传染了10个人.经过三轮传染后患上流感的人数为:121+10×121=1331(人),故D错误,符合题意.故选:D.9.解:∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,AC=BC=6,∵CD⊥AB,∴CD=AC=3,AD=CD=3,BD=BC=,∴当M在AD上时,0≤t≤3,MD=AD﹣AM=3﹣t,DN=DC+CN=3+t,∴S=MD•DN=(3﹣t)(3+t)=﹣t2+,当M在BD上时,3<t≤4,MD=AM﹣AD=t﹣3,∴S=MD•DN=(t﹣3)(3+t)=t2﹣,故选:B.10.解:如图,当y=0时,x2﹣2x﹣3=0,即:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),当直线y=x+b经过点B时,与新图象有一个公共点,把B(3,0)代入y=x+b得:3+b=0,∴b=﹣3,当直线y=x+b经过点A时,与新图象有三个公共点,把A(﹣1,0)代入y=x+b中得:﹣1+b=0,∴b=1,∴当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围是﹣3<b<1.故选:A.二、填空题:(本大题共6个小题,每题3分,共18分)11.解:根据题意,得=0,将a=﹣1,b=a,c=﹣a+1代入,得=0,所以解得:a=2.故答案为:2.12.解:∵△ABC绕点A逆时针旋转一定角度,得到△ADE,∴∠ACB=∠E=71°,∠BAD=∠CAE=63°,∵AD⊥BC,∴∠CAD=90°﹣∠ACB=90°﹣71°=19°,∴∠BAC=∠BAD+∠CAD=63°+19°=82°.故答案为:82°.13.解:线y=x+2关于原点中心对称的直线的方程为y=x﹣2.故答案为:y=x﹣2.14.解:∵一元二次方程x2+3x﹣2=0的两个根为x1,x2,∴x12+3x1﹣2=0即x12+3x1=2,x1+x2=﹣3,x1x2=﹣2,∴x13+3x12﹣x1x2+2x2=x1(x12+3x1)+2x2﹣x1x2=2(x1+x2)﹣x1x2=2×(﹣3)+2=﹣4.故答案为:﹣4.15.解:根据函数图象可知:抛物线的对称轴为x=1,抛物线与x轴一个交点的坐标为(﹣1,0),由抛物线的对称性可知:抛物线与x轴的另一个交点坐标为(3,0).∵y<0,∴x>3或x<﹣1.故答案为:x>3或x<﹣1.16.解:当x=4时,,∴它们的交点为(4,2),把(4,2)代入,得8﹣4a=2,∴,∴,∴,,∴y2﹣y1====,∵0⩽t⩽3,∴t=2时,y2﹣y1有最大值,最大值为,故答案为:.三、解答题(本大题共9个小题,共72分)17.解:方程整理得:2x2﹣3x﹣2=0,分解因式得:(2x+1)(x﹣2)=0,所以2x+1=0或x﹣2=0,解得:x1=﹣,x2=2.18.(1)证明:∵△ABE是由△ACF绕点A按顺时针方向旋转得到的,∴△ABE≌△ACF,∴AE=AF,AB=AC;∠BAE=∠CAF,∴∠BAC=∠EAF,∵△ACF是等腰直角三角形,∴AE=AF=AB=AC,∴△ACB≌△AFE(SAS),∴EF=BC;(2)解:∵旋转角为40°,∴∠CAB=40°,∵AB=AC,∴∠ACB=70°,∵△ACF是等腰直角三角形,∴∠ACF=45°,∴∠BCF=∠ACB﹣∠ACF=25°.19.解:(1)Δ=[﹣(k+1)]2﹣4(k2+1)=2k﹣3,∵△≥0,即2k﹣3≥0,∴k≥,∴当k≥时,方程有两个实数根;(2)由|x1|=x2,①当x1≥0时,得x1=x2,∴方程有两个相等实数根,∴Δ=0,即2k﹣3=0,k=.又当k=时,有x1=x2=>0∴k=符合条件;②当x1<0时,得x2=﹣x1,∴x1+x2=0由根与系数关系得k+1=0,∴k=﹣1,由(1)知,与k≥矛盾,∴k=﹣1(舍去),综上可得,k=.20.解:(1)∵∠ACB=90°,∴∠BCD=90°,∴∠CBD+∠BDC=90°,∵AE⊥BD,∴∠AED=90°,∴∠CAE+∠BDC=90°,∴∠CAE=∠CBD;(2)①由题意补全图形如图所示:②过点C作CG⊥CE交AE于G,∴∠BCG+∠BCE=90°,∵∠ACB=90°,∴∠ACG+∠BCG=90°,∴∠ACG=∠BCE,由(1)知,∠CAE=∠CBD,在△ACG和△BCE中,,∴△ACG≌△BCE(ASA),∴AG=BE,CG=CE,在Rt△ECG中,CG=CE,∴EG=CE,∴AE=AG+EG=BE+CE,由旋转知,∠EAF=45°,∵∠AEF=90°,∴∠F=90°﹣∠EAF=45°=∠EAF,∴EF=AE,∴EF=BE+CE.21.解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),∴,解得b=﹣2,c=﹣3,∴抛物线的解析式:y=x2﹣2x﹣3;(2)存在,理由如下:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D点坐标为(1,﹣4),令x=0,则y=x2﹣2x﹣3=﹣3,∴C点坐标为(0,﹣3),又∵B点坐标为(2,﹣3),∴BC∥x轴,∴S△BCD=×2×1=1,设抛物线上的点P坐标为(m,m2﹣2m﹣3),∴S△PBC=×2×|m2﹣2m﹣3﹣(﹣3)|=|m2﹣2m|,当|m2﹣2m|=4×1时,解得m=1±,当m=1+时,m2﹣2m﹣3=1,当m=1﹣时,m2﹣2m﹣3=1,综上,P点坐标为(1+,1)或(1﹣,1).22.解:(1)200+200×(1+20%)+200×(1+20%)2,=200+200×1.2+200×1.44=200+240+288=728(个).故答案为:728.(2)设每个“蓉宝”降价x元,则每个的销售利润为(60﹣x﹣30)=(30﹣x)元,每天可售出(40+8x)个,依题意得:(30﹣x)(40+8x)=2000,整理得:x2﹣25x+100=0,解得:x1=5,x2=20,当x=5时,60﹣x=60﹣5=55;当x=20时,60﹣x=60﹣20=40.答:销售单价应定为40元或55元.23.解:(1)∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;(2)①∵a=﹣,b=,∴y=﹣x2+x+66,∵基准点K到起跳台的水平距离为75m,∴y=﹣×752+×75+66=21,∴基准点K的高度h为21m;②∵a=﹣,∴y=﹣x2+bx+66,∵运动员落地点要超过K点,∴x=75时,y>21,即﹣×752+75b+66>21,解得b>,故答案为:b>;(3)他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=﹣,∴抛物线解析式为y=﹣(x﹣25)2+76,当x=75时,y=﹣×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K点.24.解:(1)y=ax2+ax+c过点A(1,0),∴a+a+c=0,∴c=﹣2a;(2)y=ax2+ax﹣2a=a(x+)2﹣a的顶点B为(﹣,﹣a),∵c=﹣2a,a<c,∴a<﹣2a,∴a<0,∴点B在第二象限;(3)y=2x﹣b经过点A(1,0),∴b=2,由得:,即C(,),过点B作BD∥y轴,交l:y=2x﹣2于点D,则D(﹣,﹣3),∴S△ABC=BD•|x A﹣x C|=(﹣a+3)(1﹣+2)=(﹣a+3)(3﹣),∴(﹣a+3)(3﹣)=,解得a=﹣,∴y=﹣x2﹣x+顶点B(﹣,),∴﹣1<x<1时,0<y≤.25.解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线C1的顶点坐标为:(1,4),∵点(1,4)关于直线y=对称点为(1,﹣1),抛物线C2与抛物线C1关于y=对称,∴抛物线C2的顶点为(1,﹣1),且抛物线C2与抛物线C1的形状、大小相同,开口方向相反,∴抛物线C2的表达式为y=(x﹣1)2﹣1=x2﹣2x;(2)在y=﹣x2+2x+3中,令x=0得y=3,∴C(0,3),设抛物线C2向右平移m个单位后E与C(0,3)重合,即y=(x﹣m)2﹣2(x﹣m)过(0,3),∴3=m2+2m,解得m=1或m=﹣3(舍去),∴平移的距离是1;(3)由(2)知,抛物线C2向右平移1个单位,可得y=(x﹣1)2﹣2(x﹣1)=x2﹣4x+3,∵x1﹣x2=1,∴x2=x1﹣1,∴Q(x1﹣1,y2),当Q在C左侧图象上时,如图:∵Q在抛物线C1上,P在抛物线C2上,∴y2=﹣(x1﹣1)2+2(x1﹣1)+3,y1=x12﹣4x1+3,∵y1=y2,∴﹣(x1﹣1)2+2(x1﹣1)+3=x12﹣4x1+3,解得x1=2+(舍去)或x1=2﹣,∴P1(2﹣,);当Q在C、B之间的图象上时,分两种情况:①P在抛物线C1上,如图:∵y1=﹣x12+2x1+3,y2=(x1﹣1)2﹣4(x1﹣1)+3,且y1=y2,∴﹣x12+2x1+3=(x1﹣1)2﹣4(x1﹣1)+3,即得x1=2+或x1=2﹣(舍去),∴P2(2+,﹣);②P在C、B之间的图象上,如图:∵y1=x12﹣4x1+3,y2=(x1﹣1)2﹣4(x1﹣1)+3,且y1=y2,∴x12﹣4x1+3=(x1﹣1)2﹣4(x1﹣1)+3,解得x1=,∴P3((,﹣).综上所述,点P坐标为:(2﹣,)或(2+,﹣)或(,﹣).。

北师大版九年级上册数学阶段性质量检测-期末试卷(一)(解析版)

北师大版九年级上册数学阶段性质量检测-期末试卷(一)(解析版)

九年级上册数学阶段性质量检测-期末试卷(一)一.选择题1.方程x(x﹣1)=x的解是()A.x=0 B.x=0、x=1 C.x=0和x=2 D.x=0或x=2 2.如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.3.已知=,则的值是()A.B.C.D.4.如图,点E是平行四边形ABCD中BC的延长线上的一点,连接AE交CD于F,交BD于M,则图中共有相似三角形(不含全等的三角形)()对.A.4 B.5 C.6 D.75.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外无任何区别.摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球100次,其中有25次摸到黑球,则估计盒子中大约有白球()A.12个B.16个C.20个D.30个6.已知反比例函数y=,当x<0时,y随x的增大而增大,则a的值可能是()A.3 B.2 C.1 D.﹣17.为了美化校园环境,某区第一季度用于绿化的投资为18万元,前三个季度用于绿化的总投资为90万元,设前三个季度用于绿化投资的平均增长率为x.那么x满足的方程为()A.18 (1+2x)=90B.18 (1+x)2=90C.18+18 (1+x)+18 (1+2x)=90D.18+18 (1+x)+18 (1+x)2=908.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论,其中正确结论的个数是()①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④S△AOE:S△BCF=2:3.A.1个B.2个C.3个D.4个9.下列说法正确的是()A.若点C是线段AB的黄金分割点,AB=2,则AC=﹣1B.平面内,经过矩形对角线交点的直线,一定能平分它的面积C.两个正六边形一定位似D.菱形的两条对角线互相垂直且相等10.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m11.如图,在△ABC中,DE∥BC,=,记△ADE的面积为S1,四边形DBCE的面积为S2,则的值是()A.B.C.D.12.如图,正方形ABCD中,AB=4,点E是BA延长线上的一点,点M、N分别为边AB、BC上的点,且AM=BN=1,连接CM、ND,过点M作MF∥ND与∠EAD的平分线交于点F,连接CF分别与AD、ND交于点G、H,连接MH,则下列结论正确的有()个①MC⊥ND;②sin∠MFC=;③(BM+DG)2=AM2+AG2;④S△HMF=;A.1 B.2 C.3 D.4二.填空题13.如果2x2﹣3x的值为﹣1,则6x﹣4x2+3的值为.14.小明想要测量水面人工岛上两棵小树CD的距离,如图,已知河岸MN∥CD,小明在河岸MN上点A处测量小树C位于北偏东60°方向,然后沿河岸走了20米,到达点B 处,此时测得河对岸小树C位于北偏东30°方向,小树D位于东北方向,则两棵树CD 的距离为米.(结果保留根号)15.如图,A,B两点都在反比例函数的图象上,它们的横坐标分别为m,n(0<m <n),过B点作BC⊥y轴于C点,若△ABC的面积6,则的值为.16.如图,点A(1,3)为双曲线上的一点,连接AO并延长与双曲线在第三象限交于点B,M为y轴正半轴上一点,连接MA并延长与双曲线交于点N,连接BM、BN,已知△MBN的面积为,则点N的坐标为.三.解答题17.解方程:x2﹣8x=5.18.如图,在矩形ABCD中,O为AC的中点,直线EF经过点O,并且与AB交于点E,与DC交于点F,∠DFE=∠BFE.(1)求证:四边形DEBF是菱形;(2)若AD=4,AB=8,则线段EF的长是.(直接写出答案即可)19.2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A级旅游景区,分别为A:嘉峪关文物景区;B:平凉崆峒山风景名胜区;C:天水麦积山景区;D:敦煌鸣沙山月牙泉景区;E:张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩.(1)张帆一家选择E:张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E:张掖七彩丹霞景区,他们再从A,B,C,D四个景区中任选两个景区去旅游,求选择A,D两个景区的概率(要求画树状图或列表求概率).20.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:55 60 65 70销售单价x(元/千克)销售量y(千克)70 60 50 40(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?21.在△ABC中,∠ACB=90°,AB=20,BC=12.(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若S=9S△DHQ,则HQ=.△ABC(2)如图2,折叠△ABC使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得△CMP和△HQP相似?若存在,求出PQ的长;若不存在,请说明理由.答案与解析一.选择题1.解:方程移项得:x(x﹣1)﹣x=0,分解因式得:x(x﹣2)=0,解得:x=0或x=2,故选:D.2.解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.3.解:∵=,∴b=a,∴==;故选:D.4.解:在▱ABCD中,∵AB∥CD,∴△ABM∽△FDM,△ABE∽△FCE,∵AD∥BC,∴△ADM∽△EBM,△FDA∽△FCE,∴△ABE∽△FDA,∴图中相似三角形有5对.故选:B.5.解:∵共摸了100次,其中25次摸到黑球,∴有75次摸到白球,∴摸到黑球与摸到白球的次数之比为1:3,∴口袋中黑球和白球个数之比为1:3,盒子中大约有白球3×4=12个.故选:A.6.解:∵反比例函数y=,当x<0时,y随x的增大而增大,∴2﹣a<0,解得:a>2.故选:A.7.解:设前三个季度用于绿化投资的平均增长率为x,那么依题意得18+18 (1+x)+18 (1+x)2=90.故选:D.8.解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF与△CBF中,∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误.∴②错误,易知△AOE≌△COF,∴S△AOE=S△COF,∵S△COF=2S△CMF,∴S△AOE:S△BCM=2S△CMF:S△BCM=,∵∠FCO=30°,∴FM=,BM=CM,∴,∴S△AOE:S△BCM=1:2,故④错误;故选:B.9.解:A、若点C是线段AB的黄金分割点,AB=2,当AC>BC时,AC=﹣1,当AC<BC时,AC=3﹣,本选项说法错误;B、平面内,经过矩形对角线交点的直线,一定能平分它的面积,本选项说法正确;C、两个正六边形不一定位似,本选项说法错误;D、菱形的两条对角线互相垂直,但不一定相等,本选项说法错误;故选:B.10.解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴,∵BE=1.5m,AB=1.2m,BC=12.8m,∴AC=AB+BC=14m,∴,解得,DC=17.5,即建筑物CD的高是17.5m,故选:A.11.解:∵DE∥BC,∴△ADE∽△ABC,∵=,∴=,∴=,∴9S1=4S1+4S2,∴5S1=4S2,∴=.故选:A.12.解:设DN交CM于O,在BC上截取BK,使得BK=BM,连接MK,作MT⊥CF 于T.∵四边形ABCD是正方形,∴AB=CB=DC,∠CBM=∠CBM=∠DCN=90°,∵AM=BN=1,∴BM=CN=3,∴△CBM≌△DCN(SAS),∴∠MCB=∠CDN,∵∠MCB+∠DCM=90°,∴∠DCM+∠CDN=90°,∴∠COD=90°,∴CM⊥DN,故①正确,∵MF∥DN,∴MF⊥CM,∴∠FMC=90°,∴∠AMF+∠CMB=90°,∵∠CMB+∠MCB=90°,∴∠AMF=∠MCK,∵BM=BK,∠MBK=90°,∴∠BKM=45°,∵AF平分∠EAD,∴∠EAF=∠EAD=45°,∴∠MAF=∠CKM=135°,∵AM=CK,∴△AMF≌△KCM(ASA),∴MF=MC==5,∵∠FMC=90°,∴∠MFC=45°,∴sin∠MFC=,故②正确,∵OH∥MF,∴∠OHC=∠MFC=45°,∴OH=OC==,∴CH=OC=,∵CF=CM=5,∴FH=FC﹣CH=,∵MT⊥CF,MF=MC,∴TF=TC,∴MT=FC=,∴S△FMH=•FH•MT=××=,故④正确,∵△NCO∽△NDC,∴CN2=NO•ND,∴ON=,∴DH=DN﹣ON﹣OH=5﹣﹣=,∵DG∥CN,∴=,∴=,∴DG=,∴AG=4﹣=,∴(BM+DG)2=(3+)2=AM2+AG2=1+()2=,∴(BM+DG)2=AM2+AG2,故③正确,故选:D.二.填空题(共4小题)13.解:∵2x2﹣3x=﹣1,∴6x﹣4x2+3=﹣2(2x2﹣3x)+3=﹣2×(﹣1)+3=2+3=5.故答案为:5.14.解:如图所示,过点C作CE⊥MN于点E,过点D作DF⊥MN于点F,设BE=a,在Rt△BCE中,∵∠BCE=30°,∴CE===a,在Rt△ACE中,∵∠CAE=30°,AB=20,∴由tan∠CAE=可得=,解得a=10,∴BE=10,DF=CE=10,在Rt△BDF中,∵∠DBF=45°,∴BF=DF=10,∴CD=EF=BF﹣BE=10﹣10(米),故答案为:(10﹣10).15.解:过点B、A分别作BD⊥x轴,AE⊥x轴,垂足分别为D、E,∵反比例函数的关系式为y=,∴矩形ODBC的面积为9,点A、B的横作标分别为m,n(0<m<n),且点A、B在反比例函数y=图象上,∴A(m,),B(n,),∵S梯形OEAC+S梯形AEDB=S△ABC+S矩形ODBC,∴(+)×m+(+)(n﹣m)=6+9,∴=,即,=,故答案为:.16.解:连接ON,∵点A(1,3)为双曲线上,∴k=3,即:y=;由双曲线的对称性可知:OA=OB,∴S△MBO=S△MAO,S△NBO=S△NAO,∴S△MON=S△BMN=,设点M(0,m),N(n,),∴mn=,即,mn=,①设直线AM的关系式为y=kx+b,将M(0,m)A(1,3)代入得,b=m,k=3﹣m,∴直线AM的关系式为y=(3﹣m)x+m,把N(n,)代入得,=(3﹣m)×n+m,②由①和②解得,n=,当n=时,=,∴N(,),故答案为:(,).三.解答题(共5小题)17.解:配方得:x2﹣8x+16=5+16,整理得:(x﹣4)2=21,开方得:x﹣4=±,解得:x1=4+,x2=4﹣.18.(1)证明:∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∴∠OAE=∠OCF,∵OA=OC,∠AOE=∠COF,∴△AOE≌△COF(ASA),∴AE=CF,∴BE=DF,∴四边形DEBF是平行四边形,又∵∠DFE=∠BFE,∠DFE=∠FEB,∴∠BFE=∠BEF,∴BE=BF,∴四边形DEBF是菱形.(2)如图,作FH⊥AB于H.设DF=BF=x,在Rt△BCF中,∠BCF=90°,BC=AD=4,CF=4﹣x,∴x2=42+(8﹣x)2,∴x=5,∴DF=5,CF=3,∵∠FHB=∠HBC=∠BCF=90°,∴四边形BCFH是矩形,∴CF=BH=3,FH=BC=4,∵BF=DF=5,∴EH=2,∴EF===2,故答案为.19.解:(1)共有5种可能选择的结果,因此张帆一家选择“E:张掖七彩丹霞景区”的概率是;(2)从A,B,C,D四个景区中任选两个景区所有可能出现的结果如下:共有12种可能出现的结果,其中选择A、D两个景区的有2种,∴P(选择A、D)==.20.解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将表中数据(55,70)、(60,60)代入得:,解得:.∴y与x之间的函数表达式为y=﹣2x+180.(2)由题意得:(x﹣50)(﹣2x+180)=600,整理得:x2﹣140x+4800=0,解得x1=60,x2=80.答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.(3)设当天的销售利润为w元,则:w=(x﹣50)(﹣2x+180)=﹣2(x﹣70)2+800,∵﹣2<0,∴当x=70时,w最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.21.解:(1)如图1中,在△ABC中,∵∠ACB=90°,AB=20,BC=12,∴AC==16,设HQ=x,∵HQ∥BC,∴=,∴,∴AQ=x,∵S△ABC=9S△DHQ,∴×16×12=9××x×x,∴x=4或﹣4(舍弃),∴HQ=4,故答案为4.(2)如图2中,由翻折不变性可知:AE=EM,AF=FM,∠AFE=∠MFE,∵FM∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=MF=ME,∴四边形AEMF是菱形.(3)如图3中,设AE=EM=FM=AF=4m,则BM=3m,FB=5m,∴4m+5m=20,∴m=,∴AE=EM=,∴EC=AC﹣AE=16﹣=,∴CM==,∵QH=4,AQ=,∴QC=,设PQ=x,当=时,△HQP∽△MCP,∴,解得:x=,当=时,△HQP∽△PCM,∴解得:x=8或,经检验:x=8或是分式方程的解,且符合题意,综上所述,满足条件长QP的值为或8或.。

安徽省六安市2024-2025学年皋城中学九年级上学期9月阶段性检测数学试题

安徽省六安市2024-2025学年皋城中学九年级上学期9月阶段性检测数学试题

初三阶段性目标检测(一)数学试卷时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.一元二次方程x²=x 的根是( )A.x1=0,x2=1B.x1=0,x2=-1C.x1=x2=0D.x1=x2=12.一次函数y=(k-2)x+3的函数值y随x的增大而增大,则k 的取值范围是( )A.k>0B.k<0C.k>2D.k<23.如图,∠A=40°,∠B=55°,∠C=25°,则∠ADC的度数是( )A.115°B.120°C.125°D.130°4.函数y=x2-4x+3与x轴的交点有几个( )A.0个B.1个C.2个D.无法确定5.已知四边形ABCD是平行四边形,若AC⊥BD,要使得四边形ABCD是正方形,则需要添加条件( )A.AB=BCB.∠ABC=90°C.∠ADB=30°D.AC=AB6.如图,在△ABC中,∠C=90°,AC=6,∠B=30°,点P是BC边上的动点,则AP的长不可能是( )A.6B.8C.10D.137.学校组织音乐社团学生进行“青春旋律,你我飞翔”钢琴演奏比赛,全校共有18名同学进入决赛,他们的决赛成绩如下表:成绩(分)9.49.59.69.79.89.9人数324342则这些学生决赛成绩的中位数是( )A.9.75B.9.70C.9.65D.9.608.在体育选项报考前,某九年级学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=,由此可知该生此次实心球训练的成绩为( )A.6米B.10米C.12米D.15米9.已知二次函数y=ax²+(b-1)x+c+1的图象如图所示,则在同一坐标系中y 1=ax²+bx+1与y 2=x-c 的图象可能是( )35x 32x 1212++-10.如图,矩形ABCD 中,AB=8,AD=4,点E 、F 分别是AB 、DC 上的动点,EF//BC ,则 AF+CE 的最小值是( )A.8B.12C.8D.16二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:(+1)(-1)= 。

九年级第一学期数学阶段性测试题

九年级第一学期数学阶段性测试题

九年级第一学期数学阶段性测试题一、单项选择题(下列各题的四个选项中,只有一个是符合题意要求的,请将正确答案写在题后的答题卡内;计10小题,每小题4分,共40分)1.下列各式中,一定是二次根式的是 【 】A .4-B .1-xC .32a D.32+x2.下列图形中,既是轴对称,又是中心对称的图形是【 】3.把bb 1-的根号外的因式移到根号内的结果是 【 】 A 、b - B 、b --C 、bD 、b - 4.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是 【 】A .012=+xB .012=-+x xC .0322=++x x D. 01442=+-x x5.若()()822222=-++b a b a ,则=+22b a 【 】 A .-2 B. 4 C.4或-2 D .-4或26.如右图所示的Rt △ABC 向右翻滚,下列说法正确的有 【 】(1)①→②是旋转(2)①→③是平移(3)①→④是平移(4)②→③是旋转A. 1种B. 2种C. 3种D. 4种7.如图,AC 是⊙O 的直径,弦AB ∥CD ,若∠BAC =32°,则∠AOD 等于 【 】A .64°B .48°C .32°D .76°7题 8题8.如图,弦AB ,CD 相交于E 点,若∠BAC =27°,∠BEC =64°,则∠AOD 等于【 】.A .37°B .74°C .54°D .64°9. 若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),E A D C B 则此圆的半径为【 】A .2b a +B .2b a -C .22b a b a -+或 D .b a b a -+或 10. 下列命题正确的是 【 】A .相等的圆心角所对的弦相等B .等弦所对的弧相等C .等弧所对的弦相等D .垂直于弦的直线平分弦11.在一幅长80cm ,宽50cm 的矩形北京奥运风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是【 】A 、x 2+130x -1400=0B 、x 2+65x -350=0C 、x 2-130x -1400=0D 、x 2-65x -350=012. 如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE 、CE ,则△ADE 的面积是【 】A 、1B 、2C 、3D 、不能确定二、填空题(本大题共6小题,每小题3分,共18分) 13.、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为 。

九年级第一学期阶段性测评数学试卷及答案 初三数学期中试题与解析

九年级第一学期阶段性测评数学试卷及答案 初三数学期中试题与解析

2020-2021 学年第一学期九年级阶段性测评一、选择题(每小题2 分,共20 分)数学试卷1. 若a=c= 2(b +d≠0) ,则a +c是()b d b +dA. 1B. 2C.12D. 4 【考点】比例的性质【难度星级】★【答案】B【解析】a = 2b, c = 2d ,∴a +c=2b + 2d= 2 .b +d b +d2.将方程(x +1)(2x - 3) = 1 化成“ax2 +bx +c = 0 ”的形式,当a=2 时,则b,c 的值分别为()A. b =-1,c =-3 C. b =-1,c =-4B. b =-5,c =-3 D. b = 5,c =-4【考点】一元二次方程的一般式【难度星级】★【答案】C【解析】化为一般式得2x2 -x - 4 = 0 ,所以b =-1, c =-4 .3.矩形、菱形、正方形的对角线都具有的性质是()A.对角线相等B. 对角线相互平分C. 对角线相互垂直D. 对角线互相垂直平分【考点】特殊平行四边形对角线性质【难度星级】★【答案】B【解析】矩形,菱形,正方形均为平行四边形,所以对角线互相平分.4.如图,一组互相平行的直线a、b、c 分别与直线l1,l2 交于A、B、C、D、E、F,直线l1,l2 交于点O,则下列各式不正确的是()A.AB=DEBC EFB.AB=DEAC DFC.EF=DEBC ABD.OE=EBEF FC【考点】平行线分线段成比例定理【难度星级】★★【答案】D【解析】D 选项中OE=EB. OF FC5.一元二次方程x2 + 6x + 9 = 0 的根的情况是()A.有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根【考点】根的判别式【难度星级】★【答案】A【解析】∆= 62 - 4 ⨯1⨯ 9 = 0 ,所以有两个相等实根.6.小明要用如图两个转盘做“配紫色”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时所指的颜色恰好配成紫色的概率为()A.1 6B.1 4C.1 3D.1 2【考点】概率统计【难度星级】★★【答案】C【解析】由列表或树状图可知,总共有6 种等可能的情况,其中能配成紫色(即一蓝一红)的情况有2种,所以P =2=1.6 37.配方法解方程x2 - 8x + 5 = 0 ,将其化为(x +a)2 =b 的形式,正确的是()A. (x + 4)2 = 11B. (x + 4)2 = 21C. (x - 8)2 =11D. (x - 4)2 = 11【考点】配方法【难度星级】★【答案】D【解析】x2- 8x + 5 = 0 ⇒x2- 8x +16 = 11 ⇒(x - 4)2= 11.8.如图,△ABC,点P 是AB 边上的一点,过P 作PD∥BC,PE∥AC,分别交AC、BC 于D、E,连接CP,若四边形CDPE 是菱形,则线段CP 应满足的条件是()A.CP 平分∠ACBB.CP⊥ABC.CP 是AB 边上的中线D.CP=AP【考点】菱形的判定【难度星级】★★【答案】A【解析】由题意知,四边形CDPE 为平行四边形;当CP 平分∠ACB 时,∠DCP =∠ECP =∠DPC ,所以DC =DP ;所以四边形CDPE 为菱形.9.为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2 米,宽为1 米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x 米,则根据题意可列出方程()A. 90% ⨯ (2 +x)(1 +x) = 2 ⨯1 C. 90% ⨯ (2 - 2x)(1 - 2x) = 2 ⨯1 【考点】一元二次方程的面积问题【难度星级】★★【答案】B B. 90% ⨯ (2 + 2x)(1 + 2x) = 2 ⨯1 D. (2 + 2x)(1 + 2x) = 2 ⨯1⨯90%【解析】读懂题意,图案加上四周的白边才构成了宣传版面.10.如图,在矩形ABCD 内有一点F,FB 与FC 分别平分∠ABC 和∠BCD,点E 为矩形ABCD 外一点,连接BE、CE,现添加以下条件:①BE∥CF,CE∥BF;②BE=CE,BC=BF;③BE∥CF,CE⊥BE;④BE=CE,CE∥BF。

九年级数学上学期阶段性测试

九年级数学上学期阶段性测试

九年级数学阶段性测试一、选择题(本大题共有10小题,每小题3分,共30分.)1.已知α为锐角,sin α,则α等于( ) A .30°B .60°C .45°D .90°2.在Rt △ABC 中,∠C =90︒,AB =4,AC =1,则cos A 的值是( )A B .14C D .43.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于( ) A .8πB .9πC .10πD .11π4.抛掷一枚质地均匀的硬币,如果每掷一次出现正面与反面的可能性相同,那么连掷三次硬币,出现“一次正面,两次反面”的概率为( ) A .81 B .41 C .83D .215.下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A .6 6.17x <<B .6.17 6.18x <<C .6.18 6.19x <<D .6.19 6.20x <<6.如图,在梯形ABCD 中,AD //BC ,AC ⊥AB ,AD =CD ,cos ∠DCA =54,BC =10,则AB 的值是( )A .3B .6C .8D .97 一个斜坡的坡角为30°,则这个斜坡的坡度为( )。

A . 1:2 B. 3 :2 C. 1: 3 D. 3 :18.抛物线y=x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为( )。

A.y=x 2+4x+3B. y=x 2+4x+5C. y=x 2-4x+3D.y=x 2-4x -5 9. 下列说法正确的是( )A .各边对应成比例的多边形是相似多边形B .矩形都是相似图形C .等边三角形都是相似三角形D .菱形都是相似图形(第18题)10.如图,二次函数2y ax bx c =++的图象顶点横坐标为2,图象交x 轴于点(,0)A m 和,2B m >,则AB 的长为:A 、2m +B 、mC 、24m -D 、42m -二、填空题(本大题共有8小题,每小题3分,共24分.)11.袋子里有8个白球,n 个红球,若从中任取一个球恰好是红球的概率是34,则n 的值是________.12.如图,在⊙O 中,AB 是⊙O 的直径,C 、D 、E 在⊙O 上,则∠ADC +∠BEC = °. 13.如图,⊙O 与△ABC 的边BC 、AC 、AB 分别切于E 、F 、D 三点,若⊙O 的半径是1,∠C =60°,AB =5,则△ABC 的周长为_____________.14.如图,若将△ABC (点C 与点O 重合)绕点O 顺时针旋转90°后得到△A ′B ′C′,则点A的对应点A ′的坐标是____________.15.若某商品原价200元,连续两次降价a %后售价为148元,则所列方程是 .16.已知二次函数y =-x 2+2x +m 的部分图象如图所示,则关于x 的一元二次方程-x 2+2x +m =0的解是 .17.如图,DE ∥BC ,AD ∶BD=2∶3,则ΔADE 的面积∶四边形DBCE 的面积=__________.18.如图所示的正曲边三角形可按下述方法作出:先画一个正三角形,然后分别以正三角形的一个顶点为圆心,边长为半径,画弧使其经过另外两个顶点,最后擦去正三角形,三段圆弧所围成的图形就是一个正曲边三角形.如果一个正曲边三角形的周长为π,那么它的面积为___________.EDCBAy(第16题)(第14题)(第12题)(第13题)三、解答题(本大题共有10小题,共96分.)19.(本小题6分)计算:0)23()30tan 6(38-+--︒20. (本小题8分)如图,已知O 是坐标原点,B 、C 两点的坐标分别为(3,-1)、(2,1)。

人教版九年级上册数学阶段性质量检测-期末试卷(一)

人教版九年级上册数学阶段性质量检测-期末试卷(一)

人教版九年级上册数学阶段性质量检测-期末试卷(一)一.选择题(每题2分,满分20分)1.计算sin30°•cos60°的结果是()A.B.C.D.2.由5个相同的小正方体组成的几何体如图所示,该几何体的主视图是()A.B.C.D.3.一元二次方程x2+2x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.在比例尺为1:n的某市地图上,A,B两地相距5cm,则A、B之间的实际距离为()A.B.C.5ncm D.25n2cm5.抛物线y=﹣(x﹣3)2+7的顶点坐标是()A.(﹣3,7)B.(﹣3,﹣7)C.(3,7)D.(3,﹣7)6.△ABC中,AB=7,BC=6,AC=5,点D、E、F分别是三边的中点,则△DEF的周长为()A.4.5 B.9 C.10 D.127.如图,某小区内有一条笔直的小路.路的旁边有一盏路灯,晚上小红由A处走到B处.表示她在灯光照射下的影长l与行走的路程s之间关系的大致图象是()A.B.C.D.8.任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是()A.B.C.D.9.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠BAC的值为()A.B.C.D.10.关于x的函数y=k(x﹣1)和y=(k≠0),它们在同一坐标系内的图象大致是()A.B.C.D.二.填空题(每小题3分,满分18分)11.已知=,则=.12.已知△ABC∽△A′B′C′,AD和A′D′是它们的对应中线,若AD=8,A′D′=6,则△ABC与△A′B′C′的周长比是.13.如图,在平面直角坐标系中,△AOB与△A′OB′是以原点O为位似中心的位似图形,且相似比为3:2,点B的坐标为(3,﹣2),则点B′的坐标是.14.如图,AD是△ABC的中线,E是AD上一点,AE:ED=1:3,BE的延长线交AC于F,AF:FC为.15.某种商品,平均每天可销售40件,每件赢利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件,若每天要赢利2400元,则每件应降价元.16.如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连结BD.若BD的长为2,则m的值为.三.解答题17.(6分)计算:2cos45°tan30°cos30°+sin260°.18.(8分)解方程:(1)x2﹣2x﹣3=0.(2)3x2+2x﹣1=0.19.(8分)小智将清华大学、北京大学、复旦大学及浙江大学的图片分别贴在4张完全相同的不透明的硬纸板上,制成名校卡片,如图.小智将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片;之后将剩余卡片洗匀,再随机抽取一张卡片.(1)小智第一次抽取的卡片上的图片是浙江大学的概率是多少?(请直接写出结果)(2)请你用列表或画树状图的方法,帮助小智求出两次抽取的卡片上的大学一个校址是北京、一个校址是上海的概率.(卡片名称可用字母表示,清华大学、北京大学在北京,复旦大学在上海,浙江大学在杭州.)四.解答题20.(8分)如图,AC是平行四边形ABCD的对角线,E、F两点在AC上,且AE=CF.(1)求证:四边形DEBF是平行四边形;(2)当AD与AB满足什么数量关系时,四边形DEBF是菱形,请说明理由.21.(8分)如图,热气球的探测器显示,从热气球底部A处看一栋高楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球A处与高楼的水平距离为120m.(1)求∠ABC的角度;(2)这栋高楼有多高?(结果保留根号)五.解答题22.(10分)在函数学习中,我们经历了“确定函数的表达式一利用函数图象研究其性质一运用函数解决问题”的学习过程,在画函数图象时,我们通过列表描点连线的方法画出了所学的函数图象,同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=,当x=1时,y=2.(1)求这个函数的表达式;(2)在平面直角坐标系中画出这个函数的大致图象:当x取何值时,y随x的增大而减小.(3)画出y=﹣x﹣1的图象,结合你所画的函数图象,直接写出不等式<﹣x﹣1的解集.六.解答题23.(10分)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,在1≤x<15范围内,求第几天时销售利润为368元?时间x(天)1≤x<9 9≤x<15 x≥15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x120﹣x 储存和损耗费用(元)40+3x3x2﹣64x+400(3)在(2)的条件下,若要使第15天的利润至少为221元,则第15天在第14天的价格基础上最多可降多少元?七.解答题24.(12分)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC的重心为点O,求△OBC与△ABC 的面积.(2)性质探究:如图(二),已知△ABC的重心为点O,请判断、是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD中,点E是CD的中点,连接BE交对角线AC于点M.①若正方形ABCD的边长为4,求EM的长度;=1,求正方形ABCD的面积.②若S△CME八.解答题25.(12分)如图,点A是直线y=kx(k>0)上一点,且在第一象限,点B,C分别是x,y正半轴上的点,且满足∠BAC=90°.(1)如图1,当k=1时,求证:AB=AC;(2)如图2,记∠AOB=α,①根据所学,不难得到tanα=,(用含k的式子表示);②若k=,求的值;(3)如图3,若k=,连接BC,OA⊥BC,已知抛物线y=ax2+bx+c经过O,A,B三点,与直线BC相交于点B,D,连接OD,△OBD的面积为,求抛物线的函数表达式.参考答案一.选择题1.解:原式=×=,故选:A.2.解:主视图有3列,每列小正方形数目分别为2,1,1,故选:D.3.解:∵在方程x2+2x﹣1=0中,△=22﹣4×1×(﹣1)=8>0,∴方程x2+2x﹣1=0有两个不相等的实数根.故选:A.4.解:设A、B之间的实际距离为x,则1:n=5:x,解得x=5n,故选:C.5.解:∵y=﹣(x﹣3)2+7,∴此函数的顶点坐标为(3,7),故选:C.6.解:∵点D、E、F分别是三边的中点,∴DE、EF、DF为△ABC的中位线,∴DE=AB=×7=,DF=AC=×5=,EF=BC=×6=3,∴△DEF的周长=++3=9,故选:B.7.解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系应为:当小红走到灯下以前:l随s的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为B.故选:B.8.解:∵任意掷一枚质地均匀的骰子,共有6种等可能的结果,且掷出的点数大于4的有2种情况,∴任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是:=.故选:A.9.解:过点C作CD⊥AB于点D,∵AD=3,CD=4,∴由勾股定理可知:AC=5,∴cos∠BAC==,故选:C.10.解:A、反比例函数y=(k≠0)的图象经过第一、三象限,则k>0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于负半轴.故本选项不符合题意;B、反比例函数y=(k≠0)的图象经过第二、四象限,则k<0.所以一次函数y=kx﹣k的图象经过第二、四象限,且与y轴交于正半轴.故本选项不符合题意;C、反比例函数y=(k≠0)的图象经过第一、三象限,则k>0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于负半轴.故本选项符合题意;D、反比例函数y=(k≠0)的图象经过第二、四象限,则k<0.所以一次函数y=kx﹣k的图象经过第二、四象限,且与y轴交于正半轴.故本选项不符合题意;故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:∵=,∴=,∴﹣=,∴=.故答案为:.12.解:∵AD=8,A′D′=6,∴AD:A′D′=4:3,∵△ABC∽△A′B′C′,AD和A′D′是它们的对应中线,∴△ABC与△A′B′C′的相似比=AD:A′D′=4:3,∴△ABC与△A′B′C′的周长比是4:3,故答案为:4:3.13.解:∵△AOB与△A′OB′是以原点O为位似中心的位似图形,且相似比为3:2,而点B的坐标为(3,﹣2),∴点B′的横坐标为3×(﹣),纵坐标为﹣2×(﹣),即B′点的坐标为(﹣2,).故答案为(﹣2,).14.解:作DH∥BF交AC于H,∵AD是△ABC的中线,∴BD=DC,∴FH=HC,∵DH∥BF,∴==,∴AF:FC=1:6,故答案为:1:6.15.解:设每件服装应降价x元,根据题意,得:(44﹣x)(40+5x)=2400解方程得x=4或x=32,∵在降价幅度不超过10元的情况下,∴x=32不合题意舍去,答:每件服装应降价4元.故答案是:4.16.解:由作图知,点D在AC的垂直平分线上,∵△ABC是等边三角形,∴点B在AC的垂直平分线上,∴BD垂直平分AC,设垂足为E,∵AC=AB=2,∴BE=,当点D、B在AC的两侧时,如图,∵BD=2,∴BE=DE,∴AD=AB=2,∴m=2;当点D、B在AC的同侧时,如图,∵BD′=2,∴D′E=3,∴AD′==2,∴m=2,综上所述,m的值为2或2,故答案为:2或2.三.解答题(共3小题,满分22分)17.解:原式=2×﹣××+()2=﹣+=.18.解:(1)x2﹣2x﹣3=0,分解因式得:(x+1)(x﹣3)=0,可得x+1=0或x﹣3=0,解得:x1=﹣1,x2=3;(2)3x2+2x﹣1=0,分解因式得:(x+1)(3x﹣1)=0,可得x+1=0或3x﹣1=0,解得:x1=﹣1,x2=.19.解:(1)小智第一次抽取的卡片上的图片是浙江大学的概率是;(2)画树状图如图所示:由图可得共有12种等可能的结果,两次抽取的卡片上的大学一个校址是北京、一个校址是上海的情况有4种,∴两次抽取的卡片上的大学一个校址是北京、一个校址是上海的概率为=.四.解答题(共2小题,满分16分,每小题8分)20.(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠DAE=∠BCF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴DE=BF,∠AED=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴四边形DEBF是平行四边形;(2)解:当AD=AB时,四边形DEBF是菱形;理由如下:连接BD,如图所示:∵AD=AB,四边形ABCD是平行四边形,∴AC⊥BD,∴EF⊥BD,由(1)得:四边形DEBF是平行四边形,∴四边形DEBF是菱形.21.解:(1)过点A作AD⊥BC,垂足为D.∵∠BAD=30°,∴∠ABC=90°﹣30°=60°;(2)在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD•tan30°=120×=40m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD•tan60°=120×=120m,∴BC=BD+CD=40+120=160(m).五.解答题(共1小题,满分10分,每小题10分)22.解:(1)∵在函数y=,当x=1时,y=2,∴k=2,∴这个函数的表达式是y=;(2)∵y=,∴y=,∴函数y=的图象位于一三象限,函数y=﹣的图象位于二四象限;该函数的图象如图所示:(3)由函数图象可得,不等式<﹣x﹣1的解集是x<﹣2.六.解答题(共1小题,满分10分,每小题10分)23.解:(1)设该种水果每次降价的百分率是x,10(1﹣x)2=8.1,x=10%或x=190%(舍去),答:该种水果每次降价的百分率是10%;(2)当1≤x<9时,第1次降价后的价格:10×(1﹣10%)=9,由题意368=(9﹣4.1)(80﹣3x)﹣(40+3x)=﹣17.7x+352,解得x=﹣0.9<0(不合题意舍弃)当9≤x<15时,由题意:368=(8.1﹣4.1)(120﹣x)﹣(3x2﹣64x+400),解得x=12或﹣8(舍弃),答:第12天时销售利润为368元(3)设第15天在第14天的价格基础上可降a元,由题意得:221≤(8.1﹣4.1﹣a)(120﹣15)﹣(3×152﹣64×15+400),221≤105(4﹣a)﹣115,a≤0.8,答:第15天在第14天的价格基础上最多可降0.8元.七.解答题(共1小题,满分12分,每小题12分)24.解:(1)连接DE,如图一,∵点O是△ABC的重心,∴AD,BE是BC,AC边上的中线,∴D,E为BC,AC边上的中点,∴DE为△ABC的中位线,∴DE∥AB,DE=AB,∴△ODE∽△OAB,∴=,∵AB=2,BD=1,∠ADB=90°,∴AD=,OD=,∴,=;(2)由(1)同理可得,,是定值;点O到BC的距离和点A到BC的距离之比为1:3,则△OBC和△ABC的面积之比等于点O到BC的距离和点A到BC的距离之比,故=,是定值;(3)①连接BD交AC于点O,∵点O为BD的中点,点E为CD的中点,∴点M是△BCD的重心,∴=,∵E为CD的中点,∴,∴,即;②∵S△CME=1,且,∴S△BMC=2,∵,∴,∴S△AMB=4,∴S△ABC =S△BMC+S△ABM=2+4=6,又S△ADC =S△ABC,∴S△ADC=6,∴正方形ABCD的面积为:6+6=12.八.解答题(共1小题,满分12分,每小题12分)25.解:(1)如图1,过点A作x轴和y轴的垂线,垂足分别为点M、N,当k=1时,直线OA的表达式为y=x,则AM=AN,∵∠CAN+∠NAB=90°,∠NAB+∠BAM=90°,∴∠CAN=∠BAM,∴Rt△ANC≌△Rt△AMB,∴AC=AB;(2)①根据(1)知,tanα=k,故答案为k;②如图1,过点A作x轴和y轴的垂线,垂足分别为点M、N,同理可得:∠CAN=∠BAM,∴Rt△ANC∽Rt△AMB,∴==tan∠AOB=k=,故的值为;(3)设直线OA交BC于点E,连接AB,过点A作AM⊥x轴于点M,在Rt△BOC中,∵∠EOB+∠COE=90°,∠COE+∠ECO=90°,∴∠ECO=∠EOB=α,同理∠ACE=∠EAB,∵∠COB=∠CAB=90°,∴C、O、A、B四点共圆,则BC是圆的直径,故∠OCB=∠OAB=α,∴∠AOB=∠OAB=α,∴OB=AB,∴△ACO 为等腰三角形,∵AB =OB ,BC =BC ,∴Rt △CBO ≌Rt △CBA (HL ),∴CO =CA ,而OB =AB ,故BC ⊥OA ,∵tan α=k =,则sin α=,cos α=,设点B (m ,0)(m >0),在Rt △BCE 中,OE =OB =m ,则OE =OB cos α=,则OA =2OE =, 在Rt △AOM 中,AM =OA sin α=,同理可得:OM =,故点A (,),∵tan α=k ==tan ∠AOB ,则tan ∠EBO =2,故设直线BD 的表达式为y =﹣2(x ﹣m )①,设抛物线的表达式为y =a (x ﹣x 1)(x ﹣x 2)=ax (x ﹣m )②, 将点A 的坐标代入上式得:=a ()(﹣m )③,联立①②并整理得:ax 2+(2﹣am )x ﹣2m =0,则x B x D =﹣,即m •x D =﹣,解得x D =﹣,当x =﹣时,y D =﹣2(x ﹣m )=+2m ,则△OBD 的面积=×OB ×y D =×m ×(+2m )=④,联立③④并解得,故抛物线的表达式为y=x2﹣x.。

九年级第一学期阶段性质量检测数学试卷(含答案)

九年级第一学期阶段性质量检测数学试卷(含答案)

九年级第一学期阶段性质量检测数学试卷一、选择题1.下列计算正确的是A .532=+ B .632=⋅ C .48=D .3)3(2-=-2.已知012=-++b a ,那么2008)(b a +的值为A .-1B .1C .20083D .20083-3.用配方法解方程0242=+-x x ,下列配方正确的是A .2)2(2=-xB .2)2(2=+xC .2)2(2-=-xD .6)2(2=-x4.已知关于x 的一元二次方程x m x 22=-有两个不相等的实数根,则m 的取值范围是A .1->mB .1-<mC .0≥mD . 0<m5.如下图,正方形OABC 的边长为2,则该正方形绕点O 逆时针旋转45°后,B 点的坐标为A .(2,2)B .(0,22)C .(22,0)D .(0,2)6.如下图是一个旋转对称图形,以O 为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合A .60°B .90°C .120°D .180°7.如下图,C 是以AB 为直径的⊙O 上一点,已知AB=5,BC=3,则圆心O 到弦BC 的距离是A .1.5B .2C .2.5D .38.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如下图所示,为配到与原来大小一样的圆形玻璃,小明应从这四块碎片中带到商店去的一块玻璃片应该是A .第①块B .第②块C .第③块D .第④块9.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC=30°,弦EF ∥AB ,则EF 的长度为A .3B .2C .22D .3210.圆心都在y 轴上的两圆相交于A 、B ,若A (2,2),那么B 点的坐标为A .(-2,2)B .(2,-2)C .(-2,-2)D .(2,2)二、填空题11.计算:=-⋅+20082007)32()32(___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册数学阶段性检测(一元二次方程及二次函数) A 组(一元二次方程)
1、已知a ²+b ²+c ²+4a-2b +5=0,求3a ²+5b ²-5的值。

2、已知方程25x mx 6=0+-的一个根为x=3,求它的另一个根及m 的值。

3、 已知x 2+3x+5的值为11,则代数式3x 2+9x+12的值为
4、若x 2+6x+m 2是一个完全平方式,则m 的值是 。

5、若方程(m-1)x |m|+1-2x=4是一元二次方程,则m=______.
6、()()3532-=-x x x 的根为( )
A 25=
x B 3=x C 3,2
521==x x D 52=x 7、已知关于x 的一元二次方程x 2﹣(k+3)x+3k=0.
(1)求证:不论k 取何实数,该方程总有实数根.
(2)若等腰△ABC 的一边长为2,另两边长恰好是方程的两个根,求△ABC 的周长.
8、已知x 2+y 2+6x ﹣4y+13=0,求(xy )﹣2.
9、在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有 名.
10、某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,则每个支干长出的小分支数目为 .
B 组(二次函数)
1、把二次函数23x y =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( )
A.()1232+-=x y
B.()1232
-+=x y C.()1232--=x y D.()1232
++=x y 2、已知抛物线y=ax 2+bx,当a>0,b<0时,它的图象经过(
)
A.一、二、三象限
B.一、二、四象限 3、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax 2+bx+c 的是( )
A B C D
4、已知二次函数22)3()1(-+-=x x y ,当x =_________时,函数达到最小值。

5、若0<b ,则二次函数12-+=bx x y 的图象的顶点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
6、抛物线2
y x bx c =++的图像向右平移2个单位长度,再向下平移3个单位长度,所得图像的函数解析式为223y x x =-+,则b 、c 的值为( )
A.b=2,c=3
B.b=2,c=0
C.b=-2.,c=-1
D.b=-3,c=2
7、把二次函数2x y -=的图象先向右平移2个单位,再向上平移5个单位后得到一个新图象,
则新图象所表示的二次函数的解析式是 ( )
A. ()522+--=x y
B. ()522++-=x y
C. ()522---=x y
D. ()522
-+-=x y 8、已知二次函数的图像过点(0,3),图像向左平移2个单位后的对称轴是y 轴,向下平移1个单位后与x 轴只有一个交点,则此二次函数的解析式为 。

9、将函数2y x x =+的图像向右平移(0)a a >个单位,得到函数2
32y x x =-+的图像,则a 的值为( )
A. 1
B. 2
C. 3
D. 4 10、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.
(3)每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
C 组(一元二次方程与二次函数)
1、若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:
(1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.
2、在一元二次方程)0(02
≠=++a c bx ax 中,有一根为0,则=c ;有一根为1,则=++c b a ;有一根为1-,则=+-c b a ;若两根互为倒数,则=c ;若两根互为相反数,则=b 。

3、已知322-+y y 的值为2,则1242++y y 的值为 。

4、已知a 是0132=+-x x 的根,则=-a a 622。

5、方程062
=-+x x 的解为( ) A.2321=-=,x x B.2321-==,x x C.3321-==,x
x D.2221-==,x x 6、在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )
7、抛物线2)3(2-+=x y 可以由抛物线2y x =平移得到,则下列平移过程正确的是()
A .先向左平移3个单位,再向上平移2个单位
B .先向右平移3个单位,再向下平移2个单位
C .先向左平移3个单位,再向下平移2个单位
D .先向右平移3个单位,再向上平移2个单位
8、已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x-1)2+1的图象上,若x 1>x 2>1,则y 1 y 2 .(填“>”“=”或“<”).
9、已知二次函数的图象以为顶点,且过点
(1)求该二次函数的解析式;
(2)求该二次函数图象与坐标轴的交点坐标;
10、水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.
(1)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元?
(2)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元?
)4,1(-A )5,2(-B。

相关文档
最新文档