九年级数学上册检测试题

合集下载

九年级上册数学测试题(含答案)

九年级上册数学测试题(含答案)

九年级上册数学测试题(考试时间: 120 分钟分数: 120 )一、选择题(本大题共10 小题,共 30 分)1.某钢铁厂一月份生产钢铁 560 吨,从二月份起 ,由于改进操作技术 ,使得第一季度共生产钢铁1850 吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为 x,则可得方程A. B.C. D.2.若一元二次方程的常数项是 0,则 m 等于 ( )A. B. 3 C. D. 93.如图 ,AB 是的一条弦 ,于点 C,交于点 D,连接若,,则的半径为 ()A. 5B.C. 3D.4.若抛物线与 x 轴有交点 ,则 m 的取值X围是( )A. B. C. D.5.如图 ,A,B,C 是上三个点 ,,则下列说法中正确的是()A. B. 四边形 OABC 内接于C. D.6.中,于 C,AE 过点 O,连接 EC,若,,则 EC长度为( )A. B. 8 C. D.7.下列判断中正确的是 ( )A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦8. 如图 ,已知与坐标轴交于点A,O,B,点C在上,且,若点 B 的坐标为,则弧 OA 的长为 ( )A.B.C.D.9.将含有角的直角三角板 OAB 如图放置在平面直角坐标中 ,OB 在 x 轴上 ,若,将三角板绕原点 O 顺时针旋转,则点 A 的对应点的坐标为( )A.B.C.D.10.如图 ,在中 ,,,以点 C 为圆心 ,CB 的长为半径画弧 ,与 AB 边交于点 D,将绕点 D旋转后点 B 与点 A 恰好重合 ,则图中阴影部分的面积为 ()A. B.C. D.二、填空题(本大题共8 小题,共 24分)11.m 是方程的一个根 ,则代数式的值是______.12.已知,,是二次函数上的点 ,则, , 从小到大用“”排列是 ______.13.如图 ,在中 ,直径,弦于 E,若,则______.14.如图是一座抛物形拱桥 ,当水面的宽为 12m时,拱顶离水面 4m,当水面下降3m 时 ,水面的宽为 ______15.如图 ,正的边长为 4,将正绕点 B顺时针旋转得到,若点 D 为直线上的一动点 ,则的最小值是 ______.16.如图 ,在平面内将绕着直角顶点 C 逆时针旋转,得到,若,,则阴影部分的面积为 ______.17.如图,A、B、C、D 均在上 ,E 为 BC 延长线上的一点 ,若,则______.18.如图 ,内接于,于点 D,若的半径,则 AC 的长为 ______.三、解答题(本大题共7 小题,共66分)19. 已知关于 x 的一元二次方程有实数根.求 m 的取值X围;( 3+3=6分)若方程有一个根为,求 m 的值及另一个根.20. 如图 ,E 与 F 分别在正方形 ABCD 边 BC 与 CD 上,.以A 为旋转中心 ,将按顺时针方向旋转 ,画出旋转后得到的图形.( 4+4=8分)已知,,求 EF 的长.21. 平面上有 3 个点的坐标:,,.在 A,B,C 三个点中任取一个点 ,这个点既在直线上又在抛物线上的概率是多少?从A,B,C 三个点中任取两个点 ,求两点都落在抛物线上的概率.( 4+4=8分)22. 如图 ,抛物线与x轴交于A、B两点点A在点B的左侧,点 A 的坐标为,与 y 轴交于点,作直线动点P在x轴上运动,过点 P 作轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.( 4+4+4=12)Ⅰ求抛物线的解析式和直线 BC 的解析式;Ⅱ当点 P 在线段 OB 上运动时 ,求线段 MN 的最大值;Ⅲ当以 C、O、M、N 为顶点的四边形是平行四边形时,直接写出 m 的值.23. 如图,内接于,,CD 是的直径 ,点 P 是 CD 延长线上的一点 ,且.( 5+5=10分)求证: PA 是的切线;若,,求的半径.24. 如图 ,AB 是的直径,四边形ABCD内接于,延长 AD,BC 交于点 E,且.求证:;若,,求的长.25. 如图 ,A、B、C 是圆 O 上三点 ,,点 D 是圆上一动点且,过点 D 作 BC 的平行线 DE,过点 A 作 AB 的垂线 AE,两线交于点 E.(1)求证: AB 是圆 O 的直径。

人教版2023-2024学年九年级上册期中数学质量检测试题(含解析)

人教版2023-2024学年九年级上册期中数学质量检测试题(含解析)

人教版2023-2024学年九年级上册期中数学质量检测试题一.选择题(共12小题,满分36分,每小题3分)1.已知关于x的方程(m+1)x2+2x﹣3=0是一元二次方程,则m的取值范围是()A.m>﹣1B.m≠0C.m≤﹣1D.m≠﹣12.在平面直角坐标系中,点A(3,﹣4)与点B关于原点对称,则点B的位置()A.第一象限B.第二象限C.第三象限D.第四象限3.若n(n≠0)是关于x的方程x2+mx+n=0的根,则m+n的值为()A.0B.1C.﹣1D.﹣24.在下列方程中,满足两个实数根的和等于2的方程是()A.x2﹣2x+4=0B.x2+2x﹣4=0C.x2+2x+4=0D.x2﹣2x﹣4=0 5.一元二次方程x2+2020=0的根的情况是()A.有两个相等的实根B.有两个不等的实根C.只有一个实根D.无实数根6.如图,要为一幅长为29cm,宽为22cm的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,相框边的宽度为xcm,则可列方程为()A.(29﹣2x)(22﹣2x)=×29×22B.(29﹣2x)(22﹣2x)=×29×22C.(29﹣x)(22﹣x)=×29×22D.(29﹣x)(22﹣x)=×29×227.二次函数y=x2+3x﹣2的图象是()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,则下列四个结论错误的是()A.a﹣b+c<0B.2a+b=0C.4a﹣2b+c=0D.am2+b(m+1)≥a9.已知抛物线y=a(x﹣h)2+k与x轴有两个交点A(﹣1,0),B(3,0),抛物线y=a (x﹣h﹣m)2+k与x轴的一个交点是(4,0),则m的值是()A.5B.﹣1C.5或1D.﹣5或﹣1 10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+3,则下列结论错误的是()A.柱子OA的高度为3mB.喷出的水流距柱子1m处达到最大高度C.喷出的水流距水平面的最大高度是3mD.水池的半径至少要3m才能使喷出的水流不至于落在池外11.汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,某车的刹车距离s(m)与车速x(km/h)之间有下列关系:s=0.01x+0.01x2,在一个限速40km/h的弯道上的刹车距离不能超过()A.15.8m B.16.4m C.14.8m D.17.4m12.如图,将△ABD绕顶点B顺时针旋转40°得到△CBE,且点C刚好落在线段AD上,若∠CBD=32°,则∠E的度数是()A.32°B.34°C.36°D.38°二.填空题(共6小题,满分24分,每小题4分)13.已知方程(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,则a=.14.设m,n是方程x2﹣x﹣2=0的两根,则m2+n+mn=.15.要将函数y=ax2+bx+c的图象向右平移3个单位长度.再向上平移2个单位长度得到的二次函数为y=2x2﹣4x+3,那么a+b+c=.16.若函数y=x2﹣4x+b的图象与坐标轴只有两个交点,则b的值是.17.如图,在喷水池的中心A处竖直安装一根水管AB,水管的顶端安有一个喷水头,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线的表达式为y=﹣(x﹣1)2+3(0≤x≤3),则选取点D为坐标原点时的抛物线表达式为,其中自变量的取值范围是,水管AB的长为m.18.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=63°,∠E=71°,且AD⊥BC,则∠BAC的度数为.三.解答题(共8小题,满分90分)19.解下列方程:(1)(2x+1)2=9;(2)x2﹣2x﹣1=0;(3)(x﹣3)2=4(3﹣x).20.已知关于x的一元二次方程mx2+nx﹣2=0.(1)当n=m﹣2时,证明方程有两个实数根;(2)若方程有两个不相等的实数根,写出一组满足条件的m,n的值,并求出此时方程的根.21.二次函数f(x)=ax2+bx+c的自变量x的取值与函数y的值列表如下:(1)根据表中的信息求二次函数的解析式,并用配方法求出顶点的坐标;(2)请你写出两种平移的方法,使平移后二次函数图象的顶点落在直线y=x上,并写出平移后二次函数的解析式.22.如图,抛物线与直线交于点A(﹣4,﹣1)和点B(﹣2,3),抛物线顶点为A,直线与y轴交于点C.(1)求抛物线和直线的解析式;(2)若y轴上存在点P使△PAB的面积为9,求点P的坐标.23.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.24.如图,在一个边长为32cm的正方形的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计),且折成的长方体盒子的表面积是864cm2,求剪去小正方形的边长.25.利用对称性可设计出美丽的图案,在边长为1的方格中,有如图所示的四边形(顶点都在格点上)(1)先作该四边形关于直线l成轴对称图形.(2)再作出你所作图形连同原四边形绕O点按顺时针方向旋转90°后的图形.(3)完成上述设计后,求整个图案的面积.26.如图,已知二次函数的图象过点O(0,0),A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:由题意得:m+1≠0,解得:m≠﹣1,故选:D.2.解:点A的坐标是(3,﹣4),若点A与点B关于原点对称,则点B的坐标为(﹣3,4),位于第二象限.故选:B.3.解:把x=n代入方程x2+mx+n=0得n2+mn+n=0,∵n≠0,∴n+m+1=0,即m+n=﹣1.故选:C.4.解:A、Δ=b2﹣4ac=(﹣2)2﹣4×1×4=﹣12<0,方程没有实数根,所以A选项不符合题意;B、x1+x2=﹣2,所以B选项不符合题意;C、Δ=b2﹣4ac=4﹣4×4<0,方程没有实数根,所以C选项不符合题意;D、x1+x2=2,所以D故选:D.5.解:∵a=1,b=0,c=2020,∴Δ=b2﹣4ac=02﹣4×1×2020=﹣8080<0,∴一元二次方程x2+2020=0的根的情况是无实数根.故选:D.6.解:设相框边的宽度为xcm,则可列方程为:(29﹣2x)(22﹣2x)=×29×22.故选:B.7.解:∵y=x2+3x﹣2=(x+)2﹣,∴抛物线的开口向上,顶点坐标为(﹣,﹣),对称轴为直线x=﹣故选:B.8.解:由抛物线可得当x=﹣1时,y<0,故a﹣b+c<0,故结论A正确;抛物线可得对称轴为x=﹣=﹣1,故2a﹣b=0,故结论B错误.由抛物线经过原点,对称轴为直线x=﹣1可知,当x=﹣2时,y=0,故4a﹣2b+c=0,故结论C正确;当x=﹣1时,该函数取得最小值,则am2+bm+c≥a﹣b+c,即am2+b(m+1)≥a,故结论D正确;故选:B.9.解:∵抛物线y=a(x﹣h)2+k的对称轴为直线x=h,抛物线y=a(x﹣h﹣m)2+k的对称轴为直线x=h+m,∴当点A(﹣1,0)平移后的对应点为(4,0),则m=4﹣(﹣1)=5;当点B(3,0)平移后的对应点为(4,0),则m=4﹣3=1,即m的值为5或1.故选:C.10.解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=0时,y=3,即OA=3m,故A选项正确,当x=1时,y取得最大值,此时y=4,故B选项正确,C选项错误,当y=0时,x=3或x=﹣1D选项正确,故选:C.11.解:将x=40代入s=0.01x+0.01x2得,s=0.01×40+0.01×402=16.4,即刹车距离不能超过16.4m.故选:B.12.解:∵将△ABD绕点B顺时针旋转40°得到△CBE,∴CB=AB,∠ABC=40°,∠D=∠E,∴∠A=∠ACB=(180°﹣40°)=70°,∵∠CBD=32°,∴∠ABD=∠ABC+∠CBD=40°+32°=72°,∴∠D=∠E=180°﹣∠A﹣∠ABD=180°﹣70°﹣72°=38°.故选:D.二.填空题(共6小题,满分24分,每小题4分)13.解:∵(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,∴a﹣3≠0且|a|﹣1=2,解得a=﹣3,故答案为:﹣3.14.解:∵m是方程x2﹣x﹣2=0的根,∴m2﹣m﹣2=0,∴m2=m+2,∴m2+n+mn=m+2+n+mn=m+n+mn+2,∵m,n是方程x2﹣x﹣2=0的两根,∴m+n=1,mn=﹣2,∴m2+n+mn=1﹣2+2=1.故答案为:1.15.解:y=2x2﹣4x+3=2(x﹣1)2+1,把抛物线y=2(x﹣1)2+1向左平移3个单位长度,向下平移2个单位长度得到抛物线的解析式为y=2(x﹣1+3)2+1﹣2=2x2+8x+7,所以a=2,b=8,c=7,所以,a+b+c=17,故答案为17.16.解:令y=0,则x2﹣4x+b=0,当函数y=x2﹣4x+b的图象与坐标轴只有两个交点时有两种情况:①Δ=0,且函数图象不过原点∴△=(﹣4)2﹣4b=0解得:b=4;②Δ>0,且函数y=x2﹣4x+b的图象过原点,∴b=0故答案为:0或4.17.解:以池中心A为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.抛物线的解析式为,当选取点D为坐标原点时,相当于将原图象向左平移3个单位,故平移后的抛物线表达式为:(﹣3≤x≤0);令x=﹣3,则y=﹣+3=2.25.故水管AB的长为2.25m.故答案为:y=﹣(x+2)2+3,﹣3≤x≤0,2.25.18.解:由旋转性质得:∠C=∠E=71°,∠BAD=∠CAE=63°,∵AD⊥BC,∴∠CAD=90°﹣∠C=90°﹣71°=19°,∴∠BAC=∠BAD+∠CAD=63°+19°=82°,故答案为:82°.三.解答题(共8小题,满分90分)19.解:(1)(2x+1)2=9,开方得:2x+1=±3,解得:x1=1,x2=﹣2;(2)x2﹣2x﹣1=0,x2﹣2x=1,x2﹣2x+1=1+1,(x﹣1)2=2,开方得:x﹣1=,x1=1+,x2=1﹣;(3)(x﹣3)2=4(3﹣x),(x﹣3)2+4(x﹣3)=0,(x﹣3)(x﹣3+4)=0,x﹣3=0,x﹣3+4=0x1=3,x2=﹣1.20.(1)证明:当n=m﹣2时,Δ=n2﹣4×m×(﹣2)=(m﹣2)2﹣4×m×(﹣2)=m2﹣4m+4+8m=m2+4m+4=(m+2)2≥0,∴当n=m﹣2时,方程有两个实数根.(2)解:∵方程有两个不相等的实数根,∴Δ=n2﹣4×m×(﹣2)=n2+8m>0,∴符合题意.当m=n=1时,原方程为x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2.21.解:(1)把(﹣1,0),(0,3),(3,0)分别代入y=ax2+bx+c(a≠0)中,得.解得.则该二次函数的解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点的坐标为(1,4);(2)∵二次函数f(x)=ax2+bx+c的顶点坐标(1,4);∴二次函数图象向右平移3个单位后抛物线的顶点为(4,4)或向下平移3个单位后抛物线的顶点为(1,1)落在直线y =x 上,则此时抛物线的解析式为:y =﹣(x ﹣4)2+4或y =﹣(x ﹣1)2+1.22.解:(1)由抛物线的顶点A (﹣4,﹣1)设二次函数为y =a (x +4)2﹣1,将B (﹣2,3)代入得,3=a (﹣2+4)2﹣1,解得a =1,∴二次函数为y =(x +4)2﹣1(或y =x 2+8x +15),设一次函数的解析式为y =kx +b ,将A (﹣4,﹣1)和B (﹣2,3)代入得,解得,∴一次函数的解析式为y =2x +7;(2)由直线y =2x +7可知C (0,7),设P (0,n ),∴PC =|n ﹣7|,∴S △PAB =S △PAC ﹣S △BPC =(4﹣2)•|n ﹣7|=9,∴|n ﹣7|=9,∴n =﹣2或16,∴P (0,﹣2)或P (0,16).23.解:令y =0,则﹣(x ﹣3)2+=0,解得:x 1=8,x 2=﹣2(舍去),故小壮此次实心球推出的水平距离为:8米.24.解:设剪去小正方形的边长为xcm ,则折成的长方体盒子的底面的长为(32﹣2x )cm ,宽为=(16﹣x )(cm ),由题意得:2x (16﹣x )+2(16﹣x )(32﹣2x )+2x (32﹣2x )=864,整理得:x 2+16x ﹣80=0,解得:x =4或x =﹣20(不符合题意,舍去),答:剪去小正方形的边长为4cm.25.解:(1)图形如图所示;(2)图形如图所示;(3)整个图案的面积=4××2×5=20.26.解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8×2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM=•4•t ﹣•t •t=﹣t 2+2t=﹣(t ﹣3)2+3,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0).。

人教版九年级数学上册试卷 期中检测题

人教版九年级数学上册试卷 期中检测题

期中检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.(2020·黔东南州)已知关于x的一元二次方程x2+5x-m=0的一个根是2,则另一个根是( A )A.-7 B.7 C.3 D.-32.(2020·怀化)已知一元二次方程x2-kx+4=0有两个相等的实数根,则k的值为( C ) A.k=4 B.k=-4 C.k=±4 D.k=±23.(宜宾中考)一元二次方程x2-2x+b=0的两根分别为x1和x2,则x1+x2为( C ) A.-2 B.b C.2 D.-b4.(襄阳中考)已知二次函数y=x2-x+14m-1的图象与x轴有交点,则m的取值范围是( A )A.m≤5 B.m≥2 C.m<5 D.m>25.(2020·衢州)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程( B )A.180(1-x)2=461B.180(1+x)2=461C.368(1-x)2=442D.368(1+x)2=4426.(百色中考)抛物线y=x2+6x+7可由抛物线y=x2如何平移得到的( A )A.先向左平移3个单位,再向下平移2个单位B.先向左平移6个单位,再向上平移7个单位C.先向上平移2个单位,再向左平移3个单位D.先回右平移3个单位,再向上平移2个单位7.(2020·株洲)二次函数y=ax2+bx+c,若ab<0,a-b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( B )A.y1=-y2B.y1>y2C.y1<y2D.y1,y2的大小无法确定8.(达州中考)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5,6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是( D )A.2500(1+x)2=9100 B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100 D.2500+2500(1+x)+2500(1+x)2=9100 9.(湖州中考)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是( D )10.(2020·宜宾 )函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点(2,0),顶点坐标为(-1,n ),其中n >0.以下结论正确的是( C )①abc >0;②函数y =ax 2+bx +c (a ≠0)在x =1和x =-2处的函数值相等;③函数y =kx +1的图象与y =ax 2+bx +c (a ≠0)的函数图象总有两个不同交点;④函数y =ax 2+bx +c (a ≠0)在-3≤x ≤3内既有最大值又有最小值.A .①③B .①②③C .①④D .②③④解析:根据待定系数法,方程根与系数的关系等知识和数形结合能力仔细分析即可解. 依照题意,画出图形如图,∵函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点(2,0),顶点坐标为(-1,n ),其中n>0.∴a <0,c >0,对称轴为直线x =-b 2a=-1,∴b =2a <0,∴abc >0,故①正确;∵对称轴为直线x =-1,∴x =1与x =-3的函数值是相等的,故②错误;∵顶点为(-1,n ),∴抛物线解析式为y =a (x +1)2+n =ax 2+2ax +a +n ,联立方程组可得:⎩⎪⎨⎪⎧y =kx +1,y =ax 2+2ax +a +n ,可得ax 2+(2a -k )x +a +n -1=0,∴Δ=(2a -k )2-4a (a +n -1)=k 2-4ak +4a -4an ,∵无法判断Δ是否大于0,∴无法判断函数y =kx +1的图象与y =ax 2+bx +c (a ≠0)的函数图象的交点个数,故③错误;当-3≤x ≤3时,当x =-1时,y 有最大值为n ,当x =3时,y 有最小值为16a +n ,故④正确,故选:C二、填空题(每小题3分,共15分)11.(2020·吉林 )一元二次方程x 2+3x -1=0根的判别式的值为__13__.12.(2020·淮安)二次函数y =-x 2-2x +3的图象的顶点坐标为__(-1,4)__.13.(2020·毕节)关于x 的一元二次方程(k +2)x 2+6x +k 2+k -2=0有一个根是0,则k 的值是__1__.14.(襄阳中考)如图,若被击打的小球飞行高度h (单位:m)与飞行时间t (单位:s)之间具有的关系为h =20t -5t 2,则小球从飞出到落地所用的时间为__4__s.第14题图第15题图15.(2020·益阳)某公司新产品上市30天全部售完,图①表示产品的市场日销售量与上市时间之间的关系,图②表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是__1800__元.三、解答题(共75分)16.(8分)用适当的方法解方程:(1)x2-2x-3=0; (2)(2x-1)2=x(3x+2)-7.解:x1=3,x2=-1 解:x1=2,x2=417.(9分)如图,已知抛物线y1=-2x2+2与直线y2=2x+2交于A,B两点.(1)求A,B两点的坐标;(2)若y1>y2,请直接写出x的取值范围.解:(1)A(-1,0),B(0,2)(2)-1<x<018.(9分)(衡阳中考)关于x的一元二次方程x2-3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,求此时m的值.解:(1)根据题意得Δ=(-3)2-4k≥0,解得k≤94(2)k的最大整数为2,方程x2-3x+k=0变形为x2-3x+2=0,解得x1=1,x2=2,∵一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,∴当x=1时,m-1+1+m-3=0,解得m=3 2;当x=2时,4(m-1)+2+m-3=0,解得m=1,而m-1≠0,∴m的值为3 219.(9分)如图,已知抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),B (3,0),且过点C (0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y =-x 上,并写出平移后抛物线的解析式.解:(1)抛物线解析式为y =-x 2+4x -3,即y =-(x -2)2+1,∴顶点坐标为(2,1) (2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y =-x 2,平移后抛物线的顶点为(0,0)落在直线y =-x 上20.(9分)(贺州中考)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,依题意,得2500(1+x )2=3600,解得x 1=0.2=20%,x 2=-2.2(舍去).答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20% (2)3600×(1+20%)=4320(元),4320>4200.答:2019年该贫困户的家庭年人均纯收入能达到4200元21.(10分)(2020·陕西)如图,抛物线y =x 2+bx +c 经过点(3,12)和(-2,-3),与两坐标轴的交点分别为A ,B ,C ,它的对称轴为直线l .(1)求该抛物线的解析式;(2)P 是该抛物线上的点,过点P 作l 的垂线,垂足为D ,E 是l 上的点.要使以P ,D ,E 为顶点的三角形与△AOC 全等,求满足条件的点P ,点E 的坐标.解:(1)将点(3,12)和(-2,-3)代入抛物线解析式得⎩⎪⎨⎪⎧12=9+3b +c ,-3=4-2b +c , 解得⎩⎪⎨⎪⎧b =2,c =-3, 故抛物线的解析式为y =x 2+2x -3 (2)抛物线的对称轴为直线x =-1,令y =0,则x =-3或1,令x =0,则y =-3,故点A ,B 的坐标分别为(-3,0),(1,0),点C (0,-3),故OA =OC =3,∵∠PDE =∠AOC =90°,∴当PD =DE =3时,以P ,D ,E 为顶点的三角形与△AOC 全等,设点P (m ,n ),当点P 在抛物线对称轴右侧时,m -(-1)=3,解得m =2,故n =22+2×2-3=5,故点P (2,5),故点E (-1,2)或(-1,8);当点P 在抛物线对称轴的左侧时,由抛物线的对称性可得,点P (-4,5),此时点E 坐标同上,综上,点P 的坐标为(2,5)或(-4,5);点E 的坐标为(-1,2)或(-1,8)22.(10分)(2020·随州)2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p (元/只)和销量q (只)与第x 天的关系如下表:1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q (只)与第x 天的关系为q =-2x 2+80x -200 (6≤x ≤30,且x 为整数),已知该型号口罩的进货价格为0.5元/只.(1)直接写出该药店该月前5天的销售价格p 与x 和销量q 与x 之间的函数解析式;(2)求该药店该月销售该型号口罩获得的利润W (元)与x 的函数解析式,并判断第几天的利润最大;(3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m 倍的罚款,若罚款金额不低于2000元,则m 的取值范围为__m ≥85__. 解:(1)根据表格数据可知:前5天的某型号口罩销售价格p (元/只)和销量q (只)与第x 天的关系为p =x +1,1≤x ≤5且x 为整数;q =5x +65,1≤x ≤5且x 为整数 (2)当1≤x ≤5且x 为整数时,W =(x +1-0.5)(5x +65)=5x 2+1352 x +652;当6≤x ≤30且x 为整数时,W =(1-0.5)(-2x 2+80x -200)=-x 2+40x -100.即有W =⎩⎪⎨⎪⎧5x 2+1352x +652,1≤x ≤5且x 为整数,-x 2+40x -100,6≤x ≤30且x 为整数,当1≤x ≤5且x 为整数时,售价,销量均随x 的增大而增大,故当x =5时,W 有最大值为495元;当6≤x ≤30且x 为整数时,W =-x 2+40x -100=-(x -20)2+300,故当x =20时,W 有最大值为300元;由495>300,可知:第5天的利润最大为495元 (3)根据题意可知:获得的正常利润之外的非法所得部分为:(2-1)×70+(3-1)×75+(4-1)×80+(5-1)×85+(6-1)×90=1250(元),∴1250m ≥2000,解得m ≥85 .则m 的取值范围为m ≥85 .故答案为:m ≥8523.(11分)(辽阳中考)如图,在平面直角坐标系中,Rt △ABC 的边BC 在x 轴上,∠ABC =90°,以A 为顶点的抛物线y =-x 2+bx +c 经过点C (3,0),交y 轴于点E (0,3),动点P 在对称轴上.(1)求抛物线解析式;(2)若点P 从A 点出发,沿A →B 方向以1个单位/秒的速度匀速运动到点B 停止,设运动时间为t 秒,过点P 作PD ⊥AB 交AC 于点D ,过点D 平行于y 轴的直线l 交抛物线于点Q ,连接AQ ,CQ ,当t 为何值时,△ACQ 的面积最大?最大值是多少?(3)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点P ,M ,E ,C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,请说明理由.解:(1)将点C ,E 的坐标代入二次函数表达式得:⎩⎪⎨⎪⎧-9+3b +c =0,c =3, 解得⎩⎪⎨⎪⎧b =2,c =3, 故抛物线的解析式为:y =-x 2+2x +3 (2)∵y =-x 2+2x +3=-(x -1)2+4,∴A (1,4),将点A ,C 的坐标代入一次函数解析式,可得直线AC 的解析式为:y =-2x +6,点P (1,4-t ),则点D (t +22 ,4-t ),点Q (t +22 ,4-t 24 ),S △ACQ =12 DQ ·BC =-14 t 2+t =-14(t -2)2+1,∵-14<0,故S △ACQ 有最大值,当t =2时,其最大值为1 (3)设点P (1,m ),点M (x ,y ),①当EC 是菱形一条边时,当点M 在点P 右方时,点E 向右平移3个单位、向下平移3个单位得到C ,则点P 向右平移3个单位、向下平移3个单位得到M ,则1+3=x ,m -3=y ,∴x =4,y =m -3即为M (4,m -3),而MP =EP 得:1+(m -3)2=(4-1)2+(m -3-m )2,解得:m =3+17 ,∴y =m -3=17 ,故点M (4,17 );当点M 在点P 左方时,同理可得:点M (-2,3+14 );②当EC 是菱形一对角线时,则EC 中点即为PM 中点,则x +1=3,y +m =3,而PE =PC ,即1+(m -3)2=4+(m -0)2,解得:m =1,故x =2,y =3-m =3-1=2,故点M (2,2);综上,点M (4,17 )或(-2,3+14 )或M (2,2)。

湘教版九年级数学上册第2章《一元二次方程》检测题及答案

湘教版九年级数学上册第2章《一元二次方程》检测题及答案

第2章检测题时间:120分钟 满分:120分一、选择题(本大题共10个小题,每小题3分,共30分)1.将一元二次方程2x 2=1-3x 化成一般形式后,一次项系数和常数项分别为( C )A .-3x ,1B .3x ,-1C .3,-1D .2,-12.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( A )A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=163.(云南)一元二次方程x 2-x -2=0的解是( D )A .x 1=1,x 2=2B .x 1=1,x 2=-2C .x 1=-1,x 2=-2D .x 1=-1,x 2=24.已知关于x 的方程x 2-kx -6=0的一个根为x =3,则实数k 的值为( A )A .1B .-1C .2D .-25.某工厂今年元月份的产值是50万元,3月份的产值达到了72万元.若求2、3月份的产值平均增长率,设这两个月月平均增长率为x ,依题意可列方程( B )A .72(x +1)2=50B .50(x +1)2=72C .50(x -1)2=72D .72(x -1)2=506.若关于x 的一元二次方程(k -1)x 2+2x -2=0有两个不相等实数根,则k 的取值范围是( C )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 7.在Rt △ABC 中,其中两边的长恰好是方程x 2-14x +48=0的两个根,则这个直角三角形的斜边长是( D )A .10B .48C .36D .10或88.一边靠6 m 长的墙,其他三边用长为13 m 的篱笆围成的长方形鸡栅栏的面积为20 m 2,则这个长方形鸡栅栏的长和宽分别为( B )A .长8 m ,宽2.5 mB .长5 m ,宽4 mC .长10 m ,宽2 mD .长8 m ,宽2.5 m 或长5 m ,宽4 m9.(仙桃)已知m ,n 是方程x 2-x -1=0的两实数根,则1m +1n的值为( A ) A .-1 B .-12 C.12D .1 10.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a +b )x +c 4=0的根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定二、填空题(本大题共8个小题,每小题3分,共24分)11.一元二次方程x 2=16的解是__x =±4__.12.孔明同学在解一元二次方程x 2-3x +c =0时,正确解得x 1=1,x 2=2,则c 的值为__2__.13.若代数式x 2-8x +12的值是21,则x 的值是__9或-1__.14.已知关于x 的一元二次方程x 2+bx +b -1=0有两个相等的实数根,则b 的值是__2__.15.(宿迁)一块矩形菜地的面积是120 m 2,如果它的长减少2 m ,那么菜地就变成正方形,则原菜地的长是__12__m.16.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),若计划安排21场比赛,则应邀请__7__个球队参加比赛.17.若关于x 的一元二次方程x 2+(k +3)x +k =0的一个根是-2,则另一个根是__1__.18.已知关于x 的一元二次方程x 2+(2k +1)x +k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是__-2或-94__. 点拨:若x 1-2=0,则x 1=2,代入方程解得k =-2;若x 2-x 2=0,则Δ=0,解得k =-94三、解答题(66分)19.(8分)用适当的方法解下列方程:(1)2x 2+7x -4=0;解:x 1=12,x 2=-4(2)(x -3)2+2x (x -3)=0.解:x 1=1,x 2=320.(7分)已知关于x 的方程2x 2-kx +1=0的一个解与方程2x +11-x=4的解相同,求k 的值.解:2x +11-x =4得x =12,经检验x =12是原方程的解,x =12是2x 2-k 为何值,方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根. 证明:Δ=(m -2)2-4(m 2-3)=(m -3)2+7>0,∴方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根22.(10分)(南充)已知关于x的一元二次方程x2-22的最大整数值;(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.解:(1)根据题意知Δ=(-22)2-4m>0,解得m<2,∴m的最大整数值为1(2)m =1时,方程为x2-22x+1=0,∴x1+x2=22,x1x2=1,∴x12+x22-x1x2=(x1+x2)2-3x1x2=8-3=523.(10分)电动自行车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?解:(1)设月增长率为x,则150(1+x)2=216,解得x1=20%或x2=-220%(舍去),即:月增长率为20%(2)二月份销售150×(1+20%)=180(辆),(2800-2300)×(150+180+216)=273000(元),该经销商1至3月共盈利273000元24.(12分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解:(1)根据题意知x(16-x)=60,解得x1=6,x2=10,当x=6或10时,面积为60平方米(2)假设能,则有x(16-x)=70,整理得x2-16x+70=0,Δ=-24<0,∴方程没有实数根,即不能围成面积为70平方米的养鸡场25.(12分)(株洲)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c 分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.解:(1)根据题意有a+c-2b+a-c=0,即a=b,∴△ABC为等腰三角形(2)根据题意有Δ=(2b)2-4(a+c)(a-c)=4b2-4a2+4c2=0,∴b2+c2=a2,∴△ABC为直角三角形。

苏科版数学九年级上册《期末检测题》含答案

苏科版数学九年级上册《期末检测题》含答案
(1)用含t的代数式表示出NC与NF;
(2)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值,如果不能,说明理由;
(3)求y与t的函数关系式及相应t的取值范围.
28.如图,在平面直角坐标系xOy中,抛物线 ( )与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l: 与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC
A. B. C. D.
[答案]B
[解析]
[分析]
根据已知两根确定出所求方程即可.
[详解]以2和4为根的一元二次方程是x2﹣6x+8=0,
故选B.
[点睛]此题考查了根与系数的关系,弄清根与系数的关系是解本题的关键.
6.⊙O的半径为5,圆心O到直线l的距离为6,则直线l与⊙O的位置关系是()
A. 相交B. 相切C. 相离D. 无法确定
A. 1:3B. 2:5C. 3:5D. 4:9
10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()
A. 9B. 10C. D.
二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)
A 3πcmB. 4πcmC. 5πcmD. 6πcm
[答案]D
[解析]
解:∵扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆锥的高是4cm,∴圆锥的底面半径为: =3(cm),∴该圆锥的底面周长是:2π×3=6π(cm).故选D.
9.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则S△CDF:S四边形ABFE等于()

九年级数学上册第一章检测题(含答案)

九年级数学上册第一章检测题(含答案)

第一章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.(内江中考)下列命题中,真命题是( C )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形2.(西宁中考)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( D )A.5 B.4 C.342D.343.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是( C) A.AB=CD,AD=BC,AC=BD B.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BD D.∠A=∠B=90°,AC=BD,第2题图) ,第4题图) ,第5题图),第6题图)4.如图,两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中,不一定成立的是( D )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°5.(衡阳中考)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N 的坐标分别是( A )A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4) D.M(4,0),N(7,4) 6.(陕西中考)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于点M′、N′,则图中的全等三角形共有( C )A.2对B.3对C.4对D.5对7.(广东中考)如图,正方形ABCD的面积为1,则以相邻两边中点连接EF为边的正方形EFGH的周长为( B )A. 2 B.2 2 C.2+1 D.22+18.(葫芦岛中考)如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为( D )A.103B.4 C.4.5 D.5,第7题图) ,第8题图) ,第9题图) ,第10题图)9.(广州中考)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( A )A. 2 B.2 C. 6 D.2 210.(宜宾中考)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( A )A.4.8 B.5 C.6 D.7.2二、填空题(每小题3分,共18分)11.(成都中考)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为__33__.12.(青岛中考)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为__32__度.,第11题图) ,第12题图) ,第14题图) ,第16题图)13.(兰州中考)在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB ⊥OC;④AB=AD,且AC=BD.其中正确的序号是__①③④__.14.(江西中考)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF 的中点M、N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为__26__.15.(哈尔滨中考)在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为__5.5或0.5__.16.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长C n=__2n+1__.三、解答题(共72分)17.(6分)已知:如图,矩形ABCD中,AC与BD交于O点,若点E是AO的中点,点F是OD的中点.求证:BE=CF.证明:易证△OBE≌△OCF(SAS),∴BE=CF18.(7分)如图,菱形ABCD中,E是对角线AC上一点.(1)求证:△ABE≌△ADE;(2)若AB=AE,∠BAE=36°,求∠CDE的度数.(1)证明:易证△ABE≌△ADE(SAS);(2)解:∵AB =AE ,∠BAE =36°,∴∠AEB =∠ABE =180°-∠BAE2=72°,∵△ABE ≌△ADE ,∴∠AED =∠AEB =72°, ∵四边形ABCD 是菱形,∴AB ∥CD , ∴∠DCA =∠BAE =36°,∴∠CDE =∠AED -∠DCA =72°-36°=36°19.(7分)(贺州中考)如图,在四边形ABCD 中,AB =AD ,BD 平分∠ABC ,AC ⊥BD ,垂足为点O. (1)求证:四边形ABCD 是菱形;(2)若CD =3,BD =25,求四边形ABCD 的面积.(1)证明:易证△AOD ≌△COB(ASA ),∴AO =OC ,∵AC ⊥BD ,∴四边形ABCD 是菱形(2)解:∵四边形ABCD 是菱形,∴OD =12BD =5,∴OC =CD 2-OD 2=2,∴AC =2OC =4,∴S菱形ABCD=12AC ·BD =4 5 20.(7分)(上海中考)已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC.(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 与△CDE 中,⎩⎪⎨⎪⎧AD =CD DE =DE EA =EC,∴△ADE ≌△CDE ,∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE=∠CBD ,∴∠CDE =∠CBD ,∴BC =CD ,∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形(2)∵BE =BC ,∴∠BCE =∠BEC ,∵∠CBE ∶∠BCE =2∶3,∴∠CBE =180×22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°,∴∠ABC =90°,∴四边形ABCD 是正方形21.(7分)(遵义中考)如图,矩形ABCD 中,延长AB 至E ,延长CD 至F ,BE =DF ,连接EF ,与BC 、AD 分别相交于P 、Q 两点.(1)求证:CP =AQ ;(2)若BP =1,PQ =22,∠AEF =45°,求矩形ABCD 的面积.(1)证明:易证△CFP≌△AEQ(ASA),∴CP=AQ(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=2BP=2,∴EQ=PE+PQ=2+22=32,∴AQ=AE=3,∴AB=AE-BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB·AD=2×4=822.(8分)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=40°,求当∠EBA为多少度时,四边形BFDE是正方形.(1)证明:易证△BAE≌△BCF(SAS)(2)解:若∠ABC=40°,则当∠EBA=25°时,四边形BFDE是正方形.理由如下:∵四边形ABCD是菱∠ABC=20°,∵AE=CF,∴OE=OF,∴四边形BFDE是平行四形,∴AC⊥BD,OA=OC,OB=OD,∠ABO=12边形,又∵AC⊥BD,∴四边形BFDE是菱形,∵∠EBA=25°,∴∠OBE=25°+20°=45°,∴△OBE是等腰直角三角形,∴OB=OE,∴BD=EF,∴菱形BFDE是正方形23.(8分)(云南中考)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=1AB=AE,Rt△ACD中,DF=21AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF 2是菱形(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49①,∵AD ⊥EF 于O ,∴Rt △AOE 中,AO 2+EO 2=AE 2,∴(12y)2+(12x)2=32,即x 2+y 2=36②,把②代入①,可得2xy =13,∴xy =132,∴菱形AEDF 的面积S =12xy =13424.(10分)(开江县期末)如图,已知正方形ABCD ,点E 是BC 上一点,以AE 为边作正方形AEFG. (1)求证:△ADG ≌△ABE ; (2)求证:∠FCN =45°;(3)请问在AB 边上是否存在一点Q ,使得四边形DQEF 是平行四边形?若存在,请证明;若不存在,请说明理由.证明:(1)∵四边形ABCD 和四边形AEFG 是正方形, ∴DA =BA ,EA =GA ,∴∠BAD =∠EAG =90°, ∴∠DAG =∠BAE ,∴△ADG ≌△ABE(2)过F 作BN 的垂线,设垂足为H ,∵∠BAE +∠AEB =90°,∠FEH +∠AEB =90°,∴∠BAE =∠HEF ,∵AE =EF ,∴△ABE ≌△EHF ,∴AB =EH ,BE =FH ,∴AB =BC =EH ,∴BE +EC =EC +CH ,∴CH =BE =FH ,∴∠FCN =45°(3)在AB 上取AQ =BE ,连接QD ,∵AB =AD ,∴△DAQ ≌△ABE , ∵△ABE ≌△EHF ,∴△DAQ ≌△ABE ≌△ADG ,∴∠GAD =∠ADQ ,∴AG 、QD 平行且相等,又∵AG 、EF 平行且相等,∴QD 、EF 平行且相等,∴四边形DQEF 是平行四边形.∴在AB 边上存在一点Q ,使得四边形DQEF 是平行四边形25.(12分)(1)如图1,正方形ABCD 中,点P 为线段BC 上一个动点,若线段MN 垂直AP 于点E ,交线段AB 于M ,交线段CD 于N ,证明:AP =MN ;(2)如图2,正方形ABCD 中,点P 为线段BC 上一动点,若线段MN 垂直平分线段AP ,分别交AB 、AP 、BD 、DC 于点M 、E 、F 、N.求证:EF =ME +FN ;(3)若正方形ABCD 的边长为2,求线段EF 的最大值与最小值.(1)证明:过B 点作BH ∥MN 交CD 于H ,∵BM ∥NH ,BH ∥MN ,∴四边形MBHN 为平行四边形.∴BH =MN.∵MN ⊥AP ,∴∠BAP +∠ABH =90°.又∵∠ABH +∠CBH =90°,∴∠BAP =∠CBH.在△ABP 与△BCH 中,⎩⎪⎨⎪⎧∠BAP =∠CBHAB =BC∠ABP =∠BCH∴△ABP ≌△BCH.∴AP =BH.∴AP =MN (2)连接FA ,FP ,FC.∵正方形ABCD 是轴对称图形,F 为对角线BD 上一点,∴FA =FC.又∵FE 垂直平分AP ,∴FA =FP.∴FP =FC.∴∠FPC =∠FCP.∵∠FAB =∠FCP ,∴∠FAB =∠FPC.又∵∠FPC +∠FPB =180°,∴∠FAB +∠FPB =180°.∴∠ABC +∠AFP =180°.∴∠AFP =90°.∴FE =12AP.又∵AP =MN ,∴ME +EF+FN =AP.∴EF =ME +FN(3)由(2)有EF =12MN ,∵AC ,BD 是正方形的对角线,∴BD =2 2.当点P 和点B 重合时,EF 最小=12MN=12AB =1.当点P 和点C 重合时,EF 最大=12MN =12BD = 2。

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。

( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。

若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。

10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。

九年级数学上册第四章检测题(含答案)

九年级数学上册第四章检测题(含答案)

第四章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如果mn =ab ,那么下列比例式中错误的是( C ) A .a m =n b B .a n =m b C .m a =n b D .m a =b n2.(贺州中考)如图,在△ABC 中,点D 、E 分别为AB 、AC 的中点,则△ADE 与四边形BCED 的面积比为( C )A .1∶1B .1∶2C .1∶3D .1∶43.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,DE ⊥BC ,那么与△ABC 相似的三角形的个数有( D )A .1个B .2个C .3个D .4个,第2题图) ,第3题图) ,第6题图)4.在中华经典美文阅读中,刘明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽约为( A )A .12.36 cmB .13.6 cmC .32.36 cmD .7.64 cm5.(通辽中考)某人要在报纸上刊登广告,一块10cm ×5cm 的矩形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他应付广告费( C )A .540元B .1080元C .1620元D .1800元6.(永州中考)如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD =∠B ,AD =1,AC =2,△ADC 的面积为1,则△BCD 的面积为( C )A .1B .2C .3D .47.(眉山中考)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( B )A .1.25尺B .57.5尺C .6.25尺D .56.5尺,第7题图) ,第8题图) ,第9题图),第10题图)8.如图所示,在矩形ABCD 中,F 是DC 上一点,AE 平分∠BAF 交BC 于点E ,且DE ⊥AF ,垂足为点M ,BE =3,AE =26,则MD 的长是( C )A .15B .1510C .1D .1515点拨:设DM =a ,证△AEM ≌△AEB ,△ADM ≌△DEC ,可得(a +3)2=a 2+(15)29.如图,在△ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( D )A .-12aB .-12(a +1)C .-12(a -1)D .-12(a +3)10.如图,在矩形ABCD 中,DE 平分∠ADC 交BC 于点E ,点F 是CD 边上一点(不与点D 重合).点P 为DE 上一动点,PE <PD ,将∠DPF 绕点P 逆时针旋转90°后,角的两边交射线DA 于H ,G 两点,有下列结论:①DH =DE ;②DP =DG ;③DG +DF =2DP ;④DP ·DE =DH ·DC ,其中一定正确的是( D )A .①②B .②③C .①④D .③④ 二、填空题(每小题3分,共18分)11.若x ∶y =1∶2,则x -y x +y=__-13__.12.若△ABC ∽△A ′B ′C ′,且AB ∶A ′B ′=3∶4,△ABC 的周长为12 cm ,则△A ′B ′C ′的周长为__16_cm __.13.(锦州中考)如图,E 为▱ABCD 的边AB 延长线上的一点,且BE ∶AB =2∶3,连接DE 交BC 于点F ,则CF ∶AD =__3∶5__.,第13题图) ,第14题图) ,第15题图) ,第16题图)14.(阿坝州中考)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC 与△DEF 位似,原点O 是位似中心.若AB =1.5,则DE =__4.5__.15.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE =50 cm ,EF =25 cm ,测得边DF 离地面的高度AC =1.6 m ,CD =10 m ,则树高AB =__6.6__m .16.如图,在△ABC 中,分别以AC ,BC 为边作等边△ACD 和等边△BCE.设△ACD ,△BCE ,△ABC 的面积分别是S 1,S 2,S 3,现有如下结论:①S 1∶S 2=AC 2∶BC 2;②连接AE ,BD ,则△BCD ≌△ECA ;③若AC ⊥BC ,则S 1·S 2=34S 32.其中结论正确的序号是__①②③__.三、解答题(共72分)17.(6分)如图,在△ABC 中,点D 是边AB 的四等分点,DE ∥AC ,DF ∥BC ,AC =8,BC =12,求四边形DECF 的周长.解:∵DE ∥AC ,DF ∥BC ,∴四边形DFCE 是平行四边形,∴DE =FC ,DF =EC ,∵DF ∥BC ,∴△ADF ∽△ABC ,∴DF BC =AF AC =AD AB =14,∵AC =8,BC =12,∴AF =2,DF =3,∴FC =AC -AF =8-2=6,∴DE =FC =6,DF =EC =3,∴四边形DECF 的周长是DF +CF +CE +DE =3+6+3+6=18.答:四边形DECF 的周长是1818.(6分)(凉山州中考)如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC 三个顶点分别为A(-1,2)、B(2,1)、C(4,5).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以原点O 为位似中心,在x 轴的上方画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且相似比为2,并求出△A 2B 2C 2的面积.解:(1)如图所示,△A 1B 1C 1就是所求三角形 (2)如图所示,△A 2B 2C 2就是所求三角形.分别过点A 2、C 2作y 轴的平行线,过点B 2作x 轴的平行线,交点分别为E 、F ,∵A(-1,2),B(2,1),C(4,5),△A 2B 2C 2与△ABC 位似,且相似比为2,∴A 2(-2,4),B 2(4,2),C 2(8,10),∴S △A 2B 2C 2=8×10-12×6×2-12×4×8-12×6×10=2819.(6分)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,如图所示,已知标杆高度CD =3 m ,标杆与旗杆的水平距离BD =15 m ,人的眼睛与地面的高度EF =1.6 m ,人与标杆CD 的水平距离DF =2 m ,则旗杆AB 的高度.解:∵CD ⊥FB ,∴AB ⊥FB ,∴CD ∥AB ,∴△CGE ∽△AHE ,∴CG AH =EG EH ,即:CD -EF AH =FDFD +BD,∴3-1.6AH =22+15,∴AH =11.9,∴AB =AH +HB =AH +EF =11.9+1.6=13.5(m )20.(7分)如图,在梯形ABCD 中,DC ∥AB ,AD =BC ,E 是DC 延长线上的点,连接AE ,交BC 于点F.(1)求证:△ABF ∽△ECF ;(2)如果AD =5 cm ,AB =8 cm ,CF =2 cm ,求CE 的长.(1)证明:∵DC ∥AB ,∴∠B =∠ECF ,∠BAF =∠E ,∴△ABF ∽△ECF (2)解:∵AD =BC ,AD =5 cm ,AB =8 cm ,CF =2 cm ,∴BF =3 cm . ∵由(1)知,△ABF ∽△ECF ,∴BA CE =BF CF ,即8CE =32.∴CE =163(cm )21.(8分)如图,四边形ABCD 是矩形,E 是BD 上的一点,∠BAE =∠BCE ,∠AED =∠CED ,点G 是BC 、AE 延长线的交点,AG 与CD 相交于点F.(1)求证:四边形ABCD 是正方形;(2)当AE =2EF 时,判断FG 与EF 有何数量关系?并证明你的结论.(1)证明: 易证△ABE ≌△CBE ,∴AB =BC ,∴四边形ABCD 是正方形 (2)解:当AE =2EF 时,FG =3EF.证明如下:∵四边形ABCD 是正方形,∴AB ∥CD ,AD ∥BC ,∴△ABE ∽△FDE ,△ADE ∽△GBE. ∵AE =2EF ,∴BE ∶DE =AE ∶EF =2.∴BG ∶AD =BE ∶DE =2,即BG =2AD. ∵BC =AD ,∴CG =AD.易证△ADF ∽△GCF ,∴FG =AF ,即FG =AF =AE +EF =3EF22.(8分)(泰安中考)如图,在四边形ABCD 中,AB =AC =AD ,AC 平分∠BAD ,点P 是AC 延长线上一点,且PD ⊥AD.(1)证明:∠BDC =∠PDC ;(2)若AC 与BD 相交于点E ,AB =1,CE ∶CP =2∶3,求AE 的长.(1)证明:∵AB =AD ,AC 平分∠BAD ,∴AC ⊥BD ,∴∠ACD +∠BDC =90°,∵AC =AD ,∴∠ACD =∠ADC ,∴∠ADC +∠BDC =90°,∵PD ⊥AD ,∴∠ADC +∠PDC =90°,∴∠BDC =∠PDC(2)解:过点C 作CM ⊥PD 于点M ,∵∠BDC =∠PDC ,∴CE =CM ,∵∠CMP =∠ADP =90°,∠P =∠P ,∴△CPM ∽△APD ,∴CM AD =PC PA ,设CM =CE =x ,∵CE ∶CP =2∶3,∴PC =32x ,∵AB=AD =AC =1,∴x 1=32x 32x +1,解得x =13,故AE =1-13=2323.(9分)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ 移动,如图,当小聪正好站在广场的A 点(距N 点5块地砖长)时,其影长AD 恰好为1块地砖长;当小军正好站在广场的B 点(距N 点9块地砖长)时,其影长BF 恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN ⊥NQ ,AC ⊥NQ ,BE ⊥NQ.请你根据以上信息,求出小军身高BE 的长.(结果精确到0.01米)解:由题意得:∠CAD =∠MND =90°,∠CDA =∠MDN ,∴△CAD ∽△MND ,∴CA MN =AD ND,∴1.6MN =1×0.8(5+1)×0.8,∴MN =9.6,又∵∠EBF =∠MNF =90°,∠EFB =∠MFN ,∴△EFB ∽△MFN ,∴EB MN =BF NF ,∴EB9.6=2×0.8(2+9)×0.8,∴EB ≈1.75,∴小军身高约为1.75米24.(10分)如图(1)是一种广场三联漫步机,其侧面示意图如图(2)所示,其中AB =AC =120 cm ,BC =80 cm ,AD =30 cm ,∠DAC =90°.(1)求点A 到地面的距离;(2)求点D 到地面的高度是多少?解:(1)过A 作AF ⊥BC ,垂足为F ,过点D 作DH ⊥AF ,垂足为H.∵AF ⊥BC ,垂足为F ,∴BF =FC =12BC =40 cm .根据勾股定理,得AF =AB 2-BF 2=1202-402=802(cm )(2)∵∠DHA =∠DAC =∠AFC =90°,∴∠DAH +∠FAC =90°,∠C +∠FAC =90°,∴∠DAH=∠C ,∴△DAH ∽△ACF ,∴AH FC =AD AC ,∴AH 40=30120,∴AH =10 cm ,∴HF =(10+802)cm .答:D到地面的高度为(10+802)cm25.(12分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,CD 为角平分线,∠A =40°,∠B =60°,求证:CD 为△ABC 的完美分割线;(2)在△ABC 中,∠A =48°,CD 是△ABC 的完美分割线,且△ACD 为等腰三角形,求∠ACB 的度数.(3)如图2,在△ABC 中,AC =2,BC =2,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD 的长.解:(1)如图1中,∵∠A =40°,∠B =60°,∴∠ACB =80°,∴△ABC 不是等腰三角形,∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =40°,∴∠ACD =∠A =40°,∴△ACD 为等腰三角形,∵∠DCB =∠A =40°,∠CBD =∠ABC ,∴△BCD ∽△BAC ,∴CD 是△ABC 的完美分割线(2)①当AD =CD 时,如图3,∠ACD =∠A =48°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =96°②当AD =AC 时,如图4中,∠ACD =∠ADC =180°-48°2=66°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =114°;③当AC =CD 时,如图5中,∠ADC =∠A =48°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∵∠ADC >∠BCD ,矛盾,舍弃.∴∠ACB =96°或114°(3)由已知AC =AD =2,∵△BCD ∽△BAC ,∴BC BA =BD BC ,设BD =x ,∴(2)2=x(x +2),∵x>0,∴x =3-1,∵△BCD ∽△BAC ,∴CD AC =BDBC=3-12,∴CD = 3-1 2×2=6-2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上学期 数学检测题 选择题:
1、已知函数2
5(1)m y m x -=+是反比例函数,且图像在第二、四象限内,则m 的值是( )
A .2
B .2-
C .2±
D .12
- 2、已知反比例函数y =x
2
,则下列点中在这个反比例函数图象的上的是( )
(A )(-2,1) (B )(1,-2) (C )(-2,-2) (D )(1,2)
3、 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 1
2--=的
图像上. 下列结论中正确的是( )
A .321y y y >>
B .231y y y >>
C .213y y y >>
D . 132y y y >>
4、函数y ax a =-与a y x
=(a ≠0)在同一直角坐标系中的图象可能是
( )
5、反比例函数x
y 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中
3210x x x <<<,则1y ,2y ,3y 的大小关系是( )
A .321y y y <<
B .312y y y <<
C .213y y y <<
D .123y y y << 6、函数y 1=x (x ≥0),y 2=4
x
(x>0)的图象如图所示,下
列结论:
①两函数图象的交点坐标为A (2,2); ②当x >2时,y 2>y 1;
③直线x =1分别与两函数图象相交于B 、C 两点,则线段BC 的长为3;
④当x 逐渐增大时,y 1的值随x 的增大而增大,y 2的值随x 的增大减少.
其中正确的是( ) A .只有①② B .只有①③ C .只有②④ D .只有①③④
7、若正比例函数y =2kx 与反比例函数y =k
x
(k ≠0)的图象交于点
A (m ,1),则k 的值是( ). A
B
.2
或-2 C
.2
D
8、如图,直线2y x =+与双曲线k
y x
=相交于点A ,点A 的纵坐标为3,k 的值为( ).
(A )1 (B )2 (C )3 (D )4
y
y 1y 2=
4x
x
第6题图
(第8题)
9、函数1k
y x
-=的图象与直线y x =没有交点,那么k 的取值范围是
( )
A .1k >
B .1k <
C .1k >-
D .
10、函数y =x +1
x
中自变量x 的取值范围是( )
A .x ≥-1
B .x >-1
C .x ≥-1且x ≠0
D .x >-1且x ≠0
11、反比例函数x
k y 3
-=
的图像,当0>x 时,y 随x 的增大而增大,则k 的数值范围是( )
(A )2<k (B )3≤k
(C )3>k (D ).3≥k
12、如图,已知双曲线(0)k y k x
=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为( ) A .12 B .9 C .6 D .4
13、一次函数y=kx+b 与反比例函数y=k x
在同一直角坐标系中的大致图像2所示,则下列判断正确的是( )
A. k >0, b >0
B. k >0, b <0
C. k <0, b >0
D. k <0, b <0
14、如图2,反比例函数1
1k y x
=
和正比例函数
22y k x =的图像都经过点(1,2)A -,若12y y >,则x 的取值范围是()
A. 10x -<<
B. 11x -<<
C. 1x <-或01x <<
D. 10x -<<或1x > 15、一个直角三角形的两直角边长分别为y x ,,其面积为2,则y 与x 之间的关系用图象表示大致为( )
二、填空题:
16、如图11,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x
=(0x >)的图象上,则点E 的坐标是
( , ).
17、写出具有“图象的两个分支分别位于第二、四象限内”的反
比例函数__ __(写出一个即可).
18、如图,A 、B 是双曲线 y = k
x
(k >0) 上的点, A 、B 两点
的横坐标
分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △
AOC
=6.则
k= .
19、若1122()()A x y B x y ,,,是双曲线3
y x
=上的两点,
A B C
且120x x >>,则12_______y y {填“>”、“=”、“<”}. 20、有一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3
)是体积V (单位:m 3
)的反比例函数,它的图象如图所示,当V =2m 3时,气体的密度是_______kg/m 3.
21 若点(4,m )在反比例函数8y x
=(x ≠0)的图象上,则m 的值
是 . 【答案】2
22、如图,直线y
=3
x b -
+与y 轴交于点A ,与双曲线y =k x
在第一象限交于点B ,C 两点,且AB ⋅AC =4,则k = .
23、若一次函数y=2x+l 的图象与反比例函数图象的一个交点横坐标为l ,则反比例函数关系式为 24、在反比例函数10
y x
=
()0x >的图象上,有一系列点1A 、2A 、3A …、n A 、1n A +,若1A 的横坐标为2,且以后每点的横坐标与它
前一个点的横坐标的差都为2. 现分别过点1A 、2A 、
3A …、n A 、1n A +作x 轴与y 轴的垂线段,构成若干个
矩形如图8所示,将图中阴影部分的面积从左到右依次记为1S 、2S 、3S 、n S ,则
1S =________________,1S +2S +3S +…+n S =_________________.(用n
的代数式表示
)
3)
3
25、已知反比例函数x
y 2
=,当-4≤x ≤-1时,y 的最大值是___________.
三:解答题:
26、已知反比例函数y =8m x
-(m 为常数)的图象经过点A (-1,6).
(1)求m 的值;
(2)如图9,过点A 作直线AC 与函数y =8m x
-的图象交于点B ,
与x 轴交于点C ,且AB =2BC ,求点C 的坐标.
27、已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴
交于点(2,0)A -,与反比例函数在第一象限内的图象交于点(2,)B n ,连结BO ,若S 4AOB ∆=.
(1)求该反比例函数的解析式和直线AB 的解析式; (2)若直线AB 与y 轴的交点为C ,求△OCB
28如图,已知一次函数2-=x y 与反比例函数x
y 3
=的图象
交于A 、B 两点.
(1)求A 、B 两点的坐标;
(2)观察图象,可知一次函数值小于反比例函数值的x 的取值范围是 .
27题图
29、保护生态环境,建设绿色社会已经从理念变为人们的行动.某化
工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2009年 1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).
⑴分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式.
⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?
⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?。

相关文档
最新文档