第9讲 有趣的数阵

合集下载

有趣的数阵图课件

有趣的数阵图课件
1+2+3+4+5+6+7=28 A:(30-28)÷2=1 134567八个数分为两组, 使每组中两个数字之和:
10-1=9 则2+7=3+6=4+5
有趣的数阵图
5
练一练:将 1~7入下图的○内,使得每条边上的三个数 字之和都等于12。
通关小诀窍:确定中间值
3 5
4
6
7
1 2
三条数之和: 3×12=36 2-8数之和:
有趣的数阵图
9
将2-10这九个数填入下图圆圈内,使每条线上三个数字相加之和为 22.
2
3
4
5
1A0
6
7
8
9
有趣的数阵图
10
将1、2、3、4、5、6填在下图中,使每条边上 三个数之和等于9。
1A
6
5
B2
4
3C
三条边数字总和: 3×9=27
1-6六数之和: 1+2+3+4+5+6=21
A+B+C=27-21=6 故只能选1,2,3
有趣的数阵图
14
把1~7分别填入左下图中的七个空块里,使每 个圆圈里的四个数之和都等于13。
2 4 17 635
有趣的数阵图
15
把1~7分别填入左下图中的七个空块里,使每 个圆圈里的四个数之和都等于15。
6 31 5 4 72
有趣的数阵图
16
将1-6这六个数字填入下图的圆圈中,使每个大圆 圈上4个数字之和为14。
50-45=5 12346789八个数分为两组, 使每组中四个数字之和:
25-5=20 则1+4+6+9=2+3+7+8

五年级下册数学奥数有趣的数阵图人教版

五年级下册数学奥数有趣的数阵图人教版
按照前面学习的方法, 先列出一个等式,再考虑三 个未知的数吧。
例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
假设重叠数是a、b、c 5+6+7+8+9+10+a+b+c=24×3
45+a+b+c=72 a+b+c=27
8+9+10=27
8 76 9 5 10
2 9 561 3 8 45~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
中间的三个数只加一次, 三个角上的数都加了两次, 有三个数要设字母吗?
例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
1
3
2
1+2+…+7+8+a+b=21×2 6
5
36+a+b=42 a+b=6
4
8
7
1+5=6或2+4=6
将1、3、5、7、9、11、13、15这八个数,分别填入图中的 八个○内,使得每个大圆上五个○内数的和都是39。
1+3+5+……+15=64
3
5
1
39×2-64=14
7
9
中间的两个圆圈数重叠一次, 15 13 11
例5:将1~8这八个数分别填入下图的○中,使两个大圆 上的五个数之和都等于21。
假设重叠数是a、b
2
3
1
1+2+…+7+8+a+b=21×2 6

第09讲-数阵(教)

第09讲-数阵(教)

学科教师辅导讲义知识梳理一、数阵图把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图。

数阵是一种由幻方演变而来的数字图。

二、数阵图的分类封闭型数阵图、辐射型数阵图和复合型数阵图。

三、数阵图的解法(1)辐射型数阵图主意一:尝试法,即去掉中间数时剩下的数应该两两一对,每队和相等,因此最中间数只能填最大数、最小数或中间数;主意二:公式法,线和×线数=数字和+重叠数×重叠次数;重叠次数=线数-1(2)封闭型数阵图公式:线和×线数=数字和+重叠数之和(3)复合型数阵图综合了辐射型和封闭型数阵图的特点,要详细情况详细分析。

第 1 页/共11 页典例分析考点一:辐射型数阵图例1、把1~5这五个数分离填在下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

【解析】中间方格中的数很异常,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,惟独重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。

重叠数求出来了,其余各数就好填了(见右上图)。

例2、将1~7这七个天然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。

【解析】与例1类似,知道每条边上的三数之和,但不知道重叠数。

因为有3条边,所以中间的重叠数重叠了两次。

于是得到(1+2+…+7)+重叠数×2=10×3。

由此得出重叠数为[10×3-(1+2+…+7)]÷2=1。

剩下的六个数中,两两之和等于9的有2,7;3,6;4,5。

可得右上图的填法。

倘若把例4中“每条边上的三个数之和都等于10”改为“每条边上的三个数之和都相等”,其他不变,那么模仿例3,重叠数可能等于几?怎样填?考点二:封闭型数阵图例1、将1~6六个天然数分离填入下图的○内,使三角形每边上的三数之和都等于11.【解析】此图是封闭3—3图,因为每条边上的和都为11,那么三条边上的数字之和为11⨯=,而1+2+…+5+6=21.所以三角形的三个数之和等于33-21=12,在1~6中选3个和为12 333的数,且其中随意两个的和不等于11,这样的组合有:12=2+4+6=3+4+5,经实验,填法如图。

《仁华学校奥林匹克数学课本(小学四年级)》

《仁华学校奥林匹克数学课本(小学四年级)》

《仁华学校奥林匹克数学课本(小学四年级)》
上册
第1讲速算与巧算(三)
第2讲速算与巧算(四)
第3讲定义新运算
第4讲等差数列及其应用
第5讲倒推法的妙用
第6讲行程问题(一)
第7讲几何中的计数问题(一)
第8讲几何中的计数问题(二)
第9讲图形的剪拼(一)
第10讲图形的剪拼(二)
第11讲格点与面积
第12讲数阵图
第13讲填横式(一)
第14讲填横式(二)
第15讲数学竞赛试题选讲
下册
第1讲乘法原理
第2讲加法原理
第3讲排列
第4讲组合
第5讲排列组合
第6讲排列组合的综合应用
第7讲行程问题
第8讲数学游戏
第9讲有趣的数阵图(一)
第10讲有趣的数阵图(二)
第11讲简单的幻方及其他数阵图
第12讲数字综合题选讲
第13讲三角形的等积变形
第14讲简单的统筹规划问题第15讲数学竞赛试题选讲。

有趣的数阵图

有趣的数阵图

有趣的数阵图有些数按照一定的要求排列成各种各样的图形,就叫做数阵图,数阵填数的游戏是非常有趣的,有时也有一定的难度。

不过它能促使我们积极地思考问题,分析问题,拓展我们的能力。

有的同学说:这样的数阵图填写时只能采取试的方法,没有其他捷径好走。

其实这话不对。

填写数阵图时,我们应抓住数阵中的关键位置(例如两种线的交点,长方形和正方形的顶点),再根据题目的要求,进行必要的计算,先填写这些关键位置的数,再填写出其他位置的数。

例1:将1,2,3,4,5这五个数分别填入下图的各正方形中,组成一个“十字数阵图”,使图中横行三个数的和与竖行三个数据的和相等。

根据图形的特点,中间那个数是横行与竖行共用的,要使横行与竖行三个数的和相等,可以先确定中间的数,再让左右两数的和与上、下两数的和相等。

①中间填1,则剩下2,3,4,5,而2+5=4+3,共有8种填法。

②中间填2,则余下1,3,4,5而这四个数无法组成□+□=□+□的形式所以中间不可以填?③中间填3,则剩下1,2,4,5,而1+5=2+4,共有8种填法:④中间填4,则剩下1,2,3,5而这四个数无法组成□+□=□+□的形式所以中间可能填4。

⑤中间填5,则剩下1,2,3,4,1+4=2+3共有8种填法。

例1将1,2,3,5,6,7这六个数字填入下表中,使每行中三个数的和相等,同时使每列两个数的和也相等。

因为表中有2行、3行,这样六个数可分成(7,3,2)和(6,5,1)每列两个数的和为24÷3=8,同样这六个数也可分为(7,1)、(6,2)和(5,3)三组。

根据题意,我们同时考虑使每行中的数和每列中数的和分别相等。

你能想出其他11种填法吗?例2请你把1-6这六个数字填在下面三角形的O内,使每条边上的数字之和相等。

你能做到吗?这是一种封闭型的数阵图,填写时的关键是确定三个顶点上的数。

1+2+3+4+5+6=21,用k表示每边上三个数的和,因为三个顶点上的数在求和时,都用了两次,用a,b,c表示三个顶点的数,使有21+a+b+c=3k因为a+b+c的最小值为6,最大值为15,所以3个k的最小值为27,最大为36,那么k的最小值是9,最大值是12。

一年级春季第九讲有趣的数阵图

一年级春季第九讲有趣的数阵图

第九讲有趣的数阵图
本讲主要通过学两种类型的数阵图,即辐射型和封闭型的,认识数阵图并找到解答数阵图的方法
一、一般数阵图
方法:由数多的入手想
例将1-16这十六个数分别填入下面的方框中,使横行、竖行、斜行的和都相等。

1 15 14 4
12 6 7 9
8 10 11 5
13 3 2 16
分析:先由数多的入手,即从对角线上的已知数求出和为34,然后按顺序求解就可以了。

二、辐射型数阵图
方法:(1)先填中间数(重叠数)
(2)尝试法:如果所填数是连续数,那么可以:
留头、留尾、留中间
剩下的数:小手拉大手
如果不是连续数,从小到大去尝试中间数即可
例把1,2,3,4,5,6,7这七个数分别填入里,使每条
直线上的三个数相加的和都相等,你能做出几种答案,让我们一起试试吧!
分析:(1)先填重叠数,留头1,剩下的数小手拉大手分组,2和7,3和6,4和5.对应填入即可
(2)留尾7,1和6,2和5,3和4
(3)留中间4,1和7,2和6,3和5
三、封闭型数阵图
方法:(1)先填重叠数,封闭型往往有多个重叠数
(2)拆数法然后再观察
例上填上1-6,使每条线上的和为9
分析:可以看出有3个重叠数,是三角形三个角上的数,如果尝试,就不太好想,所以要拆数了,即把9拆成三个数的和,再拆的时候注意要按从小到大的顺序。

9=1+2+6=1+3+5=2+3+4
然后再去观察出现2次得数,即1,2,3.重叠数要填1、2、3即可,其它的数对应的填入即可。

拓展训练
把1-11这11个数填入图中的圆圈中,使每条直线上的三个数的
和是18
答案:中间填6。

有趣的数阵图教案

有趣的数阵图教案

有趣的数阵图教案教案名称:有趣的数阵图教学对象:小学三年级教学目标:1.能认识、理解数阵概念,并能找出数阵的规律。

2.能运用数阵的规律计算出其中任意一个数。

3.能在数阵的基础上进行数字游戏。

教学内容:1. 什么是数阵?如何表示数阵?2. 数阵有哪些规律?如何运用规律计算数阵中任意一个数?3. 数阵在数字游戏中的应用。

教学步骤:Step 1 引入教师在黑板上画出一个类似于3x3 的矩阵,然后给学生出示一组数字:1、5、9、13、17、21、25、29、33。

请学生想办法将这组数字填到黑板上的矩阵中。

Step 2 导入教师解释这样的数字矩阵被称为数阵。

Step 3 讲解根据学生填出来的答案,教师介绍数阵的表示方法和构成规则,并举例说明数阵的常见形式和不同类型。

Step 4 发现规律教师给学生出示 4x4 的数阵,让他们归纳数阵中的规律,并尝试计算出其中某些数字的值。

Step 5 练习教师提供一个5x5 的数阵,要求学生通过观察数阵中数字之间的规律,计算出其中某个位置的数字,并将计算过程写在纸上。

Step 6 游戏教师向学生介绍一些基于数阵的数字游戏。

比如:1. 计算数列:在数阵中找到某一列的数字,将它们相加起来,看谁的计算结果最大。

2. 打动棋:将 5x5 的数阵看作棋盘,在数阵中找到相邻的数字,将它们用连线连接起来,看谁能画出最长的线,就赢了。

Step 7 总结教师让学生分享他们在游戏中的经验,然后总结今天所学的内容,并提高学生分析整理信息的能力。

教学方法:1.引入法:通过互动活动引起学生兴趣,引导学生进入学习状态。

2.归纳法:通过展示具体的实例,引导学生从中发现规律。

3.练习法:给予学生大量练习,巩固掌握所学的知识。

教学手段:1.黑板、白板2.幻灯片3.游戏卡片教学时间:一课时(40分钟)教学评估:1.针对学生在课上的表现进行口头评价。

2.布置课后作业,要求学生完成指定练习。

3.布置在课下进行数字游戏。

有趣的数阵图

有趣的数阵图

例4
将1~6六个数字填入下图,使四条线每条线上个 数之和都等于10。
ห้องสมุดไป่ตู้5
把1、2、3、4、5、6、7、8这八个数分别填入图中的正方形的 各个圆圈中,使得正方形每边上的三个数的和都等于15。
练一练: 1、把30、40、50、80、90这五个数填入下图的 五个圆圈里,使每条直线上三个数相加的和相等。
练一练:
2、把1~9九个数分别填入下图中的九个圆圈内, 使每条直线上三个圆圈内各数之和都相等。
练一练: 3、把1234567891011填入下图中,使得每条线 段上的三个数的很都相等。
练一练: 4、把10~15六个数分别填入下图中的六个0内使 每条边上的三个0内的数字和都等于37。
练一练 5、把123456789101112填入图中,使得正方形 每条边上的四个数之和都等于22。
试一试:
下图中4个圆共被分成12个区域,其中已有6个 区域内填有数,请将1~12中的另6个数填入其它 区域,使得每个圆中4个数的和都是28。
例1
把11、12、13、14、15填入下面的五个空格内, 使横行、竖列三个数相加的和相等。
12
13
11
14
15
例2: 请你把1~7这七个自然数,分别填在右图的圆圈 内,使每条直线上三个数的和相等。应怎样填?
例3 把1、2、3、4、5、6、7、8、9这九个数填入右 面的方格内,使每一横行、每一竖列和两条对角 线上的数之和都等于15。
挑战思维 例6 将1~7这七个自然数分别填入下图的七个o内, 使得三个大圆周上的四个数之和都等于13,请给 出一种符合要求的填法。
试一试: 把1~8这八个数分别填入下图中的八个o内,使 每个圆圈上五个数的和都等于21。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9讲有趣的数阵
数阵是一种由幻方演变而来的数字图.数阵可分为辐射型和封闭型两种.填数阵时,一般优先考虑正中间的数或顶角上的数.
问题9.1 把1~9九个数分别填入图9-1中九个圆圈内,使每条直线上三个圆圈内各数之和都相等.
分析从图9-1中可以看出,中间圆圈所填的数是四条直线上公用的,它是一个用了4次的数.因此,我们在思考时,应先把中间圆圈内的数填出来.怎样确定这个数呢?
设中间圆圈内的数为x,在计算四条直线上数的总和时,它多加了3次,又因为四条直线上的数的总和是4的倍数,所以
1+2+3+…+7+8+9+3x=45+3x
应能被4整除,这样x只能是1、5、9.
当中间圆圈填1时,每条直线上三个数的和是12;当中间圆圈填5时,每条直线上三个数的和是15;当中间圆圈填9时,每条直线上三个数的和是18.这样就可以正确地填出结果了.
解适合题目要求的填法共有以下三种:
问题9.2 图9-2是一个六角星,把1~12这12个数填在六角星的○内(每个数字只许用一次).现在已经填入了六个数,其它六个○内填什么数才能使每条边上四个数的和都相等?
分析图9-2中共有12个圆圈,每个圆圈都恰好有两条直线通过.因此,在计算六条直线上数的总和时,每个圆圈内的数都计算了两次.而(1+2+3+…+11+12)×2=156,所以每条直线上四个数的和应是156÷6=26.先填出图中A、B、C三个圆圈中的数,其余的三个圆圈内的数就不难填出了.
解见图9-3.
问题9.3 在图9-4(1)中,同一个圆圈内四个数的和都是15.请在图(2)中的空白部分填上适当的数(2、3、5、7),使每个圆圈内四个数的和仍然等于15.
分析根据圆圈已有的数字4、6和1.可以肯定中间空白部分填的数必然大于1而小于5.符合这个条件的只有2和3.如果中间数是2.那么4+1+2+7<15,不符合题意.所以中间数应是3,这样就可以很快填出其它数了.
解填法如图9-5.
问题9.4 把1~8这八个数分别填入图9-6中的八个○内,使每个圆圈上五
个数的和都等于21.
分析设两个圆交叉点上的两个○内各填的数是a、b,那么,在计算两个大圆周上10个数的和时,a和b都多加了一次,根据题目的要求,
1+2+3+…+7+8+a+b=36+(a+b)除以2应是21,所以a+b=6.但在1~8这8个数中,只有1+5=6、2+4=6两种情况.如果中间两个○内分别填1和5,另外同一圆周上三个○内的数的和应是21-(1+5)=15.在2、3、4、6、7、8这六个数中三个数之和是15的只有2+6+7=15、3+4+8=15两种.如果中间两个○填2和4,其它的数可分为两组1、6、8和3、5、7.因此,可得出如上所述的四种填法.
解略.
问题9.5 用1~9这九个数字填入图9-7的○内.使三角形的每条边上四个数的和部等于17,或19、20、21、23.除上述数外,还可能等于其它数吗?
分析如果三角形每条边上四个数的和是17.那么三条边上的数字的和就是17×3=5l,但1+2+3+…+9=45、51-45=6,这是因为三个顶点上的数字都计算了两次,所以可以肯定.三个顶点的数的和是6.而和为6的三个数只能是1、2、3.各边上另两个数的填法就不难推算了.
至于和为19、20、21、23的填法与上述和为17的分析方法相类似,请同学自己完成.
另:除17、19、20、21、23以外,要使三角形每条边上四个数的和
都相等,不能有其它数.
解略
问题9.6 请你在图9-8的4×4方格中填上适当的数字,使图中每条直线上的四个数字之和都相等.
分析要使图中每条直线上的四个数字之和都相等,那么每一行、每一列及两对角线上的四个数字只能是1、9、8、3,并且每一个数字在同一直线上只能出现一次.根据这一特点,可以采取尝试推导法,逐步填出图中各空格上的数.
如图9-8(2),A格中只能填8或3,若A格填8,则B格只能填3或9,尝试B格只能填3,这样C格必须填9,D格只能填1,E、F两格应分别填8、1.至此,剩下的空格便可顺利填出了.
如果A格中填3,仿上采用尝试推导法,也可得到另一填法(略).
解符合条件的一种填法如图9-9.
练习 9
1.把1~6六个数字分别填入图9-10中的六个○内,使每条边上三个○内数字和相等.
2.将1~8八个数分别填入图9-11中的八个空格中,使图中四边正好组成加、减、乘、除四种运算.
3.把2~10这九个数分别填入图9-12中的圆圈内,使每条线段上三个数的和都是15.
4.把1~12这十二个数分别填入图9-13中,使每一行、每一列四个数的和都是26,四个正方形、四个△和四个○内的数字之和也都等于26.
5.将1~8这八个数填入图9-14中的八个顶点处的○内,使每个面上的四个○内的数字之和都等于18.
6.试将1~9这九个数字分别填入图9-5中的九个小三角形内.使每条边上的五个小三角形内所填的数之和都相等,问这个和的最小值是多少?最大值是多少?。

相关文档
最新文档