课时规范训练--集合10-1
课时作业12:1.1.1 集合的含义与表示

1.1.1 集合的含义与表示基础巩固题1.若集合A中只含一个元素1,则下列格式正确的是()A.1=AB.0∈AC.1∉AD.1∈A 2.集合{x∈N∗|x−2<3}的另一种表示形式是()A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}3.下列说法正确的有()①集合{x∈N|x3=x},用列举法表示为{−1,0,l};②实数集可以表示为{x|x为所有实数}或{R};③方程组{x+y=3,x−y=−1的解集为{x=1,y=2}.A.3个B.2个C.1个D.0个4.直角坐标系中,坐标轴上点的集合可表示为()A.{(x,y)|x=0,y≠0,或x≠0,y=0}B. {(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同时为0}5.若集合P含有两个元素1,2,集合Q含有两个元素1,a2,且P,Q相等,则a=____. 6.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A且a∈B,则a为. 7.设方程ax2+2x+1=0(a∈R)的根组成的集合为A,若A只含有一个元素,求a的值.能力提升题8.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)满足方程x=|x|的所有x的值构成的集合B.9.集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},a∈P,b∈M,设c=a+b,则c与集合M有什么关系?【参考答案】1.D【解析】元素与集合之间只存在“∈”与“∉”的关系,故1∈A 正确.2.B【解析】由x -2<3得x <5,又x ∈N ∗,所以x =1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.3.D【解析】对于①,由于x ∈N ,而-1∉N ,故①错误;对于②,由于“{ }”本身就具有“全部”、“所有”的意思,而且实数集不能表示为{R },故②错误;对于③,方程组的解集是点集而非数集,故③错误.4.C【解析】坐标轴上的点分为x 轴、y 轴上的点,在x 轴上的点纵坐标为0,在y 轴上的点横坐标为0.5.±√2【解析】由于P ,Q 相等,故a 2=2,从而a =±√2.6.(2,5)【解析】∵a ∈A 且a ∈B ,∴a 是方程组{y =2x +1,y =x +3,的解, 解方程组,得{x =2,y =5,∴a 为(2,5). 7.解:A 中只含有一个元素,即方程ax 2+2x +1=0(a ∈R )有且只有一个实根或两个相等的实根.(1)当a =0时,方程的根为x =-12; (2)当a ≠0时,有Δ=4-4a =0,即a =1,此时方程的根为x 1=x 2=-1.∴a 的值为0或1.8.解:(1){x |x =3n ,n ∈Z };(2)B ={x |x =|x |,x ∈R }.9. 解:∵a ∈P ,b ∈M ,c =a +b ,设a =2k 1,k 1∈Z ,b =2k 2+1,k 2∈Z ,∴c =2k 1+2k 2+1=2(k 1+k 2)+1,又k 1+k 2∈Z ,∴c ∈M .。
2025高考数学一轮复习-1.1-集合-课时规范训练【含答案】

1.1-集合-课时规范训练基础巩固练1.(2023新高考Ⅰ)已知集合M={-2,-1,0,1,2},N={x|x2-x-6≥0},则M∩N=()A.{-2,-1,0,1}B.{0,1,2}C.{-2}D.{2}2.(2023新高考Ⅱ)设集合A={0,-a},B={1,a-2,2a-2},若A⊆B,则a=()A.2B.1C.23D.-13.(2024南京、盐城一模)已知集合A={0,1,2},B={x|y=lg(-x2+2x)},则A∩B=()A.{0,1,2}B.{1}C.{0}D.(0,2)4.设集合A={x|x2-4≤0},B={x|2x+a≤0},且A∩B={x|-2≤x≤1},则a=()A.-4B.-2C.2D.45.(2023镇江检测)记集合M={x||x|>2},N={x|y=2- },则(∁R M)∩N=()A.{x|-2≤x≤2}B.{x|x>2}C.{x|0≤x<2}D.{x|x<-2}6.设集合A={2,3,a2-2a-3},B={0,3},C={2,a}.若B⊆A,A∩C={2},则a=()A.-3B.-1C.1D.37.设集合U=R,集合M={x|x<1},N={x|-1<x<2},则{x|x≥2}=()A.∁U(M∪N)B.N∪(∁U M)C.∁U(M∩N)D.M∪(∁U N)8.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%9.定义集合A,B的一种运算:A B={x|x=a2-b,a∈A,b∈B},若A={-1,0},B={1,2},则A B中的元素个数为()A.1B.2C.3D.410.(多选题)已知集合{x|mx2-2x+1=0}={n},则m+n的值可能为()A.0B.12C.1D.211.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”.对于集合A={-1,2},B={x|ax2=2,a≥0},若这两个集合构成“鲸吞”或“蚕食”,则实数a的取值集合为.12.设集合A={x|x2+2x-3>0},集合B={x|x2-2ax≤0},若A∩B中恰含有一个整数,则实数a的取值范围是.综合提升练13.设全集U={x||x|<4且x∈Z},S={-2,1,3},若P⊆U,(∁U P)⊆S,则这样的集合P共有()A.5个B.6个C.7个D.8个14.设集合M={(x,y)|y=4- 2},N={(x,y)|(x-2)2+(y-2)2=r2}(r>0).当M∩N有且只有一个元素时,正数r 的所有取值为()A.2+2或22-2B.2<r≤25C.2<r≤25或r=22-2D.2≤r≤25或r=22-215.已知集合M={x|1≤x≤10,x∈N},对它的非空子集A,将A中每个元素k都乘(-1)k再求和,如A={1,3,6},可求得和为(-1)1×1+(-1)3×3+(-1)6×6=2,则对M的所有非空子集,这些和的总和为()A.5B.5120C.2555D.256016.(多选题)已知M是同时满足下列条件的集合:①0∈M,1∈M;②若x,y∈M,则x-y∈M;③x∈M且x≠0,则1 ∈M.下列结论中,正确的有()A.13∈MB.-1∉MC.若x,y∈M,则x+y∈MD.若x,y∈M,则xy∈M17.设集合S,T,S⊆N*,T⊆N*,S,T中至少有两个元素,且S,T满足:①对于任意x,y∈S,若x≠y,则有xy∈T;②对于任意x,y∈T,若x<y,则 ∈S.若S有4个元素,则S∪T有个元素.创新应用练18.已知数集A=[t,t+1]∪[t+4,t+9].若存在λ∈R,使得对任意a∈A都有 ∈A,则称A为完美集,给出下列四个结论:①存在t∈(0,+∞),使得A为完美集;②存在t∈(-∞,0),使得A为完美集;③如果t∉Z,那么A一定不为完美集;④使得A为完美集的所有t的值之和为-2.其中,所有正确结论的序号是.参考答案与解析1.C2.B3.B4.B5.A6.B7.A8.C9.C10.BD11 0,12,212 -52,-2∪113.D14.C15.D16.ACD17.718.①②。
高中数学课时作业(人教B版必修第一册)课时作业(一) 集合及其表示方法

课时作业(一) 集合及其表示方法一、选择题1.有下列说法:①{1,2}与{2,1}不同;②0∈{x |x 2+x =0};③方程(x +1)(x -2)2=0的所有解的集合可表示为{}-1,2,2 ;④集合{}x |-3<x <4 是有限集.其中正确的说法是( )A .只有①和④B .只有②和③C .只有②D .四种说法都不对2.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是( )A .{x |x 是小于18的正奇数}B .{x |x =4k +1,k ∈Z ,且k <5}C .{x |x =4t -3,t ∈N ,且t ≤5}D .{x |x =4s -3,s ∈N *,且s ≤5}3.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,那么a 为( )A .2B .2或4C .4D .04.(多选)下列集合的表示方法不正确的是( )A .第二、四象限内的点集可表示为{(x ,y )|xy ≤0,x ∈R ,y ∈R }B. 不等式x -1<4的解集为{x <5}C .{全体整数}D .实数集可表示为R二、填空题5.给出下列关系:(1)13∈R ;(2)5 ∈Q ;(3)-3∉Z ;(4)-3 ∉N ,其中正确的是________. 6.用区间表示下列数集.(1){x |x ≥2}=________;(2){x |3<x ≤4}=________;(3){x |x >1且x ≠2}=________.7.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈N ,126-x ∈N ,用列举法表示集合A 为________. 三、解答题8.若集合A ={x |ax 2+1=0,x ∈R }不含有任何元素,求实数a 的取值范围.(用区间表示)9.用适当的方法表示下列集合.(1)方程x (x 2+2x +1)=0的解集;(2)在自然数集中,小于1 000的奇数构成的集合;(3)绝对值不大于2的所有整数;(4)方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1 的解; (5)函数y =1x图象上的所有点. [尖子生题库]10.下列三个集合:①{x |y =x 2+1};②{y |y =x 2+1};③{(x,y)|y=x2+1}.(1)它们是不是相同的集合?(2)它们各自的含义是什么?。
2022数学课时规范练1集合的概念与运算文含解析新人教A版

课时规范练1 集合的概念与运算基础巩固组1.(2020全国2,文1)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.⌀B.{-3,—2,2,3}C。
{-2,0,2}D.{—2,2}2。
(2020陕西宝鸡三模,文1)设集合A={0,2,4},B={x∈N|log2x≤1},则A∪B=()A.{2,4} B。
{0,1,4}C。
{1,2,4} D。
{0,1,2,4}3.若集合A={0,1,2,3},B={1,2,4},C=A∩B,则C的子集共有()A.6个B。
4个C。
3个D。
2个4。
(2020山东滨州三模,1)已知集合M={x|x=4n+1,n∈Z},N={x|x=2n+1,n∈Z},则()A。
M⊆N B。
N⊆MC.M∈ND.N∈M5。
(2020山东淄博4月模拟,1)已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩(∁U B)=()A.{3} B。
{1,4,6}C。
{2,5}D。
{2,3,5}6。
已知集合A={x|x2—x-2=0},B={x∈Z||x|≤2},则A∩B=()A.{1,2}B.{1,-2}C.{—1,2} D。
{—1,—2}7.设全集U={x∈N*|x≤4},集合A={1,4},B={2,4},则∁U(A∩B)为()A.{1,2,3}B。
{1,2,4}C。
{1,3,4} D。
{2,3,4}8。
设全集U=R,集合A={x|x—1≤0},B={x|x2-x-6<0},则下图中阴影部分表示的集合为()A。
{x|x<3}B.{x|—3〈x≤1}C。
{x|x<2}D。
{x|-2〈x≤1}9.若集合A={x|x≥3—2a},B={x|(x—a+1)(x—a)≥0},A ∪B=R,则a的取值范围为()A.[2,+∞)B.(-∞,2]C.(-∞,43]D.43,+∞10.设全集为R,集合P={x|x2—4x>0},Q={x|log2(x-1)〈2},则(∁R P)∩Q=()A.[0,4]B.[0,5)C.(1,4]D.[1,5)11.已知集合A={x|log2x≤2},B={x|x〈a},若A⊆B,则实数a的取值范围是.12。
新教材老高考适用2023高考数学一轮总复习课时规范练1集合北师大版

课时规范练1集合基础巩固组1.(2021湖南长沙雅礼中学高三月考)已知集合A={x∈Z|-2≤x<2},B={0,1},则下列判断正确的是()A.B∈AB.A∩B=⌀C.A⊆BD.B⊆A∈Z,则下列结论不正确的是() 2.(2021山东淄博实验中学高三月考)若集合A=x∈N*63-xA.1∈AB.3∉AC.-3∈AD.8∉A3.(2021江苏,1)已知集合M={1,3},N={1-a,3},若M∪N={1,2,3},则实数a的值是()A.-2B.-1C.0D.14.(2021山东烟台高三模拟)已知集合M,N都是R的子集,且M∩∁R N=⌀,则M∩N=()A.MB.NC.⌀D.R5.(2021湖北荆门高三月考)已知集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z},则M∪N=()A.{x|x=6k+2,k∈Z}B.{x|x=4k+2,k∈Z}C.{x|x=2k+1,k∈Z}D.⌀x,Q={(x,y)|y=-x2+2},则集合P∩Q的真子集6.(2021宁夏银川高三月考)集合P=(x,y)y=12个数为()A.0B.1C.2D.37.已知全集U=Z,集合A={x|2x+1≥0,x∈Z},B={-1,0,1,2},则下列说法错误的是()A.A∩B={0,1,2}B.A∪B={x|x≥0}C.(∁U A)∩B={-1}D.A∩B的真子集个数是78.已知全集U的两个非空真子集A,B满足(∁U A)∪B=B,则下列关系一定正确的是()A.A∩B=⌀B.A∩B=BC.A∪B=RD.(∁U B)∪A=A综合提升组9.(2021江苏高三月考)已知集合A={1,2,3},B={-1,0,1,2},若M⊆A且M⊆B,则满足条件的集合M的个数为()A.1B.3C.4D.610.(2021河北沧州高三期末)设全集为R,M={x|f(x)≠0},N={x|g(x)≠0},那么集合{x|f(x)g(x)=0}等于()A.(∁R M)∩(∁R N)B.(∁R M)∪NC.M∪(∁R N)D.(∁R M)∪(∁R N)11.(2021广东佛山高三月考)设A={x|1≤x≤3},B={x|ln(3-2x)<0},则图中阴影部分表示的集合为()A.-∞,32B.1,32C.(1,3]D.32,312.(2021山东泰安高三月考)已知集合A={x|x2+3<4x},B⊆N*,且A∩B≠⌀,则下列结论一定正确的是()A.1∈AB.B={2}C.2∈BD.(∁R A)∩B=⌀13.(2021湖南长郡中学高三期中)已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4,5},A∩B=⌀;(2)A的元素个数不是A中的元素,B的元素个数不是B中的元素,则有序集合对(A,B)的个数为()A.4B.6C.8D.16创新应用组14.(2021江苏南京高三月考)若A={(x,y)|x2+y2≤1},B={(x,y)||x|+|y|≤a},且A⊆B,则实数a的取值范围是()A.1,+∞ B.[1,+∞)2C.[√2,+∞)D.[2,+∞)15.已知集合A={x∈R|x2-3x-18<0},B={x∈R|x2+ax+a2-27<0},则下列说法错误的是()A.若A=B,则a=-3B.若A⊆B,则a=-3C.若B=⌀,则a≤-6或a≥6D.若a=3,则A∩B={x|-3<x<6}课时规范练1集合1.D解析:∵A={x∈Z|-2≤x<2}={-2,-1,0,1},B={0,1},∴B⊆A,A∩B=B={0,1},故选D.∈Z且x∈N*,所以x的可取值有:1,2,4,5,6,9,即A={1,2,4,5,6,9},由此可判断2.C解析:因为63-xC错误,其余均正确.3.B解析:因为M∪N={1,2,3},所以1-a=2,解得a=-1,故选B.4.A解析:由题意M∩∁R N=⌀,可得M⊆N,所以M∩N=M,故选A.5.C解析:因为集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z}={y|y=2(2k+1)+1,k∈Z},当x∈N时,x∈M成立,所以M∪N={x|x=2k+1,k∈Z},故选C.6.D解析:画x和y=-x2+2的图象,由图象可知两函数有两个交点,则集合P∩Q中有2个元素,则集出函数y=12合P∩Q的真子集有22-1=3(个),故选D.,x∈Z,B={-1,0,1,2},A∩B={0,1,2},故A正确;A∪7.B解析:A={x|2x+1≥0,x∈Z}=x x≥-12B={x|x≥-1,x∈Z},故B错误;∁U A=x x<-1,x∈Z,所以(∁U A)∩B={-1},故C正确;由A∩2B={0,1,2},知A∩B的真子集个数是23-1=7,故D正确.故选B.8.D解析:令U={1,2,3,4},A={2,3,4},B={1,2},满足(∁U A)∪B=B,但A∩B≠⌀,A∩B≠B,故A,B均不正确;由(∁U A)∪B=B,知∁U A⊆B,∴U=A∪(∁U A)⊆(A∪B),∴A∪B=U,由∁U A⊆B,知∁U B⊆A,∴(∁U B)∪A=A,故C不正确,D正确.故选D.9.C解析:∵集合A={1,2,3},B={-1,0,1,2},∴A∩B={1,2}.又M⊆A且M⊆B,∴M⊆(A∩B),即M⊆{1,2},∴M的个数为22=4,故选C.10.D解析:因为{x|f(x)g(x)=0}={x|f(x)=0或g(x)=0},又因为M={x|f(x)≠0},N={x|g(x)≠0},所以{x|f(x)g(x)=0}=(∁R M)∪(∁R N),故选D.11.B 解析:由图可知阴影部分表示的集合为A ∩B.因为A={x|1≤x ≤3},B={x|ln(3-2x )<0}=x 1<x<32,所以A ∩B=1,32,故选B .12.C 解析:因为x 2+3<4x ,所以(x-1)(x-3)<0,解得1<x<3,所以集合A={x|1<x<3}.因为B ⊆N *,且A ∩B ≠⌀,则2∈B ,故选C .13.C 解析:由题意可知,集合A 不能是空集,也不可能为{1,2,3,4,5}.若集合A 只有一个元素,则集合A 为{4};若集合A 有两个元素,则集合A 为{1,3},{3,4},{3,5};若集合A 有三个元素,则集合A 为{1,2,4},{1,2,5},{2,4,5};若集合A 有四个元素,则集合A 为{1,2,3,5}.综上所述,有序集合对(A ,B )的个数为8,故选C . 14.C 解析:集合A 为圆O :x 2+y 2=1的内部和圆上的点集,B 为由直线x+y=a ,x-y=a ,-x+y=a ,x+y=-a 围成的正方形的内部和边上的点集,画出图象(如图所示),当直线EF 与圆O 相切时,设切点为C ,连接OC ,∵△EOF 为等腰直角三角形,OE=OF ,∠EOF=90°,OC ⊥EF , ∴OC 为Rt △EOF 斜边上的中线, ∴OC=12EF ,即EF=2OC=2,∴OE=OF=√22EF=√2,此时a=√2. ∴a ≥√2,故选C .15.D 解析:由已知得,A={x|-3<x<6},令g (x )=x 2+ax+a 2-27.对于A,若A=B ,即-3,6是方程g (x )=0的两个根,则{a =-3,a 2-27=-18,得a=-3,正确;对于B,若A ⊆B ,则{g(-3)=a 2-3a -18≤0,g(6)=a 2+6a +9≤0,解得a=-3,正确;对于C,当B=⌀时,Δ=a 2-4(a 2-27)≤0,解得a ≤-6或a ≥6,正确;对于D,当a=3时,有B={x ∈R |x 2+3x-18<0}={x|-6<x<3},所以A ∩B={x|-3<x<3},错误.故选D .。
排球训练规章制度

排球训练规章制度1. 宗旨排球训练规章制度是为了保证每位队员的安全、规范训练流程,提高整个团队的训练效率和竞技水平。
严格执行规章制度,培养队员的纪律意识和团队精神,为取得优异的成绩提供坚实的基础。
2. 训练时间和场地2.1 训练时间:每周一至周五,每天上午9:00-11:30,下午14:00-17:00。
2.2 训练场地:排球场地应为标准的室内排球场。
必要时,可以根据实际情况选择室外场地进行训练。
3. 训练装备和器材3.1 球员装备:球员必须穿着合适的运动服装,戴上运动鞋。
穿戴过多的首饰和异物是禁止的。
3.2 球类器材:每位球员应携带自己的训练球,并保持球的干净和适度的充气。
3.3 训练道具:根据不同训练需求,教练将提供所需的训练道具,如训练网、训练器械等。
请注意正确使用和保管这些器材。
4. 训练纪律4.1 准时到达:每位队员必须准时到达训练场地。
若有事不能参加训练,请提前向教练请假,并及时补训以保持训练连贯性。
4.2 集合规范:在集合时,队员应排列整齐,保持安静等待指示。
4.3 服从指挥:队员在训练中必须服从教练的指挥和安排,不得私自离开训练场地。
4.4 纪律行动:任何违反纪律和规定的行为都是不被允许的,如:打闹、丢球、无故缺席等。
4.5 尊重教练和队友:队员应尊重教练和队友,互相协作,建立良好的团队氛围。
5. 训练方法5.1 基础技术训练:训练中将注重球员的基础技术训练,如传球、发球、扣球和拦网等。
教练将根据队员实际情况制定相应的训练计划。
5.2 对抗训练:适时进行对抗训练,提高队员的实战能力和比赛应变能力。
5.3 队员轮换:教练将根据球员的表现和训练需求,适时进行队员的轮换,提供机会给每个队员参与比赛。
6. 伤病处理和预防6.1 预防伤病:每位队员必须定期进行身体健康检查,并根据教练的要求进行预防性的训练。
6.2 伤病处理:若队员在训练过程中受伤,请及时向教练报告并得到适当的处理。
伤病康复后,可以重新参与训练。
数学规范训练:1.1.1第1课时集合的含义Word版解析版

第一章 1.1 1.1.1 第 1 课时【基础练习】1.有以下各组对象:①靠近于 0 的数的全体;②比较小的正整数的全体;③平面上到点 O 的距离等于 1 的点的全体;④直角三角形的全体.此中能构成会合的个数是 ( )A . 2B . 3C. 4 D .5【答案】 A【分析】①②没有明确标准,故不可以构成会合.③④均可构成会合,因为任取一个元素能否为此会合的元素有明确标准可依.2.已知会合 A 由 x<1 的数构成,则有()A.3∈A B.1∈AC.0∈A D .- 1?A【答案】 C【分析】很显然 3,1 不知足不等式,而0,- 1 知足不等式.3.若一个会合中的三个元素a, b, c 是△ ABC 的三边长,则此三角形必定不是()A .锐角三角形B .直角三角形C.钝角三角形 D .等腰三角形【答案】 D【分析】依据会合中元素的互异性可知a≠ b≠ c,因此必定不是等腰三角形.4.已知会合 A 含有三个元素3,5,7,且当 a∈ A,有 10- a∈ A,则 a 为 ()A.3或5或 7 B.3或 7C. 5 D .7【答案】 A【分析】若 a= 3∈ A,则 10- a=7∈ A;若 a= 7∈ A,则 10- a=3∈ A;若 a=5∈ A,则10- a=5∈ A.应选 A .5.已知会合 A 中只含有1,a2两个元素,则实数 a 不可以取的值为________.【答案】±1【分析】由 a2≠1,得 a≠±1.6.若x ∈ N ,则知足2x - 5<0 的元素构成的会合中全部元素之和为________.【答案】3【分析】 由 2x - 5< 0,得x < 52,又x ∈ N ,∴ x = 0, 1,2,故全部元素之和为3.7.判断以下说法能否正确?并说明原因.(1)参加 2019 年亚洲杯的全部球队构成一个会合;(2)将来世界的高科技产品构成一个会合;3 1(3)1,0 . 5, 2, 2构成的会合含有四个元素;(4)我校的年青教师构成一个会合.【分析】 (1)正确.因为参加 2019 年亚洲杯的球队是确立的.(2)不正确.因为高科技产品的标准不确立.1(3)不正确.对一个会合,它的元素一定是互异的,因为0.5= 2,在这个会合中只好作为一个元素,故这个会合含有三个元素.(4)不正确.因为年青没有明确的标准.8.设会合 A 中含有三个元素 3, x , x 2- 2x .(1)务实数 x 应知足的条件;(2)若- 2∈ A ,务实数 x .【分析】 (1)由会合中元素的互异性可知, x ≠ 3,且 x ≠ x 2- 2x ,x 2 -2x ≠ 3.解得 x ≠ - 1,且 x ≠ 0,且 x ≠ 3.(2)∵- 2∈ A ,∴ x =- 2 或 x 2- 2x =- 2.因为 x 2- 2x = (x - 1)2- 1≥ -1,∴x =- 2.【能力提高】9.已知 x ,y 为非零实数,代数式 x+ y的值所构成的会合是 M ,则以下判断正确的选项是()|x| |y|A .0?MB .1∈MC .- 2?MD .2∈M【答案】 D【分析】 ①当 x ,y 为正数时,代数式x+ y的值为 2;②当 x ,y 为一正一负时,代数式x|x| |y||x|+ |y|y 的值为 0;③当 x ,y 均为负数时, 代数式 |x|x + |y|y 的值为- 2,因此会合 M 的元素共有 3个:- 2,0,2.应选 D .10.已知会合 A 是由 0, m, m2-3m+ 2 三个元素构成的会合,且2∈A,则实数 m 的值为 ()A . 2B . 3C.0或3 D .0,2,3 均可【答案】 B【分析】因为 2∈ A,因此 m= 2 或 m2-3m+ 2= 2,解得 m= 0 或 m= 2 或 m=3.又会合中的元素要知足互异性,对m 的全部取值进行一一考证可得m=3.应选 B.b11.已知 a, b∈ R,会合 A 中含有 a,a, 1 三个元素,会合 B 中含有 a2, a+ b,0 三个元素,若 A= B,则 a+ b= ________.【答案】-1【分析】∵A= B,0∈ B,∴ 0∈ A.又 a≠ 0,∴b= 0,则 b= 0.∴ B={ a,a2, 0} .∵ 1∈ B,a∴ a2= 1, a=±1.由元素的互异性知 a=- 1,∴ a+ b=- 1.12.设 A 为实数集,且知足条件:若1∈A(a≠ 1).求证:a∈ A,则1-a(1)若 2∈ A,则 A 中必还有此外两个元素;(2)会合 A 不行能是单元素集.1【证明】 (1)若 a∈A,则∈ A.∵2∈ A,∴1=- 1∈ A.1- 21 1∵- 1∈A,∴=∈A.∵12∈ A,∴11=2∈ A.1-21∴A 中此外两个元素为-1,.1 (2)若 A 为单元素集,则a=,即 a2- a+ 1= 0,方程无解.∴a≠1.∴会合 A 不行能是单元素集.1- a。
2022届高三数学(人教A版文)复习习题:第一章 集合与常用逻辑用语 课时规范练2 Word版含答案

课时规范练2不等关系及简洁不等式的解法基础巩固组1.(2021安徽合肥模拟)已知a,b∈R,下列命题正确的是()A.若a>b,则|a|>|b|B.若a>b,则C.若|a|>b,则a2>b2D.若a>|b|,则a2>b22.已知集合A={x|(1-x)(1+x)≥0},集合B={y|y=2x,x<0},则A∩B=()A.(-1,1]B.[-1,1]C.(0,1)D.[-1,+∞)3.若集合A={x|ax2-ax+1<0}=⌀,则实数a的取值范围是()A.{a|0<a<4}B.{a|0≤a<4}C.{a|0<a≤4}D.{a|0≤a≤4}4.(2021贵州贵阳测试)下列命题正确的是()A.若a>b,c>d,则ac>bdB.若ac>bc,则a>bC.若,则a<bD.若a>b,c>d,则a-c>b-d5.(2021重庆一中调研,文5)若a>1>b>-1,则下列不等式恒成立的是()A.a>b2B.C.D.a2>2b6.不等式<0的解集为()A.{x|1<x<2}B.{x|x<2,且x≠1}C.{x|-1<x<2,且x≠1}D.{x|x<-1或1<x<2}7.若不等式mx2+2mx-4<2x2+4x对任意x都成立,则实数m的取值范围是()A.(-2,2]B.(-2,2)C.(-∞,-2)∪[2,+∞)D.(-∞,2]〚导学号24190850〛8.(2021陕西西安模拟)已知存在实数a满足ab2>a>ab,则实数b 的取值范围是.9.已知关于x的不等式ax2+bx+a<0(ab>0)的解集是空集,则a2+b2-2b的取值范围是.10.已知a∈R,关于x的不等式ax2+(1-2a)x-2>0的解集有下列四种说法:①原不等式的解集不行能为⌀;②若a=0,则原不等式的解集为(2,+∞);③若a<-,则原不等式的解集为;④若a>0,则原不等式的解集为∪(2,+∞).其中正确的个数为. 11.对任意x∈[-1,1],函数f(x)=x2+(k-4)x+4-2k的值恒大于零,则k的取值范围是.综合提升组12.(2021吉林长春模拟)若<0,则在下列不等式:①;②|a|+b>0;③a->b-;④ln a2>ln b2中,正确的不等式是()A.①④B.②③C.①③D.②④13.若关于x的不等式f(x)=ax2-x-c>0的解集为{x|-2<x<1},则函数y=f(-x)的图象为()14.(2021河南郑州月考)已知实数x,y满足0<xy<4,且0<2x+2y<4+xy,则x,y的取值范围是()A.x>2,且y>2B.x<2,且y<2C.0<x<2,且0<y<2D.x>2,且0<y<2〚导学号24190851〛15.(2021江西九江模拟)若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是.创新应用组16.(2021辽宁大连模拟)已知函数f(x)=(ax-1)(x+b),假如不等式f(x)>0的解集是(-1,3),那么不等式f(-2x)<0的解集是()A.B.C.D.〚导学号24190852〛17.(2021湖北襄阳高三1月调研,文15)已知f(x)=若对任意x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则t 的取值范围是.〚导学号24190853〛课时规范练2不等关系及简洁不等式的解法1.D当a=1,b=-2时,A不正确,B不正确,C不正确;对于D,a>|b|≥0,则a2>b2,故选D.2.C由题意得A={x|-1≤x≤1}=[-1,1],B={y|0<y<1}=(0,1),所以A∩B=(0,1),故选C.3.D由题意知当a=0时,满足条件.当a≠0时,由集合A={x|ax2-ax+1<0}=⌀,可知得0<a≤4.综上,可知0≤a≤4.4.C取a=2,b=1,c=-1,d=-2,可知A错误;当c<0时,ac>bc⇒a<b,∴B错误;∵,∴c≠0,又c2>0,∴a<b,C正确;取a=c=2,b=d=1,可知D错误.5.A对于A,∵-1<b<1,∴0≤b2<1.∵a>1,∴a>b2,故A正确;对于B,若a=2,b=,此时满足a>1>b>-1,但,故B错误;对于C,若a=2,b=-,此时满足a>1>b>-1,但,故C错误;对于D,若a=,b=,此时满足a>1>b>-1,但a2<2b,故D错误.6.D由于不等式<0等价于(x+1)·(x-1)(x-2)<0,所以该不等式的解集是{x|x<-1或1<x<2}.故选D.7.A原不等式等价于(m-2)x2+2(m-2)x-4<0,当m=2时,对任意x不等式都成立;当m-2<0时,Δ=4(m-2)2+16(m-2)<0,∴-2<m<2.综上,得m∈(-2,2].8.(-∞,-1)∵ab2>a>ab,∴a≠0.当a>0时,有b2>1>b,即解得b<-1;当a<0时,有b2<1<b,即无解.综上可得b<-1.9. ∵不等式ax2+bx+a<0(ab>0)的解集是空集,∴a>0,b>0,且Δ=b2-4a2≤0.∴b2≤4a2.∴a2+b2-2b≥+b2-2b=≥-.∴a2+b2-2b的取值范围是.10.3原不等式等价于(ax+1)(x-2)>0.当a=0时,不等式化为x-2>0,得x>2.当a≠0时,方程(ax+1)(x-2)=0的两根分别是2和-,若a<-,解不等式得-<x<2;若a=-,不等式的解集为⌀;若-<a<0,解不等式得2<x<-;若a>0,解不等式得x<-或x>2.故①不正确,②③④正确.11.(-∞,1)函数f(x)=x2+(k-4)x+4-2k的图象的对称轴方程为x=-.当<-1,即k>6时,f(x)的值恒大于零等价于f(-1)=1+(k-4)×(-1)+4-2k>0,解得k<3,故k不存在;当-1≤≤1,即2≤k≤6时,f(x)的值恒大于零等价于f+4-2k>0,即k2<0,故k不存在;当>1,即k<2时,f(x)的值恒大于零等价于f(1)=1+(k-4)+4-2k>0,即k<1.综上可知,当k<1时,对任意x∈[-1,1],函数f(x)=x2+(k-4)x+4-2k的值恒大于零.12.C由于<0,故可取a=-1,b=-2.由于|a|+b=1-2=-1<0,所以②错误;由于ln a2=ln(-1)2=0,ln b2=ln(-2)2=ln 4>0,所以④错误.综上所述,②④错误,故选C.13.B(方法一)由根与系数的关系知=-2+1,-=-2,解得a=-1,c=-2.所以f(x)=-x2-x+2.所以f(-x)=-x2+x+2=-(x+1)(x-2),图象开口向下,与x轴的交点为(-1,0),(2,0),故选B.(方法二)由题意可画出函数f(x)的大致图象,如图.又由于y=f(x)的图象与y=f(-x)的图象关于y轴对称,所以y=f(-x)的图象如图.14.C由题意得由2x+2y-4-xy=(x-2)(2-y)<0,得又xy<4,可得故选C.15.(-∞,-2)不等式x2-4x-2-a>0在区间(1,4)内有解等价于a<(x2-4x-2)max.令g(x)=x2-4x-2,x∈(1,4),∴g(x)<g(4)= -2,∴a<-2.16.A由f(x)>0的解集为(-1,3),易知f(x)<0的解集为(-∞,-1)∪(3,+∞),故由f(-2x)<0得-2x<-1或-2x>3,∴x>或x<-.17.[,+∞)(方法一)∵对任意x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,∴f(t+t)=f(2t)≥2f(t).当t<0时,f(2t)=-4t2≥2f(t)=-2t2,这不行能,故t≥0.∵当x∈[t,t+2]时,有x+t≥2t≥0,x≥t≥0,∴当x∈[t,t+2]时,不等式f(x+t)≥2f(x),即(x+t)2≥2x2,∴x+t≥x,∴t≥(-1)x对于x∈[t,t+2]恒成立.∴t≥(-1)(t+2),解得t≥.(方法二)当x<0时,f(x)=-x2单调递增,当x≥0时,f(x)=x2单调递增,∴f(x)=在R上单调递增,且满足2f(x)=f(x),∵不等式f(x+t)≥2f(x)=f(x)在[t,t+2]恒成立,∴x+t≥x在[t,t+2]上恒成立,即t≥(-1)x在x∈[t,t+2]恒成立,∴t≥(-1)(t+2),解得t≥,故答案为[,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时规范训练
A 组 基础演练
1.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270. 关于上述样本的下列结论中,正确的是( ) A .②、③都不能为系统抽样 B .②、④都不能为分层抽样 C .①、④都可能为系统抽样 D .①、③都可能为分层抽样
解析:选D.因为③为系统抽样,所以选项A 不对;因为②为分层抽样,所以选项B 不对;因为④不为系统抽样,所以选项C 不对,故选D.
2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( ) A .6 B .8 C .10
D .12
解析:选B.设样本容量为N ,则N ×30
70=6, ∴N =14,∴高二年级所抽取的人数为14×40
70=8.
3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本
中的青年职工为7人,则样本容量为()
A.7 B.15
C.25 D.35
解析:选B.由题意知青年职工人数∶中年职工人数∶老年职工人数=350∶250∶150=7∶5∶3.由样本中青年职工为7人得样本容量为15.
4.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,己知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应为()
A.13 B.19
C.20 D.51
解析:选C.抽样间隔为46-33=13,故另一位同学的编号为7+13=20,选C. 5.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()
A.101 B.808
C.1 212 D.2 012
解析:选B.由题意知抽样比为12
96,而四个社区一共抽取的驾驶员人数为12+21
+25+43=101,故有12
96=
101
N,解得N=808.
6.某学校高三一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是()
A.1,2,3,4,5,6 B.6,16,26,36,46,56
C.1,2,4,8,16,32 D.3,9,13,27,36,54
解析:选B.由系统抽样知识知,所选取学生编号之间的间距相等且为10,所以应选B.
7.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生是高一
学生的两倍,高二学生比高一学生多300人,现在按
1
100的抽样比例用分层抽样
的方法抽取样本,则高一学生应抽取的人数为()
A.8 B.11
C.16 D.10
解析:选A.设高一学生有x人,则高三学生有2x人,高二学生有(x+300)人,
学校共有4x+300=3 500(人),解得x=800(人),由此可得按
1
100的抽样比例用分
层抽样的方法抽取样本,高一学生应抽取的人数为
1
100×800=8(人),故应选A.
8.某校初一、初二、初三年级各有300人,400人,302人,采用系统抽样从中抽取一个容量为100的样本检查学生的视力情况,则初三年级每人被抽到的概率为()
A.302
1 00
2 B.
100 1 002
C.300
1 000 D.30 302
解析:选B.利用系统抽样,虽然剔除2人,但每人能抽到的概率为n
N=
100
1 002.
9.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=() A.9 B.10
C.12 D.13
解析:选D.依题意得3
60=
n
120+80+60
,故n=13.
10.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是()
A.5 B.7
C.11 D.13
解析:选B.间隔数k=800
50=16,即每16人抽取一个人.由于39=2×16+7,
所以第1小组中抽取的数为7.
B组能力突破
1.某校共有学生2 000名,各年级男、女生人数如下表所示:
()
A.24 B.18
C.16 D.12
解析:选C.一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,于是三年级的学生人数为2 000-750-750=500,所以应在三年级抽取
的人数为500×
64
2 000=16.
2.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()
A.26,16,8 B.25,17,8
C.25,16,9 D.24,17,9
解析:选B.由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).
令3+12(k-1)≤300得k≤103
4,因此第Ⅰ营区被抽中的人数是25;
令300<3+12(k-1)≤495得103
4<k≤42,因此第Ⅱ营区被抽中的人数是42-25
=17.结合各选项知,选B.
3.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.答案:16,28,40,52
4.某课题组进行城市空气质量调查,按地域把24个城市分成某甲、乙、丙三组,
对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.
解析:由已知得抽样比为6
24=
1
4,
∴丙组中应抽取的城市数为8×1
4=2.
答案:2
5.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.
解析:由题意知:m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.
答案:76
6.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为123,则第2组中应抽出个体的号码是________.
解析:由题意可知,系统抽样的组数为20,间隔为8,设第1组抽出的号码为x,则由系统抽样的法则可知,第n组抽出个体的号码应该为x+(n-1)×8,所以第16组应抽出的号码为x+(16-1)×8=123,解得x=3,所以第2组中应抽出个体的号码为3+(2-1)×8=11.
答案:11。