课时规范训练--集合10-1
2025高考数学一轮复习-1.1-集合-课时规范训练【含答案】

1.1-集合-课时规范训练基础巩固练1.(2023新高考Ⅰ)已知集合M={-2,-1,0,1,2},N={x|x2-x-6≥0},则M∩N=()A.{-2,-1,0,1}B.{0,1,2}C.{-2}D.{2}2.(2023新高考Ⅱ)设集合A={0,-a},B={1,a-2,2a-2},若A⊆B,则a=()A.2B.1C.23D.-13.(2024南京、盐城一模)已知集合A={0,1,2},B={x|y=lg(-x2+2x)},则A∩B=()A.{0,1,2}B.{1}C.{0}D.(0,2)4.设集合A={x|x2-4≤0},B={x|2x+a≤0},且A∩B={x|-2≤x≤1},则a=()A.-4B.-2C.2D.45.(2023镇江检测)记集合M={x||x|>2},N={x|y=2- },则(∁R M)∩N=()A.{x|-2≤x≤2}B.{x|x>2}C.{x|0≤x<2}D.{x|x<-2}6.设集合A={2,3,a2-2a-3},B={0,3},C={2,a}.若B⊆A,A∩C={2},则a=()A.-3B.-1C.1D.37.设集合U=R,集合M={x|x<1},N={x|-1<x<2},则{x|x≥2}=()A.∁U(M∪N)B.N∪(∁U M)C.∁U(M∩N)D.M∪(∁U N)8.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%9.定义集合A,B的一种运算:A B={x|x=a2-b,a∈A,b∈B},若A={-1,0},B={1,2},则A B中的元素个数为()A.1B.2C.3D.410.(多选题)已知集合{x|mx2-2x+1=0}={n},则m+n的值可能为()A.0B.12C.1D.211.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”.对于集合A={-1,2},B={x|ax2=2,a≥0},若这两个集合构成“鲸吞”或“蚕食”,则实数a的取值集合为.12.设集合A={x|x2+2x-3>0},集合B={x|x2-2ax≤0},若A∩B中恰含有一个整数,则实数a的取值范围是.综合提升练13.设全集U={x||x|<4且x∈Z},S={-2,1,3},若P⊆U,(∁U P)⊆S,则这样的集合P共有()A.5个B.6个C.7个D.8个14.设集合M={(x,y)|y=4- 2},N={(x,y)|(x-2)2+(y-2)2=r2}(r>0).当M∩N有且只有一个元素时,正数r 的所有取值为()A.2+2或22-2B.2<r≤25C.2<r≤25或r=22-2D.2≤r≤25或r=22-215.已知集合M={x|1≤x≤10,x∈N},对它的非空子集A,将A中每个元素k都乘(-1)k再求和,如A={1,3,6},可求得和为(-1)1×1+(-1)3×3+(-1)6×6=2,则对M的所有非空子集,这些和的总和为()A.5B.5120C.2555D.256016.(多选题)已知M是同时满足下列条件的集合:①0∈M,1∈M;②若x,y∈M,则x-y∈M;③x∈M且x≠0,则1 ∈M.下列结论中,正确的有()A.13∈MB.-1∉MC.若x,y∈M,则x+y∈MD.若x,y∈M,则xy∈M17.设集合S,T,S⊆N*,T⊆N*,S,T中至少有两个元素,且S,T满足:①对于任意x,y∈S,若x≠y,则有xy∈T;②对于任意x,y∈T,若x<y,则 ∈S.若S有4个元素,则S∪T有个元素.创新应用练18.已知数集A=[t,t+1]∪[t+4,t+9].若存在λ∈R,使得对任意a∈A都有 ∈A,则称A为完美集,给出下列四个结论:①存在t∈(0,+∞),使得A为完美集;②存在t∈(-∞,0),使得A为完美集;③如果t∉Z,那么A一定不为完美集;④使得A为完美集的所有t的值之和为-2.其中,所有正确结论的序号是.参考答案与解析1.C2.B3.B4.B5.A6.B7.A8.C9.C10.BD11 0,12,212 -52,-2∪113.D14.C15.D16.ACD17.718.①②。
高中数学课时作业(人教B版必修第一册)课时作业(一) 集合及其表示方法

课时作业(一) 集合及其表示方法一、选择题1.有下列说法:①{1,2}与{2,1}不同;②0∈{x |x 2+x =0};③方程(x +1)(x -2)2=0的所有解的集合可表示为{}-1,2,2 ;④集合{}x |-3<x <4 是有限集.其中正确的说法是( )A .只有①和④B .只有②和③C .只有②D .四种说法都不对2.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是( )A .{x |x 是小于18的正奇数}B .{x |x =4k +1,k ∈Z ,且k <5}C .{x |x =4t -3,t ∈N ,且t ≤5}D .{x |x =4s -3,s ∈N *,且s ≤5}3.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,那么a 为( )A .2B .2或4C .4D .04.(多选)下列集合的表示方法不正确的是( )A .第二、四象限内的点集可表示为{(x ,y )|xy ≤0,x ∈R ,y ∈R }B. 不等式x -1<4的解集为{x <5}C .{全体整数}D .实数集可表示为R二、填空题5.给出下列关系:(1)13∈R ;(2)5 ∈Q ;(3)-3∉Z ;(4)-3 ∉N ,其中正确的是________. 6.用区间表示下列数集.(1){x |x ≥2}=________;(2){x |3<x ≤4}=________;(3){x |x >1且x ≠2}=________.7.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈N ,126-x ∈N ,用列举法表示集合A 为________. 三、解答题8.若集合A ={x |ax 2+1=0,x ∈R }不含有任何元素,求实数a 的取值范围.(用区间表示)9.用适当的方法表示下列集合.(1)方程x (x 2+2x +1)=0的解集;(2)在自然数集中,小于1 000的奇数构成的集合;(3)绝对值不大于2的所有整数;(4)方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1 的解; (5)函数y =1x图象上的所有点. [尖子生题库]10.下列三个集合:①{x |y =x 2+1};②{y |y =x 2+1};③{(x,y)|y=x2+1}.(1)它们是不是相同的集合?(2)它们各自的含义是什么?。
2022数学课时规范练1集合的概念与运算文含解析新人教A版

课时规范练1 集合的概念与运算基础巩固组1.(2020全国2,文1)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.⌀B.{-3,—2,2,3}C。
{-2,0,2}D.{—2,2}2。
(2020陕西宝鸡三模,文1)设集合A={0,2,4},B={x∈N|log2x≤1},则A∪B=()A.{2,4} B。
{0,1,4}C。
{1,2,4} D。
{0,1,2,4}3.若集合A={0,1,2,3},B={1,2,4},C=A∩B,则C的子集共有()A.6个B。
4个C。
3个D。
2个4。
(2020山东滨州三模,1)已知集合M={x|x=4n+1,n∈Z},N={x|x=2n+1,n∈Z},则()A。
M⊆N B。
N⊆MC.M∈ND.N∈M5。
(2020山东淄博4月模拟,1)已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩(∁U B)=()A.{3} B。
{1,4,6}C。
{2,5}D。
{2,3,5}6。
已知集合A={x|x2—x-2=0},B={x∈Z||x|≤2},则A∩B=()A.{1,2}B.{1,-2}C.{—1,2} D。
{—1,—2}7.设全集U={x∈N*|x≤4},集合A={1,4},B={2,4},则∁U(A∩B)为()A.{1,2,3}B。
{1,2,4}C。
{1,3,4} D。
{2,3,4}8。
设全集U=R,集合A={x|x—1≤0},B={x|x2-x-6<0},则下图中阴影部分表示的集合为()A。
{x|x<3}B.{x|—3〈x≤1}C。
{x|x<2}D。
{x|-2〈x≤1}9.若集合A={x|x≥3—2a},B={x|(x—a+1)(x—a)≥0},A ∪B=R,则a的取值范围为()A.[2,+∞)B.(-∞,2]C.(-∞,43]D.43,+∞10.设全集为R,集合P={x|x2—4x>0},Q={x|log2(x-1)〈2},则(∁R P)∩Q=()A.[0,4]B.[0,5)C.(1,4]D.[1,5)11.已知集合A={x|log2x≤2},B={x|x〈a},若A⊆B,则实数a的取值范围是.12。
新教材老高考适用2023高考数学一轮总复习课时规范练1集合北师大版

课时规范练1集合基础巩固组1.(2021湖南长沙雅礼中学高三月考)已知集合A={x∈Z|-2≤x<2},B={0,1},则下列判断正确的是()A.B∈AB.A∩B=⌀C.A⊆BD.B⊆A∈Z,则下列结论不正确的是() 2.(2021山东淄博实验中学高三月考)若集合A=x∈N*63-xA.1∈AB.3∉AC.-3∈AD.8∉A3.(2021江苏,1)已知集合M={1,3},N={1-a,3},若M∪N={1,2,3},则实数a的值是()A.-2B.-1C.0D.14.(2021山东烟台高三模拟)已知集合M,N都是R的子集,且M∩∁R N=⌀,则M∩N=()A.MB.NC.⌀D.R5.(2021湖北荆门高三月考)已知集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z},则M∪N=()A.{x|x=6k+2,k∈Z}B.{x|x=4k+2,k∈Z}C.{x|x=2k+1,k∈Z}D.⌀x,Q={(x,y)|y=-x2+2},则集合P∩Q的真子集6.(2021宁夏银川高三月考)集合P=(x,y)y=12个数为()A.0B.1C.2D.37.已知全集U=Z,集合A={x|2x+1≥0,x∈Z},B={-1,0,1,2},则下列说法错误的是()A.A∩B={0,1,2}B.A∪B={x|x≥0}C.(∁U A)∩B={-1}D.A∩B的真子集个数是78.已知全集U的两个非空真子集A,B满足(∁U A)∪B=B,则下列关系一定正确的是()A.A∩B=⌀B.A∩B=BC.A∪B=RD.(∁U B)∪A=A综合提升组9.(2021江苏高三月考)已知集合A={1,2,3},B={-1,0,1,2},若M⊆A且M⊆B,则满足条件的集合M的个数为()A.1B.3C.4D.610.(2021河北沧州高三期末)设全集为R,M={x|f(x)≠0},N={x|g(x)≠0},那么集合{x|f(x)g(x)=0}等于()A.(∁R M)∩(∁R N)B.(∁R M)∪NC.M∪(∁R N)D.(∁R M)∪(∁R N)11.(2021广东佛山高三月考)设A={x|1≤x≤3},B={x|ln(3-2x)<0},则图中阴影部分表示的集合为()A.-∞,32B.1,32C.(1,3]D.32,312.(2021山东泰安高三月考)已知集合A={x|x2+3<4x},B⊆N*,且A∩B≠⌀,则下列结论一定正确的是()A.1∈AB.B={2}C.2∈BD.(∁R A)∩B=⌀13.(2021湖南长郡中学高三期中)已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4,5},A∩B=⌀;(2)A的元素个数不是A中的元素,B的元素个数不是B中的元素,则有序集合对(A,B)的个数为()A.4B.6C.8D.16创新应用组14.(2021江苏南京高三月考)若A={(x,y)|x2+y2≤1},B={(x,y)||x|+|y|≤a},且A⊆B,则实数a的取值范围是()A.1,+∞ B.[1,+∞)2C.[√2,+∞)D.[2,+∞)15.已知集合A={x∈R|x2-3x-18<0},B={x∈R|x2+ax+a2-27<0},则下列说法错误的是()A.若A=B,则a=-3B.若A⊆B,则a=-3C.若B=⌀,则a≤-6或a≥6D.若a=3,则A∩B={x|-3<x<6}课时规范练1集合1.D解析:∵A={x∈Z|-2≤x<2}={-2,-1,0,1},B={0,1},∴B⊆A,A∩B=B={0,1},故选D.∈Z且x∈N*,所以x的可取值有:1,2,4,5,6,9,即A={1,2,4,5,6,9},由此可判断2.C解析:因为63-xC错误,其余均正确.3.B解析:因为M∪N={1,2,3},所以1-a=2,解得a=-1,故选B.4.A解析:由题意M∩∁R N=⌀,可得M⊆N,所以M∩N=M,故选A.5.C解析:因为集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z}={y|y=2(2k+1)+1,k∈Z},当x∈N时,x∈M成立,所以M∪N={x|x=2k+1,k∈Z},故选C.6.D解析:画x和y=-x2+2的图象,由图象可知两函数有两个交点,则集合P∩Q中有2个元素,则集出函数y=12合P∩Q的真子集有22-1=3(个),故选D.,x∈Z,B={-1,0,1,2},A∩B={0,1,2},故A正确;A∪7.B解析:A={x|2x+1≥0,x∈Z}=x x≥-12B={x|x≥-1,x∈Z},故B错误;∁U A=x x<-1,x∈Z,所以(∁U A)∩B={-1},故C正确;由A∩2B={0,1,2},知A∩B的真子集个数是23-1=7,故D正确.故选B.8.D解析:令U={1,2,3,4},A={2,3,4},B={1,2},满足(∁U A)∪B=B,但A∩B≠⌀,A∩B≠B,故A,B均不正确;由(∁U A)∪B=B,知∁U A⊆B,∴U=A∪(∁U A)⊆(A∪B),∴A∪B=U,由∁U A⊆B,知∁U B⊆A,∴(∁U B)∪A=A,故C不正确,D正确.故选D.9.C解析:∵集合A={1,2,3},B={-1,0,1,2},∴A∩B={1,2}.又M⊆A且M⊆B,∴M⊆(A∩B),即M⊆{1,2},∴M的个数为22=4,故选C.10.D解析:因为{x|f(x)g(x)=0}={x|f(x)=0或g(x)=0},又因为M={x|f(x)≠0},N={x|g(x)≠0},所以{x|f(x)g(x)=0}=(∁R M)∪(∁R N),故选D.11.B 解析:由图可知阴影部分表示的集合为A ∩B.因为A={x|1≤x ≤3},B={x|ln(3-2x )<0}=x 1<x<32,所以A ∩B=1,32,故选B .12.C 解析:因为x 2+3<4x ,所以(x-1)(x-3)<0,解得1<x<3,所以集合A={x|1<x<3}.因为B ⊆N *,且A ∩B ≠⌀,则2∈B ,故选C .13.C 解析:由题意可知,集合A 不能是空集,也不可能为{1,2,3,4,5}.若集合A 只有一个元素,则集合A 为{4};若集合A 有两个元素,则集合A 为{1,3},{3,4},{3,5};若集合A 有三个元素,则集合A 为{1,2,4},{1,2,5},{2,4,5};若集合A 有四个元素,则集合A 为{1,2,3,5}.综上所述,有序集合对(A ,B )的个数为8,故选C . 14.C 解析:集合A 为圆O :x 2+y 2=1的内部和圆上的点集,B 为由直线x+y=a ,x-y=a ,-x+y=a ,x+y=-a 围成的正方形的内部和边上的点集,画出图象(如图所示),当直线EF 与圆O 相切时,设切点为C ,连接OC ,∵△EOF 为等腰直角三角形,OE=OF ,∠EOF=90°,OC ⊥EF , ∴OC 为Rt △EOF 斜边上的中线, ∴OC=12EF ,即EF=2OC=2,∴OE=OF=√22EF=√2,此时a=√2. ∴a ≥√2,故选C .15.D 解析:由已知得,A={x|-3<x<6},令g (x )=x 2+ax+a 2-27.对于A,若A=B ,即-3,6是方程g (x )=0的两个根,则{a =-3,a 2-27=-18,得a=-3,正确;对于B,若A ⊆B ,则{g(-3)=a 2-3a -18≤0,g(6)=a 2+6a +9≤0,解得a=-3,正确;对于C,当B=⌀时,Δ=a 2-4(a 2-27)≤0,解得a ≤-6或a ≥6,正确;对于D,当a=3时,有B={x ∈R |x 2+3x-18<0}={x|-6<x<3},所以A ∩B={x|-3<x<3},错误.故选D .。
数学规范训练:1.1.1第1课时集合的含义Word版解析版

第一章 1.1 1.1.1 第 1 课时【基础练习】1.有以下各组对象:①靠近于 0 的数的全体;②比较小的正整数的全体;③平面上到点 O 的距离等于 1 的点的全体;④直角三角形的全体.此中能构成会合的个数是 ( )A . 2B . 3C. 4 D .5【答案】 A【分析】①②没有明确标准,故不可以构成会合.③④均可构成会合,因为任取一个元素能否为此会合的元素有明确标准可依.2.已知会合 A 由 x<1 的数构成,则有()A.3∈A B.1∈AC.0∈A D .- 1?A【答案】 C【分析】很显然 3,1 不知足不等式,而0,- 1 知足不等式.3.若一个会合中的三个元素a, b, c 是△ ABC 的三边长,则此三角形必定不是()A .锐角三角形B .直角三角形C.钝角三角形 D .等腰三角形【答案】 D【分析】依据会合中元素的互异性可知a≠ b≠ c,因此必定不是等腰三角形.4.已知会合 A 含有三个元素3,5,7,且当 a∈ A,有 10- a∈ A,则 a 为 ()A.3或5或 7 B.3或 7C. 5 D .7【答案】 A【分析】若 a= 3∈ A,则 10- a=7∈ A;若 a= 7∈ A,则 10- a=3∈ A;若 a=5∈ A,则10- a=5∈ A.应选 A .5.已知会合 A 中只含有1,a2两个元素,则实数 a 不可以取的值为________.【答案】±1【分析】由 a2≠1,得 a≠±1.6.若x ∈ N ,则知足2x - 5<0 的元素构成的会合中全部元素之和为________.【答案】3【分析】 由 2x - 5< 0,得x < 52,又x ∈ N ,∴ x = 0, 1,2,故全部元素之和为3.7.判断以下说法能否正确?并说明原因.(1)参加 2019 年亚洲杯的全部球队构成一个会合;(2)将来世界的高科技产品构成一个会合;3 1(3)1,0 . 5, 2, 2构成的会合含有四个元素;(4)我校的年青教师构成一个会合.【分析】 (1)正确.因为参加 2019 年亚洲杯的球队是确立的.(2)不正确.因为高科技产品的标准不确立.1(3)不正确.对一个会合,它的元素一定是互异的,因为0.5= 2,在这个会合中只好作为一个元素,故这个会合含有三个元素.(4)不正确.因为年青没有明确的标准.8.设会合 A 中含有三个元素 3, x , x 2- 2x .(1)务实数 x 应知足的条件;(2)若- 2∈ A ,务实数 x .【分析】 (1)由会合中元素的互异性可知, x ≠ 3,且 x ≠ x 2- 2x ,x 2 -2x ≠ 3.解得 x ≠ - 1,且 x ≠ 0,且 x ≠ 3.(2)∵- 2∈ A ,∴ x =- 2 或 x 2- 2x =- 2.因为 x 2- 2x = (x - 1)2- 1≥ -1,∴x =- 2.【能力提高】9.已知 x ,y 为非零实数,代数式 x+ y的值所构成的会合是 M ,则以下判断正确的选项是()|x| |y|A .0?MB .1∈MC .- 2?MD .2∈M【答案】 D【分析】 ①当 x ,y 为正数时,代数式x+ y的值为 2;②当 x ,y 为一正一负时,代数式x|x| |y||x|+ |y|y 的值为 0;③当 x ,y 均为负数时, 代数式 |x|x + |y|y 的值为- 2,因此会合 M 的元素共有 3个:- 2,0,2.应选 D .10.已知会合 A 是由 0, m, m2-3m+ 2 三个元素构成的会合,且2∈A,则实数 m 的值为 ()A . 2B . 3C.0或3 D .0,2,3 均可【答案】 B【分析】因为 2∈ A,因此 m= 2 或 m2-3m+ 2= 2,解得 m= 0 或 m= 2 或 m=3.又会合中的元素要知足互异性,对m 的全部取值进行一一考证可得m=3.应选 B.b11.已知 a, b∈ R,会合 A 中含有 a,a, 1 三个元素,会合 B 中含有 a2, a+ b,0 三个元素,若 A= B,则 a+ b= ________.【答案】-1【分析】∵A= B,0∈ B,∴ 0∈ A.又 a≠ 0,∴b= 0,则 b= 0.∴ B={ a,a2, 0} .∵ 1∈ B,a∴ a2= 1, a=±1.由元素的互异性知 a=- 1,∴ a+ b=- 1.12.设 A 为实数集,且知足条件:若1∈A(a≠ 1).求证:a∈ A,则1-a(1)若 2∈ A,则 A 中必还有此外两个元素;(2)会合 A 不行能是单元素集.1【证明】 (1)若 a∈A,则∈ A.∵2∈ A,∴1=- 1∈ A.1- 21 1∵- 1∈A,∴=∈A.∵12∈ A,∴11=2∈ A.1-21∴A 中此外两个元素为-1,.1 (2)若 A 为单元素集,则a=,即 a2- a+ 1= 0,方程无解.∴a≠1.∴会合 A 不行能是单元素集.1- a。
课时规范训练--集合

课时规范训练A组基础演练1.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=() A.{-1,0}B.{0,1}C.{-1,0,1} D.{0,1,2}解析:选A.由于B={x|-2<x<1},所以A∩B={-1,0}.故选A.2.设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]解析:选 A.∵M={x|x2=x}={0,1},N={x|lg x≤0}={x|0<x≤1},∴M∪N={x|0≤x≤1},故选A.3.已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=() A.[-2,-1] B.[-1,2)C.[-1,1] D.[1,2)解析:选A.由不等式x2-2x-3≥0解得x≥3或x≤-1,因此集合A={x|x≤-1或x≥3},又集合B={x|-2≤x<2},所以A∩B={x|-2≤x≤-1},故选A. 4.设集合P={x|x>1},Q={x|x2-x>0},则下列结论正确的是()A.P⊆Q B.Q⊆PC.P=Q D.P∪Q=R解析:选A.由集合Q={x|x2-x>0},知Q={x|x<0或x>1},所以选A. 5.设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1} B.{2}C.{0,1} D.{1,2}解析:选 D.由已知得N={x|1≤x≤2},∵M={0,1,2},∴M∩N={1,2},故选D.6.集合U={0,1,2,3,4},A={1,2},B={x∈Z|x2-5x+4<0},则∁U(A∪B)=() A.{0,1,3,4} B.{1,2,3}C.{0,4} D.{0}解析:选C.因为集合B={x∈Z|x2-5x+4<0}={2,3},所以A∪B={1,2,3},又全集U={0,1,2,3,4},所以∁U(A∪B)={0,4}.所以选C.7.已知集合M={x|-1<x<2},N={x|x<a},若M⊆N,则实数a的取值范围是()A.(2,+∞) B.[2,+∞)C.(-∞,-1) D.(-∞,-1]解析:选B.依题意,由M⊆N得a≥2,即所求的实数a的取值范围是[2,+∞),选B.8.已知全集A={x∈N|x2+2x-3≤0},B={y|y⊆A},则集合B中元素的个数为()A.2 B.3C.4 D.5解析:选C.依题意得,A={x∈N|(x+3)(x-1)≤0}={x∈N|-3≤x≤1}={0,1},共有22=4个子集,因此集合B中元素的个数为4,选C.9.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B=________.解析:A、B都表示点集,A∩B即是由A中在直线x+y-1=0上的所有点组成的集合,代入验证即可.答案:{(0,1),(-1,2)}10.已知集合A={1,3,a},B={1,a2-a+1},且B⊆A,则a=________.解析:由a2-a+1=3,得a=-1或a=2,经检验符合.由a2-a+1=a,得a =1,由于集合中不能有相同元素,所以舍去.故a=-1或2.答案:-1或2B组能力突破1.已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则阴影部分表示的集合是()A.[-1,1)B.(-3,1]C.(-∞,-3)∪[-1,+∞) D.(-3,-1)解析:选D.由题意可知,M={x|-3<x<1},N={x|-1≤x≤1},∴阴影部分表示的集合为M∩(∁U N)={x|-3<x<-1}.2.已知全集U={1,2,3,4,5},集合M={3,4,5},N={1,2,5},则集合{1,2}可以表示()A.M∩N B.(∁U M)∩NC.M∩(∁U N) D.(∁U M)∩(∁U N)解析:选B.M∩N={5},A错误;∁U M={1,2},(∁U M)∩N={1,2},B正确;∁U N ={3,4},M∩(∁U N)={3,4},C错误;(∁U M)∩(∁U N)=∅,D错误.故选B. 3.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4C.3 D.2解析:选D.集合A={x|x=3n+2,n∈N},当n=0时,3n+2=2,当n=1时,3n+2=5,当n=2时,3n+2=8,当n=3时,3n+2=11,当n=4时,3n+2=14,∵B={6,8,10,12,14},∴A∩B中元素的个数为2.4.设集合A={1,2,3},B={2,3,4,5},定义A⊙B={(x,y)|x∈A∩B,y∈A∪B},则A⊙B中元素的个数是()A.7 B.10C.25D.52解析:选B.A∩B={2,3},A∪B={1,2,3,4,5},由列举法可知A⊙B={(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)},共有10个元素,故选B. 5.已知函数f(x)=2-x-1,集合A为函数f(x)的定义域,集合B为函数f(x)的值域,则如图所示的阴影部分表示的集合为________.解析:本题考查函数的定义域、值域以及集合的表示.要使函数f(x)=2-x-1有意义,则2-x-1≥0,解得x≤0,所以A=(-∞,0].又函数f(x)=2-x-1的值域B=[0,+∞).(A∩B)=(-∞,0)∪(0,+∞).所以阴影部分用集合表示为∁A∪B答案:(-∞,0)∪(0,+∞)6.已知集合A={x|1≤x<5},C={x|-a<x≤a+3}.若C∩A=C,则a的取值范围是________.解析:因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,得a ≤-32;②当C ≠∅时,要使C ⊆A ,则⎩⎨⎧ -a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.答案:(-∞,-1]。
课时规范训练(一)

课时规范训练A基础巩固练1.(多选题)下列各组对象能构成集合的有()A.接近于1的所有正整数B.小于0的实数C.(2023,1)与(1,2023)D.某校高一(1)班的聪明学生解析:BC A中,接近于1的所有正整数标准不明确,故不能构成集合;B 中小于0是一个明确的标准,能构成集合;C中(2023,1)与(1,2023)是两个不同的点,是确定的,能构成集合;D中“某校高一(1)班的聪明学生”中“聪明”的标准不确定,因而不能构成一个集合.2.给出下列关系:①13∈R;②5∈Q;③-3∉Z;④-3∉N,其中正确的个数为()A.1B.2C.3D.4解析:B 13是实数,①正确;5是无理数,②错误;-3是整数,③错误;-3是无理数,④正确.故选B.3.下列说法中正确的是()A.某学校高一(8)班比较漂亮的女生能确定一个集合B.由1,32,64,⎪⎪⎪⎪⎪⎪-12,0.5组成的集合有5个元素C.将小于100的自然数按从小到大的顺序排列和按从大到小的顺序排列分别得到两个不同的集合D.方程x2+1=2x的解集中只有一个元素解析:D A是错误的,因为“漂亮”是个模糊的概念,因此不满足集合中元素的确定性;B是错误的,32=64,⎪⎪⎪⎪⎪⎪-12=0.5,根据互异性,得由1,32,64,⎪⎪⎪⎪⎪⎪-12,0.5组成的集合只有3个元素:1,32,0.5;C是错误的,根据集合中元素的无序性可知,小于100的自然数无论按什么顺序排列,构成的集合都是同一集合;D是正确的,方程x2+1=2x有两个相等的解,即x1=x2=1,其解集中只有一个元素,故D正确.4.下列各组中,集合P与Q表示同一个集合的是()A.P是由元素1,3,π构成的集合,Q是由元素π,1,|-3|构成的集合B.P是由π构成的集合,Q是由3.141 59构成的集合C.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合D.P是满足不等式-1≤x≤1的自然数构成的集合,Q是方程x2=1的解集解析:A由于A中P,Q的元素完全相同,所以P与Q表示同一个集合,而B,C,D中P,Q的元素不相同,所以P与Q不表示同一个集合.5.已知集合M是方程x2-x+m=0的解组成的集合,若2∈M,则下列判断正确的是()A.1∈M B.0∈MC.-1∈M D.-2∈M解析:C由2∈M知2为方程x2-x+m=0的一个解,所以22-2+m=0,解得m=-2.所以方程为x2-x-2=0,解得x1=-1,x2=2.故方程的另一根为-1.6.(多选题)集合A中含有三个元素2,4,6,若a∈A,且6-a∈A,那么a 可以为()A.2 B.-2C.4 D.6解析:AC若a=2,则6-2=4∈A;若a=4,则6-4=2∈A;若a=6,则6-6=0∉A.7.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=________.解析:因为x∈N,2<x<a,且集合P中恰有三个元素,易知a=6.答案:68.若由a ,b a ,1组成的集合A 与由a 2,a +b ,0组成的集合B 相等,则a 2023+b 2023的值为________.解析:由已知可得a ≠0,因为两集合相等,又1≠0,所以b a =0,所以b =0,所以a 2=1,即a =±1,又当a =1时,集合A 不满足集合中元素的互异性,舍去,所以a =-1. 所以a 2023+b 2023=-1.答案:-19.已知集合A 含有两个元素a -3和2a -1,a ∈R .(1)求实数a 的取值范围;(2)若a ∈A ,求实数a 的值.解:(1)如果a -3=2a -1,则a =-2.由于a -3,2a -1是集合A 含有的两个元素,所以实数a ≠-2.(2)因为a ∈A ,所以a =a -3或a =2a -1.当a =a -3时,0=-3,不成立;当a =2a -1时,a =1,此时A 中有两个元素-2,1,符合题意,综上所述,实数a 的值为1.B 能力进阶练10.若集合A 的元素y 满足y =x 2+1,集合B 的元素(x ,y )满足y =x 2+1(A ,B 中x ∈R ,y ∈R ),则下列选项中元素与集合的关系都正确的是( )A .2∈A 且2∈BB .(1,2)∈A 且(1,2)∈BC .2∈A 且(3,10)∈BD .(3,10)∈A 且2∈B解析:C 集合A 中的元素为y ,是数集,又y =x 2+1≥1,故2∈A ;集合B 中的元素为点(x ,y )且满足y =x 2+1,经验证,(3,10)∈B ,故选C .11.(多选题)由a 2,2-a ,4组成一个集合A ,且集合A 中含有3个元素,则实数a 的取值不可能是( )A .1B .-2C .-1D .2解析:ABD 由题意知a 2≠4,2-a ≠4,a 2≠2-a ,解得a ≠±2,且a ≠1,即a 的取值不可能是1,±2.12.已知集合A 含有两个元素1和2,集合B 表示方程x 2+ax +b =0的解组成的集合,且集合A 与集合B 相等,则a =________,b =________.解析:因为集合A 与集合B 相等,且1∈A ,2∈A ,所以1∈B ,2∈B ,即1,2是方程x 2+ax +b =0的两个实数根.所以⎩⎨⎧1+2=-a ,1×2=b ,所以⎩⎨⎧a =-3,b =2.答案:-3 213.已知集合A 的元素是a ,b ,2,集合B 的元素是2,b 2,2a ,若A =B ,求实数a ,b 的值.解:由已知A =B 得⎩⎨⎧a =2a ,b =b 2,① 或⎩⎨⎧a =b 2,b =2a ,② 解①得⎩⎨⎧a =0,b =0或⎩⎨⎧a =0,b =1.解②得⎩⎨⎧a =0,b =0或⎩⎪⎨⎪⎧a =14,b =12.又由集合元素的互异性,得⎩⎨⎧a =0,b =1,或⎩⎪⎨⎪⎧a =14,b =12.C 探索创新练14.已知a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ,则:(1)若A 中只有1个元素,则a =________;(2)若A有且只有2个元素,则集合A的个数是________.解析:因为a∈A且4-a∈A,a∈N且4-a∈N,若a=0,则4-a=4,此时A满足要求;若a=1,则4-a=3,此时A满足要求;若a=2,则4-a=2.此时A含1个元素.答案:(1)2(2)2。
2021年高中数学 1.1.1.2集合的表示课后课时精练 新人教A版必修1

A.5 B.4C.3 D.2[解析]由题意知方程组的解为有序实数对,结合列举法和描述法的书写规则,知②为列举法表示集合,⑤为描述法表示集合,故②⑤正确.[答案]D4.下列四个集合中,不同于另外三个的是( )A.{y|y=2} B.{x=2}C.{2} D.{x|x2-4x+4=0}[解析]{x=2}表示的是由一个等式组成的集合.[答案]B5.[xx·沈阳二中高一阶段验收]已知集合A={1,2,3,4,5},B={(x,y)|x ∈A,y∈A,x-y∈A},则B中所含元素的个数为( )A.3 B.6C.8 D.10[解析]∵x∈A,y∈A,x-y∈A,∴满足条件的(x,y)有(2,1),(3,2),(4,3),(5,4),(3,1),(4,2),(5,3),(4,1),(5,2),(5,1),共10个.[答案]D二、填空题6.有下面四个结论,其中正确的有________.①0与{0}表示同一个集合;②集合M={3,4}与N={(3,4)}表示同一个集合;③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}不能用列举法表示.[解析]{0}表示元素为0的集合,而0只表示一个元素,故①错误;②集合M是实数3,4的集合,而集合N是实数对(3,4)的集合,不正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.[答案]④7.若-5∈{x|x2-ax-5=0},则集合{x|x2-4x-a=0}中所有元素之和为________.[解析]把-5代入方程x2-ax-5=0,得a=-4.将a=-4代入方程x2-4x-a=0,得x2-4x+4=0.故集合为{2},所有元素之和为2.[答案]28.[xx·吉林高一质检]点P(1,3)和集合A={(x,y)|y=x+2}之间的关系是________.[解析]在y=x+2中,当x=1时y=3,因此点P是集合A的元素,故P ∈A.[答案]P∈A三、解答题9.[xx·太原五中高一期中]已知集合A={x∈Z|43-x∈Z},(1)用列举法表示集合A;(2)求集合A的所有元素之和.[解](1)由43-x∈Z,得3-x=±1,±2,±4.解得x=-1,1,2,4,5,7.又∵x∈Z,∴A={-1,1,2,4,5,7}.(2)由(1)得集合A中的所有元素之和为-1+1+2+4+5+7=18.10.[xx·辽宁高一联合竞赛]已知集合A={x∈R|ax2+2x+1=0},其中a∈R.(1)若1∈A,用列举法表示A;(2)若A中有且仅有一个元素,求a的值组成的集合B.[解](1)∵1∈A,∴1是方程ax2+2x+1=0的根.∴a·12+2×1+1=0,即a=-3.∴方程为-3x2+2x+1=0.∴x1=1,x2=-13,此时A={-13,1}.(2)若a=0,则方程化为2x+1=0,x=-12,A中仅有一个元素;若a≠0,A中仅有一个元素,当且仅当Δ=4-4a=0,即a=1,方程有两个相等的实根x1=x2=-1.∴所求集合B={0,1}. K34837 8815 蠕23143 5A67 婧g;n28501 6F55 潕21973 55D5 嗕38324 95B4 閴U33859 8443 葃33944 8498 蒘Q~。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时规范训练
A组基础演练
1.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中,正确的是()
A.②、③都不能为系统抽样
B.②、④都不能为分层抽样
C.①、④都可能为系统抽样
D.①、③都可能为分层抽样
解析:选D.因为③为系统抽样,所以选项A不对;因为②为分层抽样,所以选项B不对;因为④不为系统抽样,所以选项C不对,故选D.
2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()
A.6B.8
D.12
10 C.
30=6,×设样本容量为NN,则选解析:B.7040∴N=14,∴高二年级所抽取的人数为14×=8.
70150老年职工人,250中年职工人,350其中青年职工人,750某单位有职工.3.人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()
A.7 B.15
D.35
C.25
解析:选B.由题意知青年职工人数∶中年职工人数∶老年职工人数=350∶250∶150=7∶5∶3.由样本中青年职工为7人得样本容量为15.
4.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级
一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,己知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应为()
A.13 B.19
D.20 51
C.解析:选C.抽样间隔为46-33=13,故另一位同学的编号为7+13=20,选C.
5.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()
A.101 B.808
D..C1 212 2 012
12,而四个社区一共抽取的驾驶员人数为12+21由题意知抽样比为解析:选B.
9612101+25+43=101,故有=,解得N=808.
N966.某学校高三一班共有60名学生,现采用系统抽样的方法从中抽取6名学
生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是()
A.1,2,3,4,5,6 B.6,16,26,36,46,56
D.3,9,13,27,36,54
1,2,4,8,16,32 C.
,所以10由系统抽样知识知,所选取学生编号之间的间距相等且为B.选解析:应选B.
7.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生是高一1学生的两倍,高二学生比高一学生多300人,现在按的抽样比例用分层抽样
100的方法抽取样本,则高一学生应抽取的人数为()
A.8 B.11
D .10
C.16
解析:选A.设高一学生有x人,则高三学生有2x人,高二学生有(x+300)人,1学校共有4x+300=3 500(人),解得x=800(人),由此可得按的抽样比例用分1001层抽样的方法抽取样本,高一学生应抽取的人数为×800=8(人),故应选A. 1008.某校初一、初二、初三年级各有300人,400人,302人,
采用系统抽样从中抽取一个容量为100的样本检查学生的视力情况,则初三年级每人被抽到的概率为()
302100B. A. 1 0021 00230300D. C. 3021
000n100=. 2人,但每人能抽到的概率为选B.利用系统抽样,虽然剔除解析:
1 002N9.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为
120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()
A.9 B.10
D 12 .13
C.n3,故n==13.
依题意得选解析:D.6060+120+8010.某中学采用系统抽样
方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是()
7
.B 5 .A.
C.11 D.13
800=16,即每16人抽取一个人.由于39=2×16+7,=k解析:选B.间隔数
50所以第1小组中抽取的数为7.
B组能力突破
1.某校共有学生2 000名,各年级男、女生人数如下表所示:
一年级二年级三年级
女生y380373
男生z 370377
现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为() A.24 B.18
D.C.16 12
解析:选C.一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,于是三年级的学生人数为2 000-750-750=500,所以应在三年级抽取64的人数为500×=16.
2 0002.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600
在第Ⅲ营区,三个营区被抽中的人数依次为()
A.26,16,8 B.25,17,8
D..25,16,9 24,17,9
C解析:选B.由题意及系统抽样的定义可知,将这600名学生按编号依次分成
50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).
103令3+12(k-1)≤300得k≤,因此第Ⅰ营区被抽中的人数是25;4103令300<3+12(k-1)≤495得25-42因此第Ⅱ营区被抽中的人数是,42≤k<4.
=17.结合各选项知,选B.
3.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.答案:16,28,40,52
4.某课题组进行城市空气质量调查,按地域把24个城市分成某甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.
61=,由已知得抽样比为解析:2441∴丙组中应抽取的城市数为8×=2.
4答案:2
5.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序
平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为
9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.解析:由题意知:m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.
答案:76
6.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为123,则第2组中应抽出个体的号码是________.
解析:由题意可知,系统抽样的组数为20,间隔为8,设第1组抽出的号码为x,则由系统抽样的法则可知,第n组抽出个体的号码应该为x+(n-1)×8,所以第16组应抽出的号码为x+(16-1)×8=123,解得x=3,所以第2组中应抽出个体的号码为3+(2-1)×8=11.
11
答案:。