高考理科数学一轮复习专题5:函数定义域、值域、单调性与最值
2022高考数学一轮复习—函数的单调性、奇偶性、周期性习题含答案

函数的单调性与最值[A 组 基础保分练]1.下列函数中,在区间(-1,1)上为减函数的是( )A.y =11-xB.y =cos xC.y =ln (x +1)D.y =2-x解析:函数y =11-x,y =ln (x +1)在(-1,1)上都是增函数,函数y =cos x 在(-1,0)上是增函数,在(0,1)上是减函数,而函数y =2-x =⎝⎛⎭⎫12x 在(-1,1)上是减函数. 答案:D2.函数y =x 2-2x +3有( ) A.最小值2 B.最小值2 C.最大值2 D.最大值2解析:易知y =(x -1)2+2,因为(x -1)2+2≥2,所以y ≥ 2. 答案:B3.函数f (x )=11-x (1-x )的最大值是( )A.45B.54C.34D.43解析:由f (x )=1⎝⎛⎭⎫x -122+34≤43,则f (x )max =43.答案:D4.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( ) A.f (π)>f (-3)>f (-2) B.f (π)>f (-2)>f (-3) C.f (π)<f (-3)<f (-2) D.f (π)<f (-2)<f (-3)解析:因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2).又因为函数f (x )在[0,+∞)上是增函数,所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). 答案:A5.函数f (x )=log a (x 2-4x -5)(a >1)的单调递增区间是( ) A.(-∞,-2) B.(-∞,-1) C.(2,+∞) D.(5,+∞)解析:根据题意,得x 2-4x -5>0,解得x <-1或x >5,设u =x 2-4x -5=(x -2)2-9,易知u =x 2-4x -5的单调递增区间为(2,+∞),所以f (x )=log a (x 2-4x -5)的单调递增区间是(5,+∞). 答案:D6.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( )A.f (x 1)<0,f (x 2)<0B.f (x 1)<0,f (x 2)>0C.f (x 1)>0,f (x 2)<0D.f (x 1)>0,f (x 2)>0解析:因为函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0. 答案:B7.函数f (x )=xx -1(x ≥2)的最大值为__________.解析:易得f (x )=x x -1=1+1x -1,当x ≥2时,x -1>0,易知f (x )在[2,+∞)上是减函数,∴f (x )max =f (2)=1+12-1=2.答案:28.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上是增加的,则实数a 的取值范围是__________.解析:作出函数f (x )的图像如图所示,由图像可知f (x )在(a ,a +1)上是增加的,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.答案:(-∞,1]∪[4,+∞)9.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解析:(1)证明:设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)上单调递增. (2)设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1.综上所述,a 的取值范围是(0,1].[B 组 能力提升练]1.下列函数f (x )中,满足“对任意的x 1,x 2∈(0,+∞)时,均有(x 1-x 2)[f (x 1)-f (x 2)]>0”的是( )A.f (x )=12B.f (x )=x 2-4x +4C.f (x )=2xD.f (x )=log 12x解析:(x 1-x 2)[f (x 1)-f (x 2)]>0等价于x 1-x 2与f (x 1)-f (x 2)正负号相同,故函数f(x )在(0,+∞)上单调递增.显然只有函数f (x )=2x 符合. 答案:C2.已知函数f (x )满足f (x -1)=f (5-x ),且对任意的x 1,x 2∈[2,+∞),x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,若p =f (log 216),q =f (log 47),m =f ⎝ ⎛⎭⎪⎫⎝⎛⎭⎫1525,则p ,q ,m 的大小关系为( ) A.q <m <p B.p <m <q C.q <p <m D.p <q <m 解析:∵f (x -1)=f (5-x ),∴函数f (x )的图像关于直线x =2对称.又对任意的x 1,x 2∈[2,+∞),x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,∴f (x )在区间[2,+∞)上单调递减,在(-∞,2)上单调递增.∵log 216=4,∴f (log 216)=f (4)=f (0),又1<log 47<log 48=32,0<⎝⎛⎭⎫1525<1,∴0<⎝⎛⎭⎫1525<1<log 47<2,∴p <m <q . 答案:B3.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A.-1 B.1 C.6 D.12解析:由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2, 因为f (x )=x -2在[-2,1]上是增函数, 所以f (x )≤f (1)=-1,因为f (x )=x 3-2在(1,2]上是增函数,所以f (x )≤f (2)=6,所以f (x )max =f (2)=6. 答案:C4.(2021·西安模拟)已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是( ) A.(0,1] B.[1,2] C.[1,+∞) D.[2,+∞)解析:要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1. 答案:C5.(2021·衡阳模拟)若函数f (x )=2x -a +1+x -a -a 的定义域与值域相同,则a =( ) A.-1 B.1 C.0 D.±1解析:∵函数f (x )=2x -a +1+x -a -a , ∴函数f (x )的定义域为[a ,+∞). ∵函数f (x )的定义域与值域相同, ∴函数f (x )的值域为[a ,+∞).又∵函数f (x )在[a ,+∞)上是单调递增函数,∴当x =a 时,f (a )=2a -a +1-a =a ,解得a =1. 答案:B6.函数y =-x 2+2|x |+3的单调递减区间是__________.解析:由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图像如图所示,由图像可知,函数y =-x 2+2|x |+3的单调递减区间为[-1,0],[1,+∞).答案:[-1,0],[1,+∞)7.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x+a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为__________.解析:因为当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,所以a ≥0.当x >0时,f (x )=x +1x+a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2, 所以a 的取值范围是[0,2]. 答案:[0,2]8.已知函数f (x )=x 2+a |x -2|-4.(1)当a =2时,求f (x )在[0,3]上的最大值和最小值;(2)若f (x )在区间[-1,+∞)上单调递增,求实数a 的取值范围.解析:(1)当a =2时,f (x )=x 2+2|x -2|-4=⎩⎪⎨⎪⎧x 2+2x -8,x ≥2,x 2-2x ,x <2=⎩⎪⎨⎪⎧(x +1)2-9,x ≥2,(x -1)2-1,x <2,当x ∈[0,2)时,-1≤f (x )≤0,当x ∈[2,3]时,0≤f (x )≤7, 所以f (x )在[0,3]上的最大值为7,最小值为-1.(2)因为f (x )=⎩⎪⎨⎪⎧x 2+ax -2a -4,x >2,x 2-ax +2a -4,x ≤2,又f (x )在区间[-1,+∞)上单调递增,所以当x >2时,f (x )单调递增,则-a2≤2,即a ≥-4.当-1≤x ≤2时,f (x )单调递增,则a2≤-1.即a ≤-2,且4+2a -2a -4≥4-2a +2a -4恒成立, 故a 的取值范围为[-4,-2].[C 组 创新应用练]1.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若函数f (x )=⎪⎪⎪⎪⎪⎪x -1 2-x x +3在(-∞,m )上单调递减,则实数m 的取值范围是( ) A.(-2,+∞) B.[-2,+∞) C.(-∞,-2) D.(-∞,-2]解析:∵⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,∴f (x )=⎪⎪⎪⎪⎪⎪x -1 2-x x +3=(x -1)(x +3)-2×(-x )=x 2+4x -3=(x +2)2-7,∴f (x )的单调递减区间为(-∞,-2), ∵函数f (x )在(-∞,m )上单调递减, ∴(-∞,m )⊆(-∞,-2),即m ≤-2. 答案:D2.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( ) A.[1,+∞) B.[0,3] C.[0,1] D.[1,3]解析:因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x .令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].答案:D3.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )>0,f (3)=1.(1)判断f (x )的单调性;(2)解关于x 的不等式f (3x +6)+f ⎝⎛⎭⎫1x >2;(3)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解析:(1)设x 1>x 2>0,则x 1x 2>1,因为当x >1时,f (x )>0,所以f (x 1)-f (x 2)=f ⎝⎛⎭⎫x 1x 2>0, 所以f (x 1)>f (x 2),所以函数f (x )在区间(0,+∞)上为增函数.(2)在f (x 1)-f (x 2)=f ⎝⎛⎭⎫x 1x 2中, 令x 1=9,x 2=3,所以f (9)-f (3)=f (3). 又f (3)=1,所以f (9)=2.所以不等式f (3x +6)+f ⎝⎛⎭⎫1x >2,可转化为f (3x +6)+f ⎝⎛⎭⎫1x >f (9), 所以f (3x +6)>f (9)-f ⎝⎛⎭⎫1x =f (9x ), 由函数f (x )为(0,+∞)上的增函数,可得3x +6>9x >0,所以0<x <1, 所以原不等式的解集为(0,1).(3)因为函数f (x )在(0,3]上是增函数, 所以f (x )在(0,3]上的最大值为f (3)=1,所以不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立. 设g (a )=-2ma +m 2,所以需满足⎩⎪⎨⎪⎧g (-1)≥0,g (1)≥0,即⎩⎪⎨⎪⎧2m +m 2≥0,-2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0,即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).函数的奇偶性与周期性[A 组 基础保分练]1.(2021·石家庄模拟)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( )A.y =1xB.y =|x |-1C.y =lg xD.y =⎝⎛⎭⎫12|x |解析:∵函数y =|x |-1和y =⎝⎛⎭⎫12|x |是偶函数,其中y =|x |-1在(0,+∞)上单调递增,y =⎝⎛⎭⎫12|x |在(0,+∞)上单调递减.答案:B2.若函数f (x )=(x -a )(x +2)为偶函数,则实数a =( ) A.0 B.1 C.-1 D.2 解析:f (x )=(x -a )(x +2)=x 2+(2-a )x -2a 为偶函数,则2-a =0,即a =2. 答案:D3.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A.-3B.-54C.54D.3 解析:因为f (x )为R 上的奇函数,所以f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3. 答案:A4.已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上( ) A.有最大值4 B.有最小值-4 C.有最大值-3 D.有最小值-3解析:根据题意作出y =f (x )的简图如图所示,由图知,选B.答案:B5.定义在R 上的偶函数f (x )满足f (x +3)=f (x ).若f (2)>1,f (7)=a ,则实数a 的取值范围为( ) A.(-∞,-3) B.(3,+∞) C.(-∞,-1) D.(1,+∞) 解析:因为f (x +3)=f (x ),所以f (x )是定义在R 上的以3为周期的周期函数,所以f (7)=f (7-9)=f (-2).又因为函数f (x )是偶函数, 所以f (-2)=f (2),所以f (7)=f (2)>1, 所以a >1,即a ∈(1,+∞). 答案:D6.已知函数y =f (x ),满足y =f (-x )和y =f (x +2)是偶函数,且f (1)=π3,设F (x )=f (x )+f (-x ),则F (3)=( ) A.π3 B.2π3C.πD.4π3解析:由y =f (-x )和y =f (x +2)是偶函数知,f (-x )=f (x ),f (x +2)=f (-x +2)=f (x -2),故f (x )=f (x +4),则F (3)=f (3)+f (-3)=2f (3)=2f (-1)=2f(1)=2π3.答案:B7.若函数f (x )=x ln (x +a +x 2)为偶函数,则a =__________.解析:因为f (x )为偶函数,所以f (-x )-f (x )=0恒成立,所以-x ln (-x +a +x 2)-x ln (x +a +x 2)=0恒成立,所以x ln a =0恒成立,所以ln a =0,即a =1. 答案:18.(2021·乐山模拟)已知函数f (x )满足:f (-x )+f (x )=0,且当x ≥0时,f (x )=2+m2x-1,则f (-1)=__________. 解析:因为f (-x )+f (x )=0, 所以f (x )为奇函数,又当x ≥0时,f (x )=2+m2x -1,则f (0)=2+m1-1=0,所以m =-1.所以当x ≥0时,f (x )=12x -1,所以f (-1)=-f (1)=-⎝⎛⎭⎫12-1=12.答案:129.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0, x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解析:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图像知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].[B 组 能力提升练] 1.已知函数f (x )=a sin x +b 3x +4,若f (lg 3)=3,则f ⎝⎛⎭⎫lg 13=( ) A.13 B.-13C.5D.8解析:因为f (x )=a sin x +b 3x +4,则f (-x )=-a sin x -b 3x +4,所以f (x )+f (-x )=8,由于f ⎝⎛⎭⎫lg 13=f (-lg 3),因此f (lg 3)+f (-lg 3)=8,即3+f (-lg 3)=8,所以f (-lg 3)=5,即f ⎝⎛⎭⎫lg 13=f (-lg 3)=5. 答案:C2.已知定义在R 上的奇函数f (x )满足当x ≥0时f (x )=log 2(x +2)+x +b ,则|f (x )|>3的解集为( )A.(-∞,-2)∪(2,+∞)B.(-∞,-4)∪(4,+∞)C.(-2,2)D.(-4,4)解析:由题意知,f (0)=1+b =0,所以b =-1,所以f (x )=log 2(x +2)+x -1,所以f (2)=3,且该函数在R 上单调递增.因为|f (x )|>3=f (2),所以f (x )>f (2)或f (x )<-f (2)=f (-2),所以x >2或x <-2. 答案:A3.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52等于( ) A.-12 B.-14C.14D.12解析:f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-52+2=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=-2×12×⎝⎛⎭⎫1-12=-12. 答案:A4.(2021·郴州模拟)已知f (x )是定义在[2b ,1-b ]上的偶函数,且在[2b ,0]上为增函数,则f (x -1)≤f (2x )的解集为( )A.⎣⎡⎦⎤-1,23B.⎣⎡⎦⎤-1,13 C.[-1,1] D.⎣⎡⎦⎤13,1解析:因为f (x )是定义在[2b ,1-b ]上的偶函数,所以2b +1-b =0,所以b =-1,因为f (x )在[2b ,0]上为增函数,即函数f (x )在[-2,0]上为增函数,故函数f (x )在(0,2]上为减函数,则由f (x -1)≤f (2x ),可得|x -1|≥|2x |,即(x -1)2≥4x 2,解得-1≤x ≤13.又因为定义域为[-2,2],所以⎩⎪⎨⎪⎧-2≤x -1≤2,-2≤2x ≤2,解得⎩⎪⎨⎪⎧-1≤x ≤3,-1≤x ≤1.综上,-1≤x ≤13.答案:B5.已知偶函数f (x )在[0,+∞)上单调递增,则对任意实数a ,b ,“a >|b |”是“f (a )>f (b )”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析:因为f (x )为偶函数,所以f (x )=f (-x )=f (|x |),由于f (x )在[0,+∞)上单调递增,因此若a >|b |≥0,则f (a )>f (|b |),即f (a )>f (b ),所以a >|b |是f (a )>f (b )的充分条件;若f (a )>f (b ),则f (|a |)>f (|b |),可得|a |>|b |≥0,由于a ,b 的正负不能判断,因此无法得到a >|b |,则a >|b |不是f (a )>f (b )的必要条件,所以“a >|b |”是“f (a )>f (b )”的充分不必要条件. 答案:A 6.函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A.f (1)<f ⎝⎛⎭⎫52<f ⎝⎛⎭⎫72 B.f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52 C.f ⎝⎛⎭⎫72<f ⎝⎛⎭⎫52<f (1) D.f ⎝⎛⎭⎫52<f (1)<f ⎝⎛⎭⎫72 解析:因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2), 所以函数f (x )的图像关于x =2对称,所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫32,f ⎝⎛⎭⎫72=f ⎝⎛⎭⎫12.因为y =f (x )在[0,2]上单调递增,且12<1<32,所以f ⎝⎛⎭⎫12<f (1)<f ⎝⎛⎭⎫32,即f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52. 答案:B7.定义在R 上的函数f (x )满足f (x )=f (2-x )及f (x )=-f (-x ),且在[0,1]上有f (x )=x 2,则f ⎝⎛⎭⎫2 01912=__________. 解析:函数f (x )的定义域是R ,f (x )=-f (-x ),所以函数f (x )是奇函数.又f (x )=f (2-x ),所以f (-x )=f (2+x )=-f (x ),所以f (4+x )=-f (2+x )=f (x ),故函数f (x )是以4为周期的奇函数,所以f ⎝⎛⎭⎫2 01912=f ⎝⎛⎭⎫2 020-12=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12.因为在[0,1]上有f (x )=x 2,所以f ⎝⎛⎭⎫12=⎝⎛⎭⎫122=14,故f ⎝⎛⎭⎫2 01912=-14. 答案:-148.(2021·柳州模拟)已知函数f (x )对任意x ∈R 都有f (x +6)+f (x )=2f (3),y =f (x -1)的图像关于点(1,0)对称且f (2)=4,则f (22)=__________.解析:因为y =f (x -1)的图像关于点(1,0)对称,所以y =f (x )的图像关于点(0,0)对称,即函数f (x )为奇函数,由f (x +6)+f (x )=2f (3)得,f (x +12)+f (x +6)=2f (3),所以f (x +12)=f (x ),T =12,因此f (22)=f (-2)=-f (2)=-4. 答案:-49.已知函数f (x )对任意x ∈R 满足f (x )+f (-x )=0,f (x -1)=f (x +1),若当x ∈[0,1)时,f (x )=a x +b (a >0且a ≠1),且f ⎝⎛⎭⎫32=12. (1)求实数a ,b 的值;(2)求函数g (x )=f 2(x )+f (x )的值域. 解析:(1)因为f (x )+f (-x )=0, 所以f (-x )=-f (x ),即f (x )是奇函数. 因为f (x -1)=f (x +1),所以f (x +2)=f (x ), 即函数f (x )是周期为2的周期函数, 所以f (0)=0,即b =-1.又f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=1-a =12, 解得a =14.(2)当x ∈[0,1)时f (x )=a x+b =⎝⎛⎭⎫14x -1∈⎝⎛⎦⎤-34,0, 由f (x )为奇函数知,当x ∈(-1,0)时,f (x )∈⎝⎛⎭⎫0,34, 又因为f (x )是周期为2的周期函数,所以当x ∈R 时,f (x )∈⎝⎛⎭⎫-34,34, 设t =f (x )∈⎝⎛⎭⎫-34,34, 所以g (x )=f 2(x )+f (x )=t 2+t =⎝⎛⎭⎫t +122-14, 即g (x )=⎝⎛⎭⎫t +122-14∈⎣⎡⎭⎫-14,2116.故函数g (x )=f 2(x )+f (x )的值域为⎣⎡⎭⎫-14,2116. [C 组 创新应用练]1.(2021·兰州模拟)对任意实数x ,定义[x ]为不大于x 的最大整数(例如[3.4]=3,[-3.4]=-4等).设函数f (x )=x -[x ],给出下列四个结论:①f (x )≥0;②f (x )<1;③f (x )是周期函数;④f (x )是偶函数.其中正确结论的个数是( ) A.1 B.2 C.3 D.4解析:由题意有[x ]≤x <[x ]+1,∴f (x )=x -[x ]≥0,且f (x )<1,∴①②正确;∵f (x +1)=x +1-[x +1]=x +1-([x ]+1)=x -[x ]=f (x ),∴f (x )为周期函数,③正确;∵f (-0.1)=-0.1-[-0.1]=-0.1-(-1)=0.9,f (0.1)=0.1-[0.1]=0.1-0=0.1≠f (-0.1),∴f (x )不是偶函数,④错误. 答案:C2.(2019·高考全国卷Ⅱ)设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1] 时,f (x )=x (x -1).若对任意x ∈(-∞,m ],都有f (x )≥-89,则m 的取值范围是( )A.⎝⎛⎦⎤-∞,94B.⎝⎛⎦⎤-∞,73C.⎝⎛⎦⎤-∞,52D.⎝⎛⎦⎤-∞,83 解析:当x ∈(0,1]时,f (x )=x (x -1),∴当x ∈(0,1]时,f (x )∈⎣⎡⎦⎤-14,0. ∵f (x +1)=2f (x ),∴当x ∈(-1,0]时,x +1∈(0,1],f (x )=12f (x +1)=12(x +1)x ,f (x )∈⎣⎡⎦⎤-18,0; 当x ∈(-2,-1]时,x +1∈(-1,0],f (x )=12f (x +1)=14f (x +2)=14(x +2)(x +1),f (x )∈⎣⎡⎦⎤-116,0; …;当x ∈(1,2]时,x -1∈(0,1],f (x )=2f (x -1)=2(x -1)(x -2),f (x )∈⎣⎡⎦⎤-12,0; 当x ∈(2,3]时,x -1∈(1,2],f (x )=2f (x -1)=4f (x -2)=4(x -2)(x -3),f (x )∈[-1,0]; ….f (x )的图像如图所示.11若对任意x ∈(-∞,m ],都有f (x )≥-89,则有2<m ≤3. 设f (m )=-89,则4(m -2)(m -3)=-89, ∴m =73或m =83.结合图像可知,当m ≤73时,符合题意. 答案:B3.(2021·湘潭模拟)已知定义在R 上的偶函数y =f (x +2)的图像连续,当x >2时,函数y=f (x )是单调函数,则满足f (x )=f ⎝⎛⎭⎫1-1x +4的所有x 之积为__________. 解析:因为函数y =f (x +2)是连续的偶函数,所以直线x =0是它的图像的对称轴,所以直线x =2就是函数y =f (x )图像的对称轴.因为f (x )=f ⎝⎛⎭⎫1-1x +4,所以x =1-1x +4或x +1-1x +4=4.由x =1-1x +4,得x 2+3x -3=0,设方程的两根为x 1,x 2,所以x 1x 2=-3;由x +1-1x +4=4,得x 2+x -13=0,设方程的两根为x 3,x 4,所以x 3x 4=-13.所以x 1x 2x 3x 4=39. 答案:39。
(江苏专用)高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)第5课 函数的单调性与最值教师用书

第5课函数的单调性与最值[最新考纲]内容要求A B C函数的单调性√函数的最值√1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间I上是增函数或减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫作y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M结论M是y=f(x)的最大值M是y=f(x)的最小值1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)对于函数f (x ),x ∈D ,若对任意x 1,x 2∈D ,x 1≠x 2且(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在区间D 上是增函数.( )(2)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(3)函数y =|x |是R 上的增函数.( ) (4)所有的单调函数都有最值.( ) [答案] (1)√ (2)× (3)× (4)×2.(2016·高考改编)下列函数中,在区间(-1,1)上为减函数的是________.(填序号) ①y =11-x ;②y =cos x ; ③y =ln(x +1); ④y =2-x.④ [①中,y =11-x 在(-∞,1)和(1,+∞)上为增函数,故y =11-x 在(-1,1)上为增函数;②中,y =cos x 在(-1,1)上先增后减;③中,y =ln(x +1)在(-1,+∞)上为增函数,故y =ln(x +1)在(-1,1)上为增函数;④中,y =2-x =⎝ ⎛⎭⎪⎫12x 在R 上为减函数,故y =2-x在(-1,1)上是减函数.]3.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________.2 25 [可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.]4.设函数f (x )=x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________.⎩⎪⎨⎪⎧a 2-2a ,-2<a <1-1,a ≥1 [∵f (x )=x 2-2x =(x -1)2-1,∴当a ≥1时,函数在[-2,1]上递减,在[-1,a ]上递增,g (a )=-1.当-2<a <1时,函数在[-2,a ]上递减,∴g (a )=a 2-2a ,综上可知,g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2<a <1,-1,a ≥1.]5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值X 围为________.(-∞,1]∪[2,+∞) [∵f (x )=x 2-2ax -3=(x -a )2-a 2-3, ∴f (x )关于x =a 对称.要使y =f (x )在区间[1,2]上具有单调性, 只需a ≥2或a ≤1.]函数单调性的判断(1)函数f (x )=log 2(x 2-1)的单调递减区间为________. (2)试讨论函数f (x )=x +k x(k >0)的单调性.(1)(-∞,-1) [由x 2-1>0得x >1或x <-1,即函数f (x )的定义域为(-∞,-1)∪(1,+∞).令t =x 2-1,因为y =log 2t 在t ∈(0,+∞)上为增函数,t =x 2-1在x ∈(-∞,-1)上是减函数,所以函数f (x )=log 2(x 2-1)的单调递减区间为(-∞,-1).](2)法一:由解析式可知,函数的定义域是(-∞,0)∪(0,+∞).在(0,+∞)内任取x 1,x 2,令0<x 1<x 2,那么f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫x 2+k x 2-⎝ ⎛⎭⎪⎫x 1+k x 1=(x 2-x 1)+k ⎝ ⎛⎭⎪⎫1x 2-1x 1=(x 2-x 1)x 1x 2-kx 1x 2.因为0<x 1<x 2,所以x 2-x 1>0,x 1x 2>0. 故当x 1,x 2∈(k ,+∞)时,f (x 1)<f (x 2), 即函数在(k ,+∞)上单调递增. 当x 1,x 2∈(0,k )时,f (x 1)>f (x 2), 即函数在(0,k )上单调递减.考虑到函数f (x )=x +k x(k >0)是奇函数,在关于原点对称的区间上具有相同的单调性,故在(-∞,-k )上单调递增,在(-k ,0)上单调递减.综上,函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减.法二:f ′(x )=1-k x2.令f ′(x )>0得x 2>k ,即x ∈(-∞,-k )或x ∈(k ,+∞),故函数的单调增区间为(-∞,-k )和(k ,+∞).令f ′(x )<0得x 2<k ,即x ∈(-k ,0)或x ∈(0,k ),故函数的单调减区间为(-k ,0)和(0,k ).故函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减.[规律方法] 1.利用定义判断或证明函数的单调性时,作差后应注意差式的分解变形要彻底.2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确.易错警示:求函数的单调区间,应先求定义域,在定义域内求单调区间,如本题(1). [变式训练1] 讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性.【导学号:62172024】[解] 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2x 21-1x 22-1=a x 2-x 1x 1x 2+1x 21-1x 22-1.∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在(-1,1)上为减函数.利用函数的单调性求最值已知f (x )=x 2+2x +ax,x ∈[1,+∞),且a ≤1.(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试某某数a 的取值X 围.[思路点拨] (1)先判断函数f (x )在[1,+∞)上的单调性,再求最小值;(2)根据f (x )min>0求a 的X 围,而求f (x )min 应对a 分类讨论.[解] (1)当a =12时,f (x )=x +12x +2,f ′(x )=1-12x 2>0,x ∈[1,+∞),即f (x )在[1,+∞)上是增函数,∴f (x )min =f (1)=1+12×1+2=72.(2)f (x )=x +ax+2,x ∈[1,+∞).法一:①当a ≤0时,f (x )在[1,+∞)内为增函数.f (x )min =f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0, ∴-3<a ≤0.②当0<a ≤1时,f (x )在[1,+∞)内为增函数,f (x )min =f (1)=a +3,∴a +3>0,a >-3,∴0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值X 围是(-3,1]. 法二:f (x )=x +a x+2>0,∵x ≥1,∴x 2+2x +a >0,∴a >-(x 2+2x ),而-(x 2+2x )在x =1时取得最大值-3,∴-3<a ≤1,即a 的取值X 围为(-3,1].[规律方法] 利用函数的单调性求最值是求函数最值的重要方法,若函数f (x )在闭区间[a ,b ]上是增函数,则f (x )在[a ,b ]上的最大值为f (b ),最小值为f (a ).请思考,若函数f (x )在闭区间[a ,b ]上是减函数呢? [变式训练2] (2016·高考)函数f (x )=xx -1(x ≥2)的最大值为________.2 [法一:∵f ′(x )=-1x -12,∴x ≥2时,f ′(x )<0恒成立,∴f (x )在[2,+∞)上单调递减,∴f (x )在[2,+∞)上的最大值为f (2)=2. 法二:∵f (x )=xx -1=x -1+1x -1=1+1x -1, ∴f (x )的图象是将y =1x的图象向右平移1个单位,再向上平移1个单位得到的.∵y =1x在[2,+∞)上单调递减,∴f (x )在[2,+∞)上单调递减,故f (x )在[2,+∞)上的最大值为f (2)=2.法三:由题意可得f (x )=1+1x -1. ∵x ≥2,∴x -1≥1,∴0<1x -1≤1, ∴1<1+1x -1≤2,即1<x x -1≤2. 故f (x )在[2,+∞)上的最大值为2.]函数单调性的应用☞角度1 比较大小设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是________.【导学号:62172025】b <a <c [因为函数y =0.6x 是减函数,0<0.6<1.5,所以1>0.60.6>0.61.5,即b <a <1.因为函数y =x 0.6在(0,+∞)上是增函数,1<1.5,所以1.50.6>10.6=1,即c >1.综上,b <a <c .]☞角度2 解不等式已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则不等式f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的解集是________. ⎣⎢⎡⎭⎪⎫12,23 [由题意知⎩⎪⎨⎪⎧2x -1≥0,2x -1<13,即⎩⎪⎨⎪⎧x ≥12,x <23,所以12≤x <23.]☞角度3 求参数的取值X 围(1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a的取值X 围是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧a -2x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值X 围为________.(1)⎣⎢⎡⎦⎥⎤-14,0 (2)(2,3] [(1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值X 围是⎣⎢⎡⎦⎥⎤-14,0.(2)要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f 1≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a≤3,即实数a的取值X围是(2,3].][规律方法] 1.比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.2.解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.3.利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.易错警示:(1)若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.[思想与方法]1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时为增函数,不同时为减函数.(3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直观性判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. [易错与防X]1.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.3.函数在两个不同的区间上单调性相同,要分开写,用“,”隔开,不能用“∪”连结.课时分层训练(五) A 组 基础达标 (建议用时:30分钟)一、填空题1.函数y =(2k +1)x +b 在R 上是减函数,则k 的取值X 围是________.【导学号:62172026】⎝ ⎛⎭⎪⎫-∞,-12 [由题意知2k +1<0,得k <-12.] 2.给定函数:①y =x ;②y =log 12(x +1);③y =|x -1|;④y =2x +1,其中在区间(0,1)上单调递减的函数序号是________.②③ [①y =x 在区间(0,1)上单调递增;②y =log 12(x +1)在区间(0,1)上单调递减;③y =|x -1|=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1,在区间(0,1)上单调递减;④y =2x +1在区间(0,1)上单调递增.]3.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值X 围是________. 【导学号:62172027】(-∞,1] [函数f (x )=⎩⎪⎨⎪⎧x +a ,x ≥-a ,-x -a ,x <-a ,即函数f (x )在(-∞,-a )上是减函数,在[-a ,+∞)上是增函数,要使函数f (x )在(-∞,-1)上单调递减,则-a ≥-1,即a ≤1.]4.函数f (x )=2xx +1在[1,2]上的最大值和最小值分别是________.43,1 [f (x )=2x x +1=2x +1-2x +1=2-2x +1在[1,2]上是增函数,∴f (x )max =f (2)=43,f (x )min =f (1)=1.]5.设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值X 围为________.⎝ ⎛⎭⎪⎫13,1 [由已知得函数f (x )为偶函数,所以f (x )=f (|x |), 由f (x )>f (2x -1),可得f (|x |)>f (|2x -1|). 当x >0时,f (x )=ln(1+x )-11+x 2,因为y =ln(1+x )与y =-11+x2在(0,+∞)上都单调递增,所以函数f (x )在(0,+∞)上单调递增.由f (|x |)>f (|2x -1|),可得|x |>|2x -1|,两边平方可得x 2>(2x -1)2,整理得3x 2-4x +1<0,解得13<x <1.所以符合题意的x 的取值X 围为⎝ ⎛⎭⎪⎫13,1.] 6.函数f (x )=-(x -3)|x |的递增区间是________.⎣⎢⎡⎦⎥⎤0,32 [f (x )=-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x ,x >0,x 2-3x ,x ≤0.作出该函数的图象,观察图象知递增区间为⎣⎢⎡⎦⎥⎤0,32.]7.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.(-∞,2) [当x ≥1时,f (x )=log 12x ≤log 121=0.当x <1时,f (x )=2x∈(0,2), ∴f (x )的值域为(-∞,2).]8.已知函数f (x )=⎩⎪⎨⎪⎧a -2x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2,满足对任意的实数x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则实数a 的取值X 围为________.⎝ ⎛⎦⎥⎤-∞,138 [由f x 1-f x 2x 1-x 2<0可知f (x )在R 上是减函数,故⎩⎪⎨⎪⎧a -2<0,⎝ ⎛⎭⎪⎫122-1≥2a -2,解得a ≤138.]9.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为________. 【导学号:62172028】b <a <c [∵y =f (x )的图象关于x =1对称,∴f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52. 又2<52<3,且f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3), ∴f (2)<f ⎝ ⎛⎭⎪⎫-12<f (3), 即b <a <c .]10.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,则不等式f (x )+f (x -8)≤2的解集为________.(8,9] [因为2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2可得f [x (x -8)]≤f (9),f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -8≤9,解得8<x ≤9.]二、解答题11.(2017·某某模拟)已知函数f (x )=1a -1x(a >0,x >0),(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. [解] (1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知f (x )在⎣⎢⎡⎦⎥⎤12,2上为增函数,∴f ⎝ ⎛⎭⎪⎫12=1a -2=12,f (2)=1a -12=2,解得a =25.12.已知f (x )=xx -a (x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值X 围.【导学号:62172029】[解] (1)证明:设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2 =2x 1-x 2x 1+2x 2+2. ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.(2)f (x )=xx -a =x -a +a x -a =1+a x -a , 当a >0时,f (x )在(-∞,a ),(a ,+∞)上是减函数,又f (x )在(1,+∞)内单调递减,∴0<a ≤1,故实数a 的取值X 围是(0,1].B 组 能力提升(建议用时:15分钟)1.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于________.6 [由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2. ∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,∴f (x )的最大值为f (2)=23-2=6.]2.(2017·某某模拟)已知函数y =log 12(x 2-ax +a )在区间(-∞,2]上是增函数,则实数a 的取值X 围是________.[22,22+2) [设y =log 12t ,t =x 2-ax +a . 因为y =log 12t 在(0,+∞)上是单调减函数,要想满足题意,则t =x 2-ax +a 在(-∞,2]上为单调减函数,且t min >0,故需⎩⎪⎨⎪⎧ a 2≥2,22-2a +a >0,解得22≤a <2+2 2.] 3.规定符号“*”表示一种两个正实数之间的运算,即a *b =ab +a +b ,a ,b 是正实数,已知1*k =3,求函数f (x )=k *x 的值域.[解] 由题意知1]k )+1+k =3,解得k =1或k =-2(舍去),所以f (x )=k *x =1]x )+x +1=⎝⎛⎭⎪⎫x +122+34,因为x >0,所以f (x )>1,即f (x )的值域是(1,+∞).4.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.[解] (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,当x >1时,f (x )<0,∴f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),∴函数f (x )在区间(0,+∞)上是单调递减函数.(3)∵f (x )在(0,+∞)上是单调递减函数,∴f (x )在[2,9]上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),得f ⎝ ⎛⎭⎪⎫93=f (9)-f (3), 而f (3)=-1,∴f (9)=-2.∴f (x )在[2,9]上的最小值为-2.。
2021年新高考数学一轮专题复习第05讲-函数的单调性与最值(讲义版)

【例
2-1】(2020·安徽省六安一中高一月考)若函数
f
x
2x2 1
3 x2
,则
f
x
的值域为(
)
A. ,3
B. 2,3
C. 2,3
D.3,
【答案】C 【分析】
利用分子分离法化简 f x ,再根据不等式的性质求函数的值域.
【详解】
f
x
2x2 3 1 x2
2(x2 1) 1 1 x2
2
1
1 x
考点一 确定函数的单调性(区间)
【例 1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数 f(x)在[a,b]上是增函数,
对于任意的 x1,x2∈[a,b](x1≠x2),下列结论不正确的是( )
A.
f
x1
x1
f x2
x2
>0
B.f(a)<f(x1)<f(x2)<f(b)
C.(x1-x2) [f(x1)-f(x2)]>0
取到.
(2)开区间上的“单峰”函数一定存在最大值(或最小值). 2.函数 y=f(x)(f(x)>0)在公共定义域内与 y=-f(x),y= 1 的单调性相反.
f(x) 3.“对勾函数”y=x+a(a>0)的增区间为(-∞,- a),( a,+∞);单调减区间是[- a,0),
x (0, a].
三、 经典例题
的最大值为( )
A.-2
B.-3
C.-4
D.-6
10.(2020·安徽省六安一中高一月考)已知函数 f (x) log 1 (3x2 ax 5) 在 (1, ) 上是减函数,则实数 a
2
高三一轮复习:函数的单调性

高三一轮复习:函数的单调性第一篇:高三一轮复习:函数的单调性高三一轮复习:函数的单调性教学设计一、【教学目标】【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.二、【教学重点】函数单调性的概念、判断、证明及应用.函数的单调性是函数的最重要的性质之一,它在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,三、【教学难点】归纳抽象函数单调性的定义以及根据定义或导数证明函数的单调性.由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下(1)函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数、三角函数及其他函数单调性的理论基础。
(2)函数的单调性是培养学生数学能力的良好题材,同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。
(3)函数的单调性有着广泛的实际应用。
在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个数学教学。
因此“函数的单调性”在中学数学内容里占有十分重要的地位。
它体现了函数的变化趋势和变化特点,在利用函数观点解决问题中起着十分重要的作用,为培养创新意识和实践能力提供了重要方式和途径。
2020年(江苏)高考数学(理)大一轮复习检测:专题五 函数与方程

专题五函数与方程一、填空题考向一零点个数问题1.(2016·南通、扬州、淮安、宿迁、泰州二调)已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x).若当x∈[0,2)时,f(x)=|x2-x-1|,则函数y=f(x)-1在[-2,4]上的零点个数为.2.(2017·全国卷Ⅲ改编)已知函数f(x)=x2-2x+a(e x-1+e-x+1)有唯一零点,则实数a=.3.(2018·南通模拟)已知定义在R上的函数f(x)=则方程f(x)+1=log6(|x|+1)的实数解的个数为.考向二根据零点情况确定参数范围问题4.(2017·扬州上学期期中)已知函数f(x)=-kx无零点,则实数k的取值范围是.5.(2018·南通模拟)若函数f(x)=在其定义域上恰有两个零点,则正实数a的值为.6.(2017·苏北四市一模)已知函数f(x)=若函数f(x)的图象与直线y=x有3个不同的公共点,则实数a的取值集合为.7.(2016·镇江期末)已知函数f(x)=若关于x的方程f(x)=kx-k至少有两个不相等的实数根,则实数k的取值范围为.8.(2018·南通模拟)已知函数f(x)=若函数y=f(f(x))-k有3个不同的零点,则实数k的取值范围是.9.(2017·浙江二模改编)已知函数f(x)=若函数y=f(f(x)-a)有6个零点,则实数a的取值范围是.考向三有关零点的综合问题10.(2018·启东中学月考)若方程2sin2x+sin x-m=0在[0,2π)上有且只有两解,则实数m的取值范围为.11.(2017·如皋一模)已知函数f(x)=(x-1)e x-ax2,若y=f(cos x)在x∈[0,π]上有且仅有两个不同的零点,则实数a的取值范围为.12.(2016·南通、扬州、泰州、淮安三调)已知函数f(x)=x2+ax(a∈R),g(x)=(f'(x)为f(x)的导函数).若方程g(f(x))=0有四个不相等的实数根,则a的取值范围是.13.(2016·苏州期末)已知函数f(x)=|sin x|-kx(x≥0,k∈R)有且只有三个零点,若这三个零点中的最大值为x0,则=.14.(2017·江苏押题卷)对于实数a,b,定义运算“□”:a□b=设f(x)=(x-4)□,若关于x的方程|f(x)-m|=1(m∈R)恰有4个互不相等的实数根,则实数m的取值范围是.二、解答题15.(2016·苏州中学)已知函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件f(1-x)=f(1+x),且函数g(x)=f(x)-x只有一个零点.(1)求函数f(x)的解析式;(2)求实数m,n(m<n),使得f(x)的定义域为[m,n]时,f(x)的取值范围是[3m,3n].16.(2016·北京卷改编)设函数f(x)=x3+ax2+bx+c.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围.17.(2018·启东中学月考改编)已知函数f(x)=a(2-x)e x,g(x)=(x-1)2.(1)若曲线y=g(x)的一条切线经过点M(0,-3),求这条切线的方程.(2)若关于x的方程f(x)=g(x)有两个不相等的实数根x1,x2,求实数a的取值范围.18.(2018·苏州调研改编)已知函数f(x)=(1)当a=2时,求函数f(x)的单调区间;(2)若方程f(-x)+f(x)=e x-3在区间(0,+∞)上有实数解,求实数a的取值范围.19.(2016·南通、扬州、淮安、宿迁、泰州二调)已知函数f(x)=(x+k+1)·,g(x)=,其中k是实数.(1)若k=0,求不等式·f(x)≥·g(x)的解集;(2)若k≥0,求关于x的方程f(x)=x·g(x)的实数根的个数.20.(2017·海门中学第二学期调研)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知函数f(x)=ax3+3x ln x-a(a∈R).(1)当a=0时,求f(x)的极值;(2)若f(x)在x∈上有且只有一个极值点,求实数a的取值范围.专题五函数与方程1. 7【解析】作出函数f(x)在[-2,4]上的图象如图所示,则函数y=f(x)-1在[-2,4]上的零点个数即为f(x)的图象与直线y=1在[-2,4]上的交点的个数.由图象知,交点个数为7,即函数y=f(x)-1在[-2,4]上有7个零点.(第1题)2.【解析】因为f(x)=x2-2x+a(e x-1+e-x+1),所以f(2-x)=(2-x)2-2(2-x)+a[e2-x-1+e-(2-x)+1]=x2-4x+4-4+2x+a(e1-x+e x-1)=x2-2x+a(e x-1+e-x+1),所以f(2-x)=f(x),即直线x=1为f(x)的图象的对称轴.由题意知f(x)有唯一零点,所以f(x)的零点只能为x=1,所以f(1)=12-2×1+a(e1-1+e-1+1)=0,解得a=.3. 7【解析】根据题意,作出函数y=f(x)+1与y=log6(|x|+1)的部分图象如图所示,由图象知,函数y=f(x)+1与y=log6(|x|+1)的图象有7个不同的交点,所以原方程有7个不同的解.(第3题)(第4题)4.[-2,0)【解析】因为函数f(x)=-kx无零点,所以y=与y=kx没有交点,在同一平面直角坐标系中画出函数y=与y=kx的图象如图所示,由图象可知k∈[-2,0).5.【解析】易知函数f(x)在(-∞,0]上有一个零点,所以由题意得方程ax-ln x=0在(0,+∞)上恰有一解,即a=在(0,+∞)上恰有一解.令g(x)=,由g'(x)==0得x=e,当x∈(0,e)时,g(x)单调递增,当x∈(e,+∞)时,g(x)单调递减,所以a=g(e)=.6.{-20,-16}【解析】直线y=x与正弦曲线y=sin x恰有一个公共点,即原点O.依题意,只要y=x 与y=f(x)(x≥1)的图象有两个不同的公共点.令g(x)=f(x)-x=x3-9x2+24x+a,由g'(x)=3x2-18x+24=0,得x=2或4,所以易知g(x)在区间[1,2]上单调递增,在区间[2,4]上单调递减,在区间[4,+∞)上单调递增,依题意,当g(2)=0时,a=-20,此时两个公共点是(2,0)和(5,0);当g(4)=0时,a=-16,此时两个公共点是(1,0)和(4,0).其余情况均不符合题意.所以实数a的取值集合是{-20,-16}.7.∪(1,+∞)【解析】作出函数f(x)和直线y=kx-k的图象如图所示,且直线y=kx-k过定点(1,0),当直线y=kx-k过点时,直线的斜率最小,即k=-.当直线y=kx-k与函数f(x)=x2-x(x>0)的图象相切时有且仅有一个交点,交点即为切点(1,0),k=y'=1,故函数f(x)与直线y=kx-k至少有两个不同的交点时,k的取值范围为∪(1,+∞),即关于x的方程f(x)=kx-k至少有两个不相等的实数根,则实数k 的取值范围为∪(1,+∞).(第7题)8.(1,2]【解析】由题设知f(f(x))=作出函数f(f(x))的图象可知,当1<k≤2时,函数y=f(f(x))-k 有3个不同的零点.9.[-4,-1]【解析】由题可知,函数f(x)的图象如图所示,令f(x)-a=t,若要使y=f(f(x)-a)有6个零点,则由f(t)=0,解得t=0,1,5,所以有f(x)=a或f(x)=a+1或f(x)=a+5(a<a+1<a+5).对于上述方程,要满足条件,则其零点个数的可能性为2,2,2或1,2,3或3,3,0三种可能.若零点个数分别为2,2,2,则有-5<a<a+1<a+5<0或-5<a<a+1<0,1≤a+5<4,解得-4≤a<-1;若零点个数分别为1,2,3,由图知,若a+5=4,则a=-1,所以a+1=0,满足条件,所以a=-1;若a<-5,-5<a+1<0,0≤a+5<1,无解;若零点个数分别为3,3,0,则有0≤a<a+1<1,a+5>4,无解.综上可知,满足条件的实数a的取值范围是[-4,-1].(第9题)10.(1,3)∪【解析】根据题意,令m=2t2+t=2-,t=sin x∈[-1,1],作出函数m=2-的图象如图所示.所以当m=-或m∈(1,3]时,直线y=m与曲线y=2t2+t只有一个交点.当m=3时,t=1,方程2sin2x+sin x-m=0只有一解,所以要使方程2sin2x+sin-m=0在[0,2π)上有且只有两解,实数m的取值范围(1,3)∪.(第10题)11.【解析】已知函数f(x)=(x-1)e x-ax2,可得f'(x)=x(e x-2a),令x(e x-2a)=0,可得x=0或e x=2a,当a≤0时,函数f'(x)只有一个零点,并且x=0是函数f(x)的一个极小值点,并且f(0)=-1<0.若y=f(cos x)在x∈[0,π]上有且仅有两个不同的零点,也就是y=f(x)在x∈[-1,1]上有且仅有两个不同的零点,所以即可得a≤-.当a>0时,函数f(x)的两个极值点为x=0,x=ln2a,如果ln2a<0,因为f(0)<0,可知不满足题意;如果ln2a>0,则即解得a≤-,与a>0矛盾.综上,a≤-.12.(-∞,0)∪(2,+∞)【解析】由题意知g(x)=①若a=0,则g(x)=方程g(t)=0只有唯一的根t=0,令f(x)=0,得x=0,此时不满足有四个根的条件;②若a<0,方程g(t)=0存在两个根t1=0和t2=-a.分别令f(x)=0和f(x)=-a,解得x1=0,x2=-a和x3=,x4=,且x1≠x2≠x3≠x4,满足题意;③若a>0,方程g(t)=0存在两个根t1=0和t2=-.对于方程f(x)=t1=0,可解得存在两个根x1=0和x2=-a.欲使g(f(x))=0有四个根,则需方程f(x)=-有两个根,所以Δ=a2-4×=a2-2a>0,解得a>2,且此时x3≠x4≠x1≠x2,满足题意.综上可知,a的取值范围为(-∞,0)∪(2,+∞).13.【解析】令f(x)=0,得|sin x|=kx.当x≥0时,如图,作出函数y1=|sin x|和y2=kx的图象.若函数f(x)有且只有三个零点,则当x∈(π,2π)时,y2=kx与y1=-sin x相切,且x0为切点的横坐标,即(-sin x)'=,所以tan x0=x0,所以===.(第13题)(第14题)14.(-1,1)∪(2,4)【解析】由题意得f(x)=(x-4)□=画出函数f(x)的大致图象如图所示.因为关于x的方程|f(x)-m|=1(m∈R),即f(x)=m±1(m∈R)恰有4个互不相等的实数根,所以两直线y=m±1(m∈R)与曲线y=f(x)共有4个不同的交点,则或或得2<m<4或-1<m<1.15.(1)因为二次函数f(x)=ax2+bx满足条件f(1-x)=f(1+x),所以函数f(x)的图象的对称轴方程是x=1,所以-=1,即b=-2a.因为函数g(x)=f(x)-x只有一个零点,即ax2-(2a+1)x=0有两个相等的实数根,所以Δ=(2a+1)2=0,即a=-,b=1,所以f(x)=-+x.(2)①当m<n<1时,f(x)在[m,n]上单调递增,f(m)=3m,f(n)=3n,所以m,n是-+x=3x的两根,解得m=-4,n=0.②当m≤1≤n时,3n=,解得n=,不符合题意.③当1<m<n时,f(x)在[m,n]上单调递减,所以f(m)=3n,f(n)=3m,即-m2+m=3n,-n2+n=3m,两式相减得-(m2-n2)+(m-n)=3(n-m).因为m≠n,所以-(m+n)+1=-3,所以m+n=8.将n=8-m代入-m2+m=3n,得-m2+m=3(8-m),此方程无解.所以m=-4,n=0时,f(x)的定义域和值域分别是[m,n]和[3m,3n].16.(1)由f(x)=x3+ax2+bx+c,得f'(x)=3x2+2ax+b.因为f(0)=c,f'(0)=b,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=bx+c.(2)当a=b=4时,f(x)=x3+4x2+4x+c,所以f'(x)=3x2+8x+4.令f'(x)=0,得3x2+8x+4=0,解得x=-2或x=-.当x变化时,f(x)与所以当c>0且c-<0时,存在x1∈(-4,-2),x2∈,x3∈,使得f(x1)=f(x2)=f(x3)=0.由f(x)的单调性知,当且仅当c∈时,函数f(x)=x3+4x2+4x+c有三个不同零点.17.(1)方法一:设经过点M(0,-3)的切线与曲线y=g(x)相切于点Q(t,(t-1)2),由g(x)=(x-1)2得g'(x)=2(x-1),所以该切线方程为y-(t-1)2=2(t-1)(x-t).因为该切线经过M(0,-3),所以-3-(t-1)2=2(t-1)(-t),解得t=±2,所以切线方程为2x-y-3=0或6x+y+3=0.方法二:由题意得曲线y=g(x)的切线的斜率一定存在,设所求的切线方程为y=kx-3,由得x2-(2+k)x+4=0,因为切线与抛物线相切,所以Δ=(2+k)2-16=0,解得k=2或k=-6,所以所求的切线方程为2x-y-3=0或6x+y+3=0. (2)由f(x)=g(x)得g(x)-f(x)=0.设h(x)=g(x)-f(x)=a(x-2)e x+(x-1)2,则h'(x)=a(x-1)e x+2(x-1)=(x-1)(a e x+2),由题意得函数h(x)恰好有两个零点.①当a=0,则h(x)=(x-1)2,h(x)只有一个零点1.②当a>0时,由h'(x)<0得x<1,由h'(x)>0得x>1,即h(x)在(-∞,1)上为减函数,在(1,+∞)上为增函数,而h(1)=-a e<0,h(2)=1,所以h(x)在(1,+∞)上有唯一零点,且该零点在(1,2)上.取b<0,且b<ln,则h(b)>(b-2)+(b-1)2=b>0,所以h(x)在(-∞,1)上有唯一零点,且该零点在(b,1)上,所以a>0时,h(x)恰好有两个零点.③当a<0时,由h'(x)=0得x=1或x=ln,若a=-,h'(x)=-(x-1)(e x-e)≤0,所以h(x)在R上至多有一个零点,且在(1,+∞)上.若a<-,则ln<1,当x∈(1,+∞)时,h'(x)<0,即h(x)在(1,+∞)上单调递减.又h(1)=-a e>0,所以h(x)在(1,+∞)上至多有一个零点.当x∈(-∞,1)时,h(x)在上单调递增,在上单调递减,又h=-2+=+1>0,所以h(x)在上无零点.若a>-,则ln>1,又当x≤1时,h(x)≥h(1)=-a e>0,所以h(x)在(-∞,1)上无零点.当x∈时,h'(x)>0;当x∈时,h'(x)<0.所以f(x)在上单调递增,在上单调递减.又h=-2+=+1>0.所以h(x)在上无零点,在上至多有一个零点.综上,a的取值范围为(0,+∞).18.(1)当a=2时,f(x)=当x<0时,f(x)=-x3+x2,则f'(x)=-3x2+2x=-x(3x-2),令f'(x)=0,解得x=0或x=(舍去),所以x<0时,f'(x)<0,所以函数f(x)在(-∞,0)上单调递减.当x≥0时,f(x)=e x-2x,f'(x)=e x-2,令f'(x)=0,解得x=ln2,当0<x<ln2时,f'(x)<0;当x>ln2时,f'(x)>0,所以函数f(x)在(0,ln2)上单调递减,在(ln2,+∞)上单调递增,且f(0)=1>0.综上,函数f(x)的减区间为(-∞,0)和(0,ln2),增区间为(ln2,+∞).(2)设x>0,则-x<0,所以f(-x)+f(x)=x3+x2+e x-ax,由题意知x3+x2+e x-ax=e x-3在(0,+∞)上有解,等价于a=x2+x+在(0,+∞)上有解.记g(x)=x2+x+(x>0),则g'(x)=2x+1-==.令g'(x)=0,因为x>0,所以2x2+3x+3>0,故解得x=1.当x∈(0,1)时,g'(x)<0;当x∈(1,+∞)时,g'(x)>0,所以函数g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,故函数g(x)在x=1处取得极小值也是最小值g(1)=5.要使方程a=g(x)在(0,+∞)上有解,当且仅当a≥g(x)min=g(1)=5.综上,满足题意的实数a的取值范围为[5,+∞).19.(1)当k=0时,f(x)=(x+1),g(x)=.由得x≥0.此时,原不等式为(x+1)x≥(x+3),即2x2+x-3≥0,解得x≤-或x≥1,所以原不等式的解集为[1,+∞).(2)由方程f(x)=x·g(x),得(x+k+1)=x.①由得x≥k,所以x≥0,x-k+1>0.方程①两边平方,整理得(2k-1)x2-(k2-1)x-k(k+1)2=0(x≥k).②当k=时,由②得x=,所以原方程有唯一解.当k≠时,由②得判别式Δ=(k+1)2(3k-1)2,(i)当k=时,Δ=0,方程②有两个相等的实数根x=>,所以原方程有唯一的解.(ii)当0≤k<且k≠时,方程②整理为[(2k-1)x+k(k+1)]·(x-k-1)=0,解得x1=,x2=k+1.由于Δ>0,所以x1≠x2,其中x2=k+1>k,x1-k=≥0,即x1≥k.故原方程有两个解.(iii)当k>时,由(ii)知x1-k=<0,即x1<k,故x1不是原方程的解.又x2=k+1>k,故原方程有唯一解.综上所述,当k≥或k=时,原方程有唯一解;当0≤k<且k≠时,原方程有两个解.注:(ii)中,另解:故方程②的两个实数根均大于k,所以原方程有两个解.20.(1)当a=0时,f(x)=3x ln x,所以f'(x)=3(ln x+1).令f'(x)=0,得x=,当x∈时,f'(x)<0;当x∈时,f'(x)>0,所以f(x)在上单调递减,在上单调递增.所以当x=时,f(x)有极小值f=-.(2)方法一:设g(x)=f'(x)=3(ax2+1+ln x),D=.由题意,g(x)在D上有且只有一个零点x0,且x0两侧g(x)异号.①当a≥0时,g(x)在D上单调递增,且g(x)>g≥0,所以g(x)在D上无零点.②当a<0时,在(0,+∞)上考察g(x).g'(x)=,令g'(x)=0,得x1=.所以g(x)在(0,x1)上单调递增,在(x1,+∞)上单调递减.(i)当g(e)·g<0,即(a e2+2)·<0,即-<a<0时,g(x)在D上有且只有一个零点x0,且在x0两侧异号.(ii)令g=0,得=0,不成立.(iii)令g(e)=0,得a=-,所以=∈D,g=g=3=3>0,又因为g=<0,所以g(x)在D上有且只有一个零点x0,且x0两侧g(x)异号.综上所述,实数a的取值范围是.方法二:令f'(x)=3(ax2+1+ln x)=0,得-a=.设h(x)=,由h'(x)=-,令h'(x)=0,得x0=∈,当x∈(x0,e)时,h'(x)<0,所以h(x)在(x0,e)上为减函数;当x∈时,h'(x)>0,所以h(x)在上为增函数,所以x0为h(x)的极大值点.又h=0,h(e)=,h(x0)=e,所以0<-a≤或-a=e,即-≤a<0或a=-e.当a=-e时,f'(x)=3.设m(x)=-e x2+1+ln x,则m'(x)=-e x+==,令m'(x)=0,得x=.当x∈时,m'(x)>0,所以m(x)在上为增函数;当x∈(,e)时,m'(x)<0,所以m(x)在(,e)上为减函数.所以m(x)≤m()=0,即f'(x)≤0在上恒成立,所以f(x)在上单调递减.所以当a=-e时,f(x)在上不存在极值点.所以实数a的取值范围是.。
高三数学一轮复习知识点讲解5-3三角函数的图象与性质

高三数学一轮复习知识点讲解专题5.3 三角函数的图象与性质【考纲解读与核心素养】1. 理解正弦函数、余弦函数、正切函数的图象与性质,了解三角函数的周期性.2.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等. 3.高考预测:(1) “五点法”作图; (2)三角函数的性质;(3)往往将三角恒等变换与三角函数图象、性质结合考查. 4.备考重点:(1)掌握正弦、余弦、正切函数的图象;(2)掌握三角函数的周期性、单调性、对称性以及最值.【知识清单】知识点1.正弦、余弦、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1- []1,1-R知识点2.“五点法”做函数()sin y A x h ωϕ=++的图象 “五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个x 的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在一个周期的图象,最后把这个周期的图象以周期为单位,向左右两边平移,则得到函数()sin y A x h ωϕ=++的图象.【典例剖析】高频考点一 三角函数的定义域和值域 【典例1】(2020·山东高一期末)函数tan2xy =的定义域为_____.【答案】{}2,x x k k Z ππ≠+∈ 【解析】 解不等式()22x k k Z ππ≠+∈,可得()2x k k Z ππ≠+∈, 因此,函数tan2xy =的定义域为{}2,x x k k Z ππ≠+∈. 故答案为:{}2,x x k k Z ππ≠+∈.【典例2】(2017新课标2)函数()的最大值是__________.【答案】1【解析】化简三角函数的解析式,则,由可得,当时,函数取得最大值1.【规律方法】1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解. 2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域. 【变式探究】1.(2020·上海高三专题练习)函数sin y m x n =+的最大值为2,最小值为4-,则m =_________,n =_________.【答案】3± 1- 【解析】由已知得24m n m n ⎧+=⎪⎨-+=-⎪⎩,解得31m n =±⎧⎨=-⎩. 故答案为:3±;1-.2.(2020·全国高一课时练习)求下列函数的定义域. (1)y =(2)sin cos tan x xy x+=.【答案】(1){|22,}x k x k k Z πππ≤≤+∈;(2)|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭【解析】(1)要使函数有意义,必须使sin 0x ≥.由正弦的定义知,sin 0x ≥就是角x 的终边与单位圆的交点的纵坐标是非负数. ∴角x 的终边应在x 轴或其上方区域, ∴22,k x k k Z πππ≤≤+∈.∴函数y ={|22,}x k x k k Z πππ≤≤+∈.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠.∴,()2x k k Z x k πππ⎧≠+⎪∈⎨⎪≠⎩ ∴,2kx k Z π≠∈. ∴函数sin cos tan x x y x +=的定义域为|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭.【总结提升】在使用开平方关系sin α=±1-cos 2α和cos α=±1-sin 2α时,一定要注意正负号的选取,确定正负号的依据是角α所在的象限,如果角α所在的象限是已知的,则按三角函数在各个象限的符号来确定正负号;如果角α所在的象限是未知的,则需要按象限进行讨论. 高频考点二 三角函数的单调性【典例3】(2020·海南枫叶国际学校高一期中)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【答案】D 【解析】由五点作图知,1+42{53+42πωϕπωϕ==,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.【典例4】(2020·河南洛阳�高一期末(理))已知sin33a =︒,cos55b =︒,tan35c =︒则a ,b ,c ,的大小关系是( ) A .a b c << B .a c b <<C .b a c <<D .b c a <<【答案】A 【解析】因为cos55sin35sin33b a ==>=,且sin 35tan 35sin 35cos35c ==>,所以c b a >>. 故选:A .【典例5】(2020·浙江柯城�衢州二中高三其他)已知函数()()2sin 0f x x ωω=>,则()f x 的最大值为________,若()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围是________. 【答案】2 30,2⎛⎤ ⎥⎝⎦【解析】因为函数()()2sin 0f x x ωω=>, 所以()[]2sin 2,2ω=∈-f x x , 所以()f x 的最大值为2, 因为()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数, 所以,,4322πωπωππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦, 所以4232πωππωπ⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得30,2ω⎛⎤∈ ⎥⎝⎦.故答案为:(1). 2 (2). 30,2⎛⎤⎥⎝⎦【规律方法】1.求形如()sin y A x ωϕ=+或()cos y A x ωϕ=+ (其中A ≠0,0ω>)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“x ωϕ+ (0ω>)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与sin y x = (x R ∈),cos y x = (x R ∈)的单调区间对应的不等式方向相同(反).2.当0ω<时,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调递增区间,应把x ωϕ--放在正弦函数的递减区间之内;若求其递减区间,应把x ωϕ--放在正弦函数的递增区间之内.3.已知三角函数的单调区间求参数的取值范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解. (2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解. 【变式探究】1.(2020·河北路北�开滦第一中学高一期末)在ABC 中,A B C >>,且2C π≠,则下列结论中正确的是( ) A .tan tan A C < B .tan tan A C >C .sin sin <A CD .sin sin A C >【答案】D 【解析】若543,,12123124A B C πππππ=====,由于02C A π<<<,则tan tan A C >,所以A 选项错误. 若74,,1212312A B C ππππ====,则tan 0tan A C <<, 75sin sin sin sin sin 121212A C πππ==>=,所以BC 选项错误.在三角形ABC 中,大角对大边,由于A C >,所以a c >,由正弦定理得2sin 2sin R A R B >①,R 是三角形ABC 外接圆的半径.由①得sin sin A C >.所以D 选项正确. 故选:D2.(2020·河南林州一中高一月考)π()sin()(0,),2f x x ωϕωϕ=+>≤若π8x =-是函数()f x 的零点,π8x =是函数()f x 的对称轴,()f x 在区间ππ(,)54上单调,则ω的最大值是 ( ) A .14 B .18C .20D .22【答案】A 【解析】因为π8x =-是函数()f x 的零点,π8x =是函数()f x 的对称轴, 所以2144n T n N ,π+=∈,即21244n ππω+=, n N ∈,即42,?n n N ω=+∈,即ω为正偶数. 因为()f x 在区间ππ,54⎛⎫⎪⎝⎭上单调,则ππ45202T π-=≤,即210T ππω=≥. 20ω≤. 当18ω=时,ππ sin 18088f ϕ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,得9 ,4k k Z πϕπ-+=∈,9 ,?4k k Z πϕπ=+∈,π 2ϕ≤,所以π4ϕ=,()πsin 184f x x ⎛⎫=+ ⎪⎝⎭,ππ,54x ⎛⎫∈ ⎪⎝⎭,时,π779518,42020x ππ⎛⎫+∈ ⎪⎝⎭,其中,901202f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即()f x 在区间ππ,54⎛⎫⎪⎝⎭上不单调; 当14ω=时,ππ sin 14088f ϕ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,得7 ,4k k Z πϕπ-+=∈,7 ,?4k k Z πϕπ=+∈,π 2ϕ≤,所以π4ϕ=-,()πsin 144f x x ⎛⎫=- ⎪⎝⎭,ππ,54x ⎛⎫∈ ⎪⎝⎭,时,π516514,42020x ππ⎛⎫-∈ ⎪⎝⎭,满足()f x 在区间ππ,54⎛⎫⎪⎝⎭上不单调. 故ω的最大值是14. 故选A.3.(2019·涡阳县第九中学高一期末(文))已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭.求()f x 的单调增区间; 【答案】5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【解析】因为sin y x =在区间2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦上单调递增,所以222,232k x k k πππ-+π≤+≤+π∈Z ,解得5,1212k x k k Z ππππ-≤≤+∈ 所以()f x 的单调增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【总结提升】1.对正弦函数、余弦函数单调性的两点说明(1)正弦函数、余弦函数在定义域R 上均不是单调函数,但存在单调区间.(2)由正弦函数、余弦函数的最小正周期为2π,所以任给一个正弦函数、余弦函数的单调区间,加上2k π,(k ∈Z)后,仍是单调区间,且单调性相同. 2.对正弦函数、余弦函数最值的三点说明(1)明确正、余弦函数的有界性,即|sin x |≤1,|cos x |≤1.(2)函数y =sin x ,x ∈D ,(y =cos x ,x ∈D )的最值不一定是1或-1,要依赖函数定义域D 来决定. (3)形如y =A sin(ωx +φ)(A >0,ω>0)的函数最值通常利用“整体代换”,即令ωx +φ=Z ,将函数转化为y =A sin Z 的形式求最值.3.正切函数单调性的三个关注点 (1)正切函数在定义域上不具有单调性.(2)正切函数无单调递减区间,有无数个单调递增区间,在(-π2,π2),(π2,32π),…上都是增函数.(3)正切函数的每个单调区间均为开区间,不能写成闭区间,也不能说正切函数在(-π2,π2)∪(π2,3π2)∪…上是增函数.高频考点三 三角函数的周期性 【典例6】(2018年全国卷Ⅲ文)函数的最小正周期为( )A. B. C. D.【答案】C 【解析】 由已知得的最小正周期故选C. 【规律方法】1.求三角函数的周期的方法(1)定义法:使得当x 取定义域内的每一个值时,都有()()f x T f x +=.利用定义我们可采用取值进行验证的思路,非常适合选择题;(2)公式法:()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω=,()tan()f x A x ωϕ=+的周期为T πω=.要特别注意两个公式不要弄混; (3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接判断,但是能够容易画出函数草图的函数;(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定. 如x y x y sin ,sin 2==的周期都是π, 但sin y x =cos x +的周期为2π,而1|2sin(3)|,|2sin(3)2|626y x y x ππ=-+=-+,|tan |y x =的周期不变.2.使用周期公式,必须先将解析式化为sin()y A x h ωϕ=++或cos()y A x h ωϕ=++的形式;正弦余弦函数的最小正周期是2T πϖ=,正切函数的最小正周期公式是T πϖ=;注意一定要注意加绝对值.3.对称与周期:正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期. 【变式探究】已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 【答案】(1)见解析;(2)是,2π. 【解析】(1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π]k ∈Z ,0,x ∈[2k π-π,2k πk ∈Z . 函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π. 【特别提醒】最小正周期是指使函数重复出现的自变量x 要加上的最小正数,是对x 而言,而不是对ωx 而言.. 高频考点四 三角函数的奇偶性【典例7】(2018届辽宁省丹东市测试(二))设,若,则函数A. 是奇函数B. 的图象关于点对称C. 是偶函数D. 的图象关于直线对称【答案】C 【解析】 由题意得,∴.∴,∴函数为偶函数.故选C . 【规律方法】1. 一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求()f x -;最后比较()f x -和()f x 的关系,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=-()f x ,则函数是奇函数,否则是非奇非偶函数.2. 如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 【变式探究】(浙江省2019届高考模拟卷(二))函数的图象可能是( )A .B .C .D .【答案】A 【解析】 由题意得函数的定义域为,∵,∴函数为偶函数,∴函数图象关于y 轴对称,故排除C,D . 又当时,,因此可排除B . 故选A . 【特别提醒】利用定义判断与正切函数有关的一些函数的奇偶性时,必须要坚持定义域优先的原则,即首先要看f(x)的定义域是否关于原点对称,然后再判断f(-x)与f(x)的关系. 高频考点五 三角函数的对称性 【典例8】(2018年江苏卷)已知函数的图象关于直线对称,则的值是________. 【答案】【解析】 由题意可得,所以,因为,所以【规律方法】函数的对称性问题,往往先将函数化成sin )y A x B ωϕ=++(的形式,其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 【变式探究】(2021·广西钦州一中高三开学考试(理))关于函数()1cos cos f x x x=+有如下四个命题: ①()f x 的图像关于y 轴对称. ②()f x 的图像关于原点对称. ③()f x 的图像关于直线2x π=对称.④()f x 的图像关于点,02π⎛⎫⎪⎝⎭对称. 其中所有真命题的序号是__________. 【答案】①④ 【解析】对于①,()f x 定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,显然关于原点对称, 且()()()()11cos cos cos cos x x x f x f x x=-=-++=-,所以()f x 的图象关于y 轴对称,命题①正确;对于②,532f π⎛⎫= ⎪⎝⎭,532f π⎛⎫-= ⎪⎝⎭,则33f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于原点对称,命题②错误; 对③,532f π⎛⎫= ⎪⎝⎭,2532f π⎛⎫=- ⎪⎝⎭,则233f f ππ⎛⎫⎛⎫≠ ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于2x π=对称,命题③错误; 对④,1sin 2sin f x x x π⎛⎫-=+ ⎪⎝⎭,1sin 2sin f x x x π⎛⎫+=-- ⎪⎝⎭, 则22f x f x ππ⎛⎫⎛⎫-=-+⎪ ⎪⎝⎭⎝⎭,命题④正确. 故答案为:①④.【特别提醒】1.求y =Asin(ωx +φ)或y =Acos(ωx +φ)函数的对称轴或对称中心时,应把ωx +φ作为整体,代入相应的公式中,解出x 的值,最后写出结果.2.正切函数图象的对称中心是(k π2,0)而非(k π,0)(k ∈Z ).高频考点六 三角函数的图象和性质的应用 【典例9】(2018年理北京卷】设函数f (x )=,若对任意的实数x 都成立,则ω的最小值为__________. 【答案】 【解析】 因为对任意的实数x 都成立,所以取最大值,所以,因为,所以当时,ω取最小值为.【典例10】(2020·上海高三专题练习)函数3sin 1()sin 2x f x x -=+的最大值是____,最小值是_________.【答案】234- 【解析】3(sin 2)77()3sin 2sin 2x f x x x +-==-++ sin [1,1]x[]sin 21,3x ∴+∈11,1sin 23x ⎡⎤∴∈⎢⎥+⎣⎦777,sin 23x ⎡⎤∴-∈--⎢⎥+⎣⎦7234,sin 23x ⎡⎤∴-∈-⎢⎥+⎣⎦即max 2()3f x =,min ()4f x =- 故答案为:23;4- 【典例11】(2020·陕西省汉中中学(理))已知函数()2sin()1(0)6f x x πωω=-->的周期是π.(1)求()f x 的单调递增区间; (2)求()f x 在[0,]2π上的最值及其对应的x 的值.【答案】(1)(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)当0x =时,()min 2f x =-;当3x π=时,()max 1f x =.【解析】 (1)解:∵2T ππω==,∴2ω=,又∵0>ω,∴2ω=,∴()2sin 216f x x π⎛⎫=-- ⎪⎝⎭, ∵222262k x k πππππ-+≤-≤+,k Z ∈,∴222233k x k ππππ-+≤≤+,k Z ∈, ∴63k x k ππππ-+≤≤+,k Z ∈,∴()f x 的单调递增区间为(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)解:∵02x π≤≤,∴02x ≤≤π,∴52666x πππ-≤-≤,∴1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭, ∴12sin 226x π⎛⎫-≤-≤ ⎪⎝⎭,∴22sin 2116x π⎛⎫-≤--≤ ⎪⎝⎭, 当0x =时,()min 2f x =-, 当226x ππ-=,即3x π=时,()max 1f x = 【规律方法】1.求形如y =a sin x +b 的函数的最值或值域时,可利用正弦函数的有界性(-1≤sin x ≤1)求解.2.对于形如y =A sin(ωx +φ)+k (Aω≠0)的函数,当定义域为R 时,值域为[-|A |+k ,|A |+k ];当定义域为某个给定的区间时,需确定ωx +φ的范围,结合函数的单调性确定值域.3.求形如y =a sin 2x +b sin x +c ,a ≠0,x ∈R 的函数的值域或最值时,可以通过换元,令t =sin x ,将原函数转化为关于t 的二次函数,利用配方法求值域或最值,求解过程中要注意正弦函数的有界性.4.求形如y =a sin x +bc sin x +d ,ac ≠0的函数的值域,可以用分离常量法求解;也可以利用正弦函数的有界性建立关于y 的不等式反解出y .综上可知,求与三角函数有关的函数的值域(或最值)的常用方法有:(1)借助于正弦函数的有界性、单调性求解;(2)转化为关于sin x 的二次函数求解.注意求三角函数的最值对应的自变量x 的值时,要考虑三角函数的周期性. 【变式探究】1.(2020·山东潍坊�高一期末)若函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,则( ) A .(2)(0)5f f f π⎛⎫>>-⎪⎝⎭B .(0)(2)5f f f π⎛⎫>>-⎪⎝⎭C .(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭D .(0)(2)5f f f π⎛⎫->> ⎪⎝⎭【答案】C 【解析】由题意,函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π, 可得w ππ=,解得1w =,即()tan()4f x x π=+,令,242k x k k Z πππππ-+<+<+∈,即3,44k x k k Z ππππ-+<<+∈, 当1k =时,544x ππ<<,即函数()f x 在5(,)44ππ上单调递增, 又由4(0)(),()()()555f f f f f πππππ=-=-+=, 又由425ππ>>,所以(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭. 故选:C.2.(2020·陕西新城�西安中学高三月考(文))设0a <,若不等式22cos (1)cos 0x a x a -+-+≥对于任意的x ∈R 恒成立,则a 的取值范围是__________. 【答案】2a ≤- 【解析】令cos [1,1]t x =∈- ,则不等式22()(1)0f t t a t a =---≤ 对[1,1]t ∈- 恒成立,因此22(1)00,02(1)020f a a a a f a a -≤⎧-≤⎧⇒<∴≤-⎨⎨≤--≤⎩⎩ 3.(浙江省绍兴市第一中学2019届高三上期末)设函数(1)求函数的最小正周期和单调递增区间; (2)当时,的最大值为,求的值【答案】(1) 最小正周期,为的单调递增区间;(2) .【解析】 (1)则的最小正周期当时,单调递增即的单调递增区间为:(2)当时,当,即时,所以【总结提升】比较三角函数值大小的步骤:①异名函数化为同名函数;②利用诱导公式把角化到同一单调区间上;③利用函数的单调性比较大小.。
高考文科数学第一轮复习专题函数定义域值域单调性与最值

函数定义域、值域、单调性与最值【考试要求】1、了解函数的单调性、最大值、最小值及其几何意义。
2、了解定义域、值域是构成函数的要素。
3、会求一些简单函数的定义域和值域,掌握一些基本的求定义域和值域的方法。
【知识要点】1、函数的单调性(1)单调函数的定义设函数()f x 的定义域为I ,如果对于定义域I 内的某个区间D 上的任意两个自变量的值1x ,2x ,当12x x 时,①若,则()f x 在是增函数;②若,则()f x 在是减函数。
(2)单调区间的定义:若函数()f x 在区间D 上是或,则称函数()f x 在这一区间上具有(严格的)单调性,叫做()f x 的单调区间。
思考:函数()f x 在区间[,]a b 上单调递增与()f x 的单调递增区间为[,]a b 含义相同么?感悟:说函数()f x 的单调区间是[,]a b 就等于说明了只有在[,]a b 上()f x 才是单调递增的,在定义域其余区间不是单调递增。
而说函数()f x 在区间[,]a b 上单调递增只是说明在[,]a b ()f x 是单调递增的,而没有说明在其他区间上是否也有单调递增。
例如对函数1()f x x ,可以说函数()f x 在区间(0,)上单调递增,但要说()f x 的单调递增区间只能是(,0)和(0,),不能漏掉任意一个。
2、求函数定义域的主要依据(1)分式的分母不得为;(2)偶次方根的被开方数;(3)对数函数的真数必须;(4)指数函数和对数函数的底数必须;(5)三角函数中的正切函数tan y x ;3、函数的值域(1)在函数的三个概念中,值域是由和所确定的,因此,在研究函数的值域时,既要重视对应法则的作用,又要特别注意定义域对值域的制约作用。
(2)基本函数的值域①(0)ykx b k 的值域是;②2(0)y ax bx c a 的值域是:当0a 值域为;当0a 值域为;③(0)k yk x 的值域是;④(0,1)x y a a a 的值域是;⑤log (0,1)a y x a a 的值域是;⑥sin y x ,cos y x 的值域是;⑦tan y x 的值域是。
2023年新高考数学一轮复习5-3 三角函数的图象与性质(知识点讲解)含详解

专题5.3 三角函数的图象与性质(知识点讲解)【知识框架】【核心素养】1.与不等式相结合考查三角函数定义域的求法,凸显数学运算的核心素养.2.与二次函数、函数的单调性等结合考查函数的值域(最值),凸显数学运算的核心素养.3.借助函数的图象、数形结合思想考查函数的奇偶性、单调性、对称性等性质,凸显数学运算、直观想象和逻辑推理的核心素养.4.五点作图与函数图象变换、函数性质相结合考查三角函数图象问题,凸显直观想象、数学运算的核心素养.5.将函数图象、性质及函数零点、极值、最值等问题综合考查y =Asin(ωx +φ)的图象及应用,凸显直观想象、逻辑推理的核心素养.【知识点展示】(一)“五点法”作图“五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在()sin y A x h ωϕ=++的图象.(二)正弦函数、余弦函数、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当()22x k k Z ππ=+∈时,max 1y =;当()22x k k Z ππ=-∈时,min 1y =-.当()2x k k Z π=∈时,max 1y =;当()2x k k Z ππ=+∈时,min 1y =-.既无最大值,也无最小值周期性2π 2ππ奇偶性 ()sin sin x x -=-,奇函数()cos cos x x -=偶函数()tan tan x x -=-奇函数单调性 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上是增函数;在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上是减函数.在[]()2,2k k k Z πππ-∈上是增函数;在π[]()2,2k k k Z πππ+∈上是减函数.在(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭上是增函数.(1)正、余弦函数一个完整的单调区间的长度是半个周期,y =tan x 无单调递减区间,y =tan x 在整个定义域内不单调.(2)求y =A sin(ωx +φ)的单调区间时,要注意A 和ω的符号.尽量化成ω>0的形式,避免出现增减区间的混淆. (三)常用结论 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.函数具有奇、偶性的充要条件(1)函数y =A sin(ωx +φ)(x ∈R )是奇函数⇔φ=k π(k ∈Z ); (2)函数y =A sin(ωx +φ)(x ∈R )是偶函数⇔φ=k π+π2(k ∈Z );(3)函数y =A cos(ωx +φ)(x ∈R )是奇函数⇔φ=k π+π2(k ∈Z );(4)函数y =A cos(ωx +φ)(x ∈R )是偶函数⇔φ=k π(k ∈Z ).【常考题型剖析】题型一:“五点法”做函数()sin y A x h ωϕ=++的图象例1. (2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.例2.(2022·全国·模拟预测)已知函数()()2sin f x x ωϕ=+,0>ω,2πϕ≤.若()12f x =,()20f x =,且12x x -的最小值为4π,()01f =,求解下列问题. (1)化简()f x 的表达式并求()f x 的单调递增区间;(2)请完善表格并利用五点作图法绘制该函数在一个周期内的图象,并求()f x 在区间70,12π⎡⎤⎢⎥上的最值.【规律方法】用“五点法”作图应抓住四条:①将原函数化为()sin y A x h ωϕ=++()0,0A ω>>或()cos y A x h ωϕ=++()0,0A ω>>的形式;②求出周期2T πω=;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点. 题型二:三角函数的定义域例3.(2022·宁夏·银川一中高一期中)函数()f x )A .3,48x k x k k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭B .,44x k x k k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭C .3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭D .,2424k k xx k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭例 4. 函数y =sin x -cos x 的定义域为 .【总结提升】 三角函数定义域的求法(1)求三角函数的定义域常化为解三角不等式(组).(2)解三角不等式(组)时常借助三角函数的图象或三角函数线.(3)对于函数y =A tan(ωx +φ)的定义域可令ωx +φ≠k π+π2,k ∈Z 求解.题型三:三角函数的值域(最值)例5.(2012·山东·高考真题(文))函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为( )A .2B .0C .-1D .1-例6. (2022·安徽·砀山中学高一期中)函数22tan 3tan 1y x x =-+-,ππ,44x ⎡⎤∈-⎢⎥⎣⎦的值域为______.例7.(2014·北京·高考真题(文))函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的部分图象如图所示.(1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.【总结提升】求三角函数的值域(最值)的三种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).题型四:三角函数的单调性例8.(2021·全国·高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭例9.(2015·全国·高考真题(文))函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈例10.(2015·安徽·高考真题(理))已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) A .()()()220f f f <-< B .()()()022f f f <<- C .()()()202f f f -<< D .()()()202f f f <<-例11. (2020·西安模拟)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A .(0,2] B .⎝⎛⎦⎤0,12 C .⎣⎡⎦⎤12,34 D .⎣⎡⎦⎤12,54【规律方法】1.三角函数单调区间的求法(1)将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,若ω<0,借助诱导公式将ω化为正数. (2)根据y =sin x 和y =cos x 的单调区间及A 的正负,列不等式求解. 2. 已知单调区间求参数范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解(3)周期性法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解. 3.比较三角函数值大小.题型五:三角函数的周期性、奇偶性、对称性例12.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A .1B .32C .52D .3例13. (2019·全国·高考真题(文))函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .例14.(2015·四川·高考真题(文))下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .cos 22y x π⎛⎫=+ ⎪⎝⎭B .sin 22y x π⎛⎫=+ ⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+例15.(2020·全国·高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【规律方法】1.求三角函数周期的常用方法 (1)公式法求周期①函数f (x )=A sin(ωx +φ)+B 与f (x )=A cos(ωx +φ)+B 的周期为T =2π|ω|;②函数f (x )=A tan(ωx +φ)+B 的周期T =π|ω|.(2)对称性求最值①两对称轴距离的最小值和两对称中心距离的最小值都等于T 2;②对称中心到对称轴距离的最小值等于T4;③两个最大(小)值点之差的最小值等于T . 2.(1)函数y =A sin(ωx +φ)(x ∈R ):是奇函数⇔φ=k π(k ∈Z );偶函数⇔φ=k π+π2(k ∈Z );(2)函数y =A cos(ωx +φ)(x ∈R ):是奇函数⇔φ=k π+π2(k ∈Z );是偶函数⇔φ=k π(k ∈Z ).3.如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 4.求对称轴方程(对称中心坐标)的方法(1)求f (x )=A sin(ωx +φ)图象的对称轴方程,只需对ωx +φ=π2+k π(k ∈Z )整理,对称中心横坐标只需令ωx+φ=k π(k ∈Z ),求x .(2)求f (x )=A cos(ωx +φ)的对称轴方程,只需对ωx +φ=k π(k ∈Z )整理,对称中心横坐标为ωx +φ=π2+k π(k∈Z ),求x 即可.(3)求f (x )=A tan(ωx +φ)的对称中心的横坐标,只需对ωx +φ=k π2(k ∈Z ),求x .题型六:三角函数()sin y A x ωϕ=+的解析式例16.(2016·全国·高考真题(文))函数sin()y A x ωϕ=+的部分图象如图所示,则( )A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π= 3π例17.(2020·全国·高考真题(理))设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【总结提升】1.由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置.2. 根据图象求解析式=sin()y A x h ωϕ++问题的一般方法是:先根据函数=sin()y A x h ωϕ++图象的最高点、最低点确定A ,h 的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值. 题型七:三角函数的零点问题例18.(2010·浙江·高考真题(理))设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不存在零点的是( )A .[]4,2--B .[]2,0-C .[]0,2D .[]2,4例19.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为____________.例20.(2018·全国·高考真题(理))函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.专题5.3 三角函数的图象与性质(知识点讲解)【知识框架】【核心素养】1.与不等式相结合考查三角函数定义域的求法,凸显数学运算的核心素养.2.与二次函数、函数的单调性等结合考查函数的值域(最值),凸显数学运算的核心素养.3.借助函数的图象、数形结合思想考查函数的奇偶性、单调性、对称性等性质,凸显数学运算、直观想象和逻辑推理的核心素养.4.五点作图与函数图象变换、函数性质相结合考查三角函数图象问题,凸显直观想象、数学运算的核心素养.5.将函数图象、性质及函数零点、极值、最值等问题综合考查y =Asin(ωx +φ)的图象及应用,凸显直观想象、逻辑推理的核心素养.【知识点展示】(一)“五点法”作图“五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在()sin y A x h ωϕ=++的图象.(二)正弦函数、余弦函数、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当()22x k k Z ππ=+∈时,max 1y =;当()22x k k Z ππ=-∈时,min 1y =-.当()2x k k Z π=∈时,max 1y =;当()2x k k Z ππ=+∈时,min 1y =-.既无最大值,也无最小值周期性2π 2ππ奇偶性 ()sin sin x x -=-,奇函数()cos cos x x -=偶函数()tan tan x x -=-奇函数单调性 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上是增函数;在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上是减函数.在[]()2,2k k k Z πππ-∈上是增函数;在π[]()2,2k k k Z πππ+∈上是减函数.在(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭上是增函数.(1)正、余弦函数一个完整的单调区间的长度是半个周期,y =tan x 无单调递减区间,y =tan x 在整个定义域内不单调.(2)求y =A sin(ωx +φ)的单调区间时,要注意A 和ω的符号.尽量化成ω>0的形式,避免出现增减区间的混淆. (三)常用结论 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.函数具有奇、偶性的充要条件(1)函数y =A sin(ωx +φ)(x ∈R )是奇函数⇔φ=k π(k ∈Z ); (2)函数y =A sin(ωx +φ)(x ∈R )是偶函数⇔φ=k π+π2(k ∈Z );(3)函数y =A cos(ωx +φ)(x ∈R )是奇函数⇔φ=k π+π2(k ∈Z );(4)函数y =A cos(ωx +φ)(x ∈R )是偶函数⇔φ=k π(k ∈Z ).【常考题型剖析】题型一:“五点法”做函数()sin y A x h ωϕ=++的图象例1. (2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(1)3A =,2ω=,3πϕ=;(2)最大值是3,最小值是32-. 【解析】 【分析】(1)利用三角函数五点作图法求解A ,ω,ϕ的值即可.(2)首先根据(1)知:3sin 23y x π⎛⎫=+ ⎪⎝⎭,根据题意得到11172636x πππ≤+≤,从而得到函数的最值.【详解】(1)由表可知max 3y =,则3A =, 因为566T πππ⎛⎫=--= ⎪⎝⎭,2T πω=,所以2ππω=,解得2ω=,即3sin(2)y x ϕ=+,因为函数图象过点,312π⎛⎫ ⎪⎝⎭,则33sin 212πϕ⎛⎫=⨯+ ⎪⎝⎭,即πsinφ16,所以262k ππϕπ+=+,k ∈Z ,解得23k πϕπ=+,k ∈Z ,又因为2πϕ<,所以3πϕ=.(2)由(1)可知3sin 23y x π⎛⎫=+ ⎪⎝⎭.因为3544x ππ≤≤,所以11172636x πππ≤+≤, 因此,当11236x ππ+=时,即34x π=时,32y =-, 当5232x ππ+=时,即1312x π=时,3y =. 所以该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值是3,最小值是32-.例2.(2022·全国·模拟预测)已知函数()()2sin f x x ωϕ=+,0>ω,2πϕ≤.若()12f x =,()20f x =,且12x x -的最小值为4π,()01f =,求解下列问题. (1)化简()f x 的表达式并求()f x 的单调递增区间;(2)请完善表格并利用五点作图法绘制该函数在一个周期内的图象,并求()f x 在区间70,12π⎡⎤⎢⎥上的最值.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,单调递增区间为(),Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)完善表格见解析;图象见解析;最大值为2,最小值为 【解析】 【分析】(1)利用最大值点和零点可确定最小正周期,由此可求得ω;利用()01f =可求得ϕ,由此可得()f x 解析式;令()222262k x k k Z πππππ-+≤+≤+∈即可求得单调递增区间;(2)令26X x π=+,利用五点作图法即可完善表格并得到图象,结合图象可求得最值.(1)若()12f x =,()20f x =,即1x 是()f x 的最大值点,2x 是()f x 的零点,且12x x -的最小值为4π,设()f x 的最小正周期为T ,则44T π=,即2T ππω==,解得:2ω=. 由()01f =可得:()02sin 1f ϕ==,即有1sin 2ϕ=, 26k πϕπ∴=+或()526k k Z ππ+∈,又2πϕ<,6πϕ∴=, 综上所述:()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;令()222Z 262k x k k πππππ-+≤+≤+∈,解得:()Z 36k x k k ππππ-+≤≤+∈,()f x ∴的单调递增区间为(),Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)根据“五点作图法”的要求先完成表格:令2X x π=+.由图可知:当6x π=时,()f x 取到最大值2;当712x π=时,()f x 取到最小值3-. 【规律方法】用“五点法”作图应抓住四条:①将原函数化为()sin y A x h ωϕ=++()0,0A ω>>或()cos y A x h ωϕ=++()0,0A ω>>的形式;②求出周期2T πω=;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点. 题型二:三角函数的定义域例3.(2022·宁夏·银川一中高一期中)函数()f x )A .3,48x k x k k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭B .,44x k x k k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭C .3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭D .,2424k k xx k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭【答案】C 【解析】 【分析】利用关于正切型函数的不等式去求函数()f x =的定义域【详解】由πtan(2)14x,可得ππππ2π442k x k ,则π3πππ2428k k x则函数()f x 3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭ 故选:C例 4. 函数y =sin x -cos x 的定义域为 . 【答案】5{|22,}44x k x k k Z ππππ+≤≤+∈ 【解析】法一:要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为4π,54π,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为5{|22,}44x k x k k Z ππππ+≤≤+∈. 法二:sin x -cos x =2sin (4x π-)≥0,将4x π-视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -4π≤π+2k π(k ∈Z ),解得2k π+4π≤x ≤2k π+54π (k ∈Z ),所以定义域为5{|22,}44x k x k k Z ππππ+≤≤+∈ 【点睛】若定义域中含k π或2k π应注明k ∈Z . 【总结提升】 三角函数定义域的求法(1)求三角函数的定义域常化为解三角不等式(组).(2)解三角不等式(组)时常借助三角函数的图象或三角函数线. (3)对于函数y =A tan(ωx +φ)的定义域可令ωx +φ≠k π+π2,k ∈Z 求解.题型三:三角函数的值域(最值)例5.(2012·山东·高考真题(文))函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为( )A .2B .0C .-1D .1-【答案】A 【解析】709,,sin()1,363663x x x ππππππ∴≤≤∴-≤-≤≤-≤max min 2,y y ∴==故选A例6. (2022·安徽·砀山中学高一期中)函数22tan 3tan 1y x x =-+-,ππ,44x ⎡⎤∈-⎢⎥⎣⎦的值域为______.【答案】16,8⎡⎤-⎢⎥⎣⎦【解析】 【分析】由x 的范围求出tan x 的范围,再根据二次函数的性质即可得出答案. 【详解】因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以[]tan 1,1x ∈-,22312tan 3tan 12tan 48y x x x ⎛⎫=-+-=--+ ⎪⎝⎭,则当3tan 4x =时,()max 18f x =,当tan 1x =-时,()min 6f x =-, 所以函数()f x 的值域为16,8⎡⎤-⎢⎥⎣⎦.故答案为:16,8⎡⎤-⎢⎥⎣⎦.例7.(2014·北京·高考真题(文))函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的部分图象如图所示.(1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.【答案】(1)π,076x π=,03y =;(2)最大值0,最小值3-. 【解析】 【详解】试题分析:(1)由图可得出该三角函数的周期,从而求出00,x y ;(2)把26x π+看作一个整体,从而求出最(1)由题意知:()f x 的最小正周期为π,令y=3,则2+2k k 62x Z πππ+=∈,,解得+k k 6x Z ππ=∈,,所以076x π=,03y =. (2)因为[,]212x ππ∈--,所以52[,0]66x ππ+∈-,于是 当206x π+=,即12x π=-时,()f x 取得最大值0;当262x ππ+=-,即3x π=-时,()f x 取得最小值3-.【总结提升】求三角函数的值域(最值)的三种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).题型四:三角函数的单调性例8.(2021·全国·高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】 解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈, 取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫- ⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭, 32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪,CD 选项均不满足条件.例9.(2015·全国·高考真题(文))函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【答案】D 【解析】 【详解】由五点作图知,1+42{53+42πωϕπωϕ==,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 例10.(2015·安徽·高考真题(理))已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) A .()()()220f f f <-< B .()()()022f f f <<- C .()()()202f f f -<< D .()()()202f f f <<- 【答案】A 【解析】 【分析】依题意可求ω=2,又当x 23π=时,函数f (x )取得最小值,可解得φ,从而可求解析式f (x )=A sin (2x 6π+),解:依题意得,函数f (x )的周期为π, ∵ω>0, ∴ω2ππ==2.又∵当x 23π=时,函数f (x )取得最小值, ∴223π⨯+φ=2k π32π+,k ∈Z ,可解得:φ=2k π6π+,k ∈Z , ∴f (x )=A sin (2x +2k π6π+)=A sin (2x 6π+).∴f (﹣2)=A sin (﹣46π+)=A sin (6π-4+2π)>0.f (2)=A sin (46π+)<0, f (0)=A sin 6π=A sin56π>0, 又∵326ππ->4+2π562ππ>>,而f (x )=A sin x 在区间(2π,32π)是单调递减的,∴f (2)<f (﹣2)<f (0). 故选A .例11. (2020·西安模拟)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A .(0,2] B .⎝⎛⎦⎤0,12 C .⎣⎡⎦⎤12,34 D .⎣⎡⎦⎤12,54【答案】D【解析】法一:(反子集法)∵x ∈⎝⎛⎭⎫π2,π,∴ωx +π4∈⎝⎛⎭⎫πω2+π4,πω+π4. ∵f (x )在⎝⎛⎭⎫π2,π上单调递减,∴⎩⎨⎧π2ω+π4≥π2+2k π,k ∈Z ,πω+π4≤3π2+2k π,k ∈Z ,解得⎩⎨⎧ω≥4k +12,k ∈Z ,ω≤2k +54,k ∈Z.∴k =0,此时12≤ω≤54,故选D .法二:(子集法)由2k π+π2≤ωx +π4≤2k π+3π2,得2k πω+π4ω≤x ≤2k πω+5π4ω,k ∈Z ,因为f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减, 所以⎩⎨⎧2k πω+π4ω≤π2,2k πω+5π4ω≥π,解得⎩⎨⎧ω≥4k +12,ω≤2k +54.因为k ∈Z ,ω>0,所以k =0,所以12≤ω≤54,即ω的取值范围为⎣⎡⎦⎤12,54.故选D . 【规律方法】1.三角函数单调区间的求法(1)将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,若ω<0,借助诱导公式将ω化为正数. (2)根据y =sin x 和y =cos x 的单调区间及A 的正负,列不等式求解. 2. 已知单调区间求参数范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解(3)周期性法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解. 3.比较三角函数值大小.题型五:三角函数的周期性、奇偶性、对称性例12.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A .1B .32C .52D .3【答案】A 【解析】 【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解. 【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<, 322π⎛⎫324ππ2所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭.故选:A例13. (2019·全国·高考真题(文))函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .【答案】D 【解析】 【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案. 【详解】 由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 例14.(2015·四川·高考真题(文))下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .cos 22y x π⎛⎫=+ ⎪⎝⎭B .sin 22y x π⎛⎫=+ ⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+【答案】A 【解析】 【分析】求出函数的周期,函数的奇偶性,判断求解即可. 【详解】 22πy =sin (2x 2π+)=cos2x ,函数是偶函数,周期为:π,不满足题意,所以B 不正确;y =sin2x +cos2x =(2x 4π+),函数是非奇非偶函数,周期为π,所以C 不正确;y =sin x +cosx =(x 4π+),函数是非奇非偶函数,周期为2π,所以D 不正确;故选A .例15.(2020·全国·高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③ 【解析】 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③. 【规律方法】1.求三角函数周期的常用方法 (1)公式法求周期①函数f (x )=A sin(ωx +φ)+B 与f (x )=A cos(ωx +φ)+B 的周期为T =2π|ω|;②函数f (x )=A tan(ωx +φ)+B 的周期T =π|ω|.(2)对称性求最值①两对称轴距离的最小值和两对称中心距离的最小值都等于T2;②对称中心到对称轴距离的最小值等于T4;③两个最大(小)值点之差的最小值等于T . 2.三角函数是奇、偶函数的充要条件(1)函数y =A sin(ωx +φ)(x ∈R ):是奇函数⇔φ=k π(k ∈Z );偶函数⇔φ=k π+π2(k ∈Z );(2)函数y =A cos(ωx +φ)(x∈R ):是奇函数⇔φ=k π+π2(k ∈Z );是偶函数⇔φ=k π(k ∈Z ).3.如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 4.求对称轴方程(对称中心坐标)的方法(1)求f (x )=A sin(ωx +φ)图象的对称轴方程,只需对ωx +φ=π2+k π(k ∈Z )整理,对称中心横坐标只需令ωx+φ=k π(k ∈Z ),求x .(2)求f (x )=A cos(ωx +φ)的对称轴方程,只需对ωx +φ=k π(k ∈Z )整理,对称中心横坐标为ωx +φ=π2+k π(k∈Z ),求x 即可.(3)求f (x )=A tan(ωx +φ)的对称中心的横坐标,只需对ωx +φ=k π2(k ∈Z ),求x .题型六:三角函数()sin y A x ωϕ=+的解析式例16.(2016·全国·高考真题(文))函数sin()y A x ωϕ=+的部分图象如图所示,则( )A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π=D .2sin(+)3y x π= 【答案】A 【解析】 【详解】试题分析:由题图知,2A =,最小正周期2[()]36T πππ=--=,所以22πωπ==,所以2sin(2)y x ϕ=+.因为图象过点(,2)3π,所以22sin(2)3πϕ=⨯+,所以2sin()13πϕ+=,所以22()32k k Z ππϕπ+=+∈,令0k =,得6πϕ=-,所以2sin(2)6y x π=-,故选A. 例17.(2020·全国·高考真题(理))设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】 【分析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω=== 故选:C 【总结提升】1.由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置.2. 根据图象求解析式=sin()y A x h ωϕ++问题的一般方法是:先根据函数=sin()y A x h ωϕ++图象的最高点、最低点确定A ,h 的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值. 题型七:三角函数的零点问题例18.(2010·浙江·高考真题(理))设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不存在零点的是( ) A .[]4,2-- B .[]2,0-C .[]0,2D .[]2,4【答案】A(1)4sin(1)14sin11f -=-+=-+,因为sin1sin 4π>4sin110-+<,(0)4sin10f =>,因此()f x 在[1,0]-上有零点,故在[2,0]-上有零点;(2)4sin524sin(25)2f π=-=---,而025ππ<-<,即sin(25)0π->,因此(2)0f <,故()f x 在[0,2]上一定存在零点;虽然(4)4sin1740f =-<,但99()4sin(1)4sin(1)844f πππππ=+-=+-,又21243πππ<+<,即3sin(1)42π+>,从而,于是()f x 在区间9[2,]8π上有零点,也即在[2,4]上有零点,排除B ,C ,D ,那么只能选A .例19.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为____________.【答案】3 【解析】 【分析】首先表示出T ,根据()f T =求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解: 因为()()cos f x x ωϕ=+,(0>ω,0πϕ<<)所以最小正周期2πT ω=,因为()()2πcos cos 2πcos f T ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭,又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭,又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈, 因为0>ω,所以当0k =时min 3ω=; 故答案为:3例20.(2018·全国·高考真题(理))函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3求出36x π+的范围,再由函数值为零,得到36x π+的取值可得零点个数.【详解】 详解:0x π≤≤ 193666x πππ∴≤+≤由题可知3336262x x ,ππππ+=+=,或5362x ππ+=解得4x ,99ππ=,或79π故有3个零点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题5:函数定义域、值域、单调性与最值
【考试要求】
1、了解函数的单调性、最大值、最小值及其几何意义。
2、了解定义域、值域是构成函数的要素。
3、会求一些简单函数的定义域和值域,掌握一些基本的求定义域和值域的方法。
【知识要点】
1、函数的单调性
(1)单调函数的定义
设函数()f x 的定义域为I ,如果对于定义域I 内的某个区间D 上的任意两个自变量的值1x ,2x ,当12x x <时,
①若 ,则()f x 在 是增函数;
②若 ,则()f x 在 是减函数。
(2)单调区间的定义:
若函数()f x 在区间D 上是 或 ,则称函数()f x 在这一区间上具有(严格的)单调性, 叫做()f x 的单调区间。
思考:函数()f x 在区间[,]a b 上单调递增与()f x 的单调递增区间为[,]a b 含义相同么?
感悟:说函数()f x 的单调区间是[,]a b 就等于说明了只有在[,]a b 上()f x 才是单调递增的,在定义域其余
区间不是单调递增。
而说函数()f x 在区间[,]a b 上单调递增只是说明在[,]a b ()f x 是单调递增的,而没有说明在其他区间上是否也有单调递增。
例如对函数1()f x x
=-,可以说函数()f x 在区间(0,)+∞上单调递增,但要说()f x 的单调递增区间只能是(,0)-∞和(0,)+∞,不能漏掉任意一个。
2、求函数定义域的主要依据
(1)分式的分母不得为 ;
(2)偶次方跟的被开方数 ;
(3)对数函数的真数必须 ;
(4)指数函数和对数函数的底数必须 ;
(5)三角函数中的正切函数tan y x = ;
3、函数的值域
(1)在函数的三个概念中,值域是由 和 所确定的,因此,在研究函数的值域时,既要重视对应法则的作用,又要特别注意定义域对值域的制约作用。
(2)基本函数的值域
①(0)y kx b k =+≠的值域是 ;
②2(0)y ax bx c a =++≠的值域是:当0a >值域为 ;当0a <值域为 ; ③(0)k y k x
=≠的值域是 ; ④(0,1)x y a a a =>≠的值域是 ;
⑤log (0,1)a y x a a =>≠的值域是 ;
⑥sin y x =,cos y x =的值域是 ;
⑦tan y x =的值域是 。
4、函数的最值
一般的,设函数()y f x =的定义域为I ,如果存在实数M 满足:
(1)对于任意的x I ∈,都有()(())f x M f x M ≤≥;
(2)存在0x I ∈,使得0()f x M =;
那么我们称M 是函数()y f x =的 值。
【考点精练】
考点一:求函数的定义域
1
、函数y =的定义域为( )
A 、{|0}x x ≥
B 、{|1}x x ≥
C 、{|1}{0}x x ≥
D 、{|01}x x ≤≤
2
、函数y =的定义域是 。
3、已知()f x 的定义域是[2,4]-,求2
(3)f x x -的定义域。
规律总结:
1、函数有解析式时,其定义域是使解析式有意义的自变量的取值构成的集合。
2、实际问题的函数定义域不仅要考虑解析式的意义,还要看实际情形的意义。
3、复合函数求定义域时,(())f g x 的定义域是指表达式中x 的取值集合。
(1)已知()f x 的定义域为D ,求(())f g x 的定义域,只需令()g x D ∈,解得x 的集合即可;
(2)已知(())f g x 的定义域为D ,求()f x 的定义域,只需要求()g x 在D 上的值域即可。
考点二:函数的单调性和单调区间
1、已知,1()(4)2,12
x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A 、(1,)+∞ B 、[4,8) C 、(4,8) D 、(1,8)
2、函数()(3)x
f x x e =-的单调递增区间是( )
A 、(,2)-∞-
B 、(0,3)
C 、(1,4)
D 、(2,)+∞
3、已知函数1()21
x f x a =-+,求证:不论a 为何实数,()f x 在R 上总为增函数。
规律总结:
判断(或证明)函数单调性的主要方法有:
(1)函数单调性的定义,即取值、作差、变形、定号等步骤;
(2)观察函数图像,前提是掌握基本函数图像和图像变换法则;
(3)利用函数和、差、积、商以及复合函数单调性判断的法则,即同增异减的口诀;
(4)利用导数原理,即求导,解导数的不等式,确定区间等步骤。
考点三:函数的值域和最值
1、函数1()1f x x =
-在区间[,]a b 的最大值是1,最小值是13,则a b += 。
2、若()f x 为R 上的增函数,则满足2(2)()f m f m -<的实数m 的取值范围是 。
3、已知函数()f x 对于任意,x y R ∈,总有()()()f x f y f x y +=+,当0x >时,()0f x <,2(1)3
f =-,且()f x 是R 上的减函数,求()f x 在[3,3]-上的最大值和最小值。
规律总结:
求函数值域的常用方法有:直接观察、换元法、配方法、利用单调性、不等式法、导数法、判别式法、图像法等。
注意:(1)求值域要根据实际情况选择适当方法,不可生搬硬套;(2)求函数的值域和最值一定要注意定义域的限制和影响;(3)利用换元法时,要及时确定新变量的取值范围。
【考题预测】
1、已知a ,b 是实数,函数3()f x x ax =+,2()g x x bx =+,()f x '和()g x '分别是()f x 和()g x 的导函数。
若()()0f x g x ''≥在区间I 上恒成立,则称()f x 和()g x 在区间I 上单调性一致。
设0a >,若()f x 和()g x 在区间[1,)-+∞上单调性一致,求b 的取值范围。
2、已知函数2()(0,)a f x x x a R x
=+
≠∈,若函数()f x 在[2,)+∞上为增函数,求a 的取值范围。
【巩固练习】
1、函数y = )
A 、[0,)+∞
B 、[0,4]
C 、[0,4)
D 、(0,4)
2、函数0
y
=的定义域是( )
A 、{|0}x x <
B 、{|0}x x >
C 、{|0,1}x x x <≠-
D 、{|0,1,}x x x x R ≠≠-∈
3、函数21
y x =
-的定义域是(,1)[2,5)-∞ ,则其值域是( ) A 、1(,0)(,2]2-∞ B 、(,2]-∞ C 、1(,)[2,)2-∞+∞ D 、(0,)+∞
4、定义新运算⊕:当a b ≥时,a b a ⊕=,当a b <时,2a b b ⊕=,则函数()(1)(2)f x x x x =⊕-⊕,[2,2]x ∈-的最大值等于( )
A 、1-
B 、1
C 、6
D 、12
5、已知()f x 为R 上的增函数,则满足2013()(1)f f x
>的实数x 的取值范围是( ) A 、(,2013)-∞ B 、(2013,)+∞ C 、(,0)(2013,)-∞+∞ D 、(0,2013)
6、函数(3)y x x =--的递增区间是 。
7、设1x ,2x 为方程24420x mx m -++=的两个实根,当m = 时,2212x x +有最小值 。
8、已知函数(2)1(1)()log (1)
a a x x f x x x --≤⎧=⎨>⎩,若()f x 在(,)-∞+∞上单调递增,则实数a 的取值范围
是 。
9、某厂生产某种产品,固定成本2万元,每生产一件产品增加100元,已知总收益R (成本与总利润之
和,单位:元)是年产量Q (单位:件)的函数,满足关系是:21400(0400)()280000(400)Q Q Q R f Q Q ⎧-≤≤⎪==⎨⎪>⎩
,求每年生产多少件产品时,总利润最大?此时总利润是多少?
10、已知函数2
()426f x x ax a =+++
(1)若函数()f x 的值域是[0,)+∞,求a 的值;
(2)若函数()f x 的函数值均为非负数,求()23g a a a =-+的值域。
【参考答案】
考点精练:
考点一:1、C 2、1(,1)(1,2]2
3、[1,1][2,4]-
考点二:1、B 2、D 3、证明略
考点三:1、6 2、(,2)(1,)-∞-+∞ 3、最大值2,最小值2-
考题预测:
1、[2,)+∞
2、(,16]-∞
巩固练习: 1、C 2、C 3、A 4、C 5、D 6、3[0,]2 7、1-,12
8、(2,3] 9、每年生产300件时,总利润最大为25000元 10、(1)1a =-或32a =;(2)19[,4]4-。