大一高数期末考试_下学期高数(下)3_高数期末试题_总结归纳
大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f 。
(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导。
2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα。
(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D)()x β是比()x α高阶的无穷小。
3.若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( )。
(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B)222x+(C )1x - (D)2x +.二、填空题(本大题有4小题,每小题4分,共16分)5. =+→xx x sin 2)31(lim 。
6. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x xx f d cos )(则 .7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ 。
8.=-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12.设函数)(x f 连续,=⎰1()()g x f xt dt,且→=0()limx f x A x ,A 为常数。
大一下学期高等数学期末试题及答案__数套

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctanyz x =,则z x ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()L x y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( )A. L 平行于πB. L 在π上C. L 垂直于πD. L 与π斜交 (2)设是由方程xyz =(1,0,1)-处的dz =( )A.dx dy +B.dxD.dx (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.22530d r dr dzπθ⎰⎰⎰ B.24530d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.2252d r dr dzπθ⎰⎰⎰(4)已知幂级数12nnn n x ∞=∑,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z +-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 x xy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面z =与上半球面z =所围成的立体表面的外侧 (10)'2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z =的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 . 二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设(,)z f x y =是由方程333z xyz a -=确定,则z x ∂=∂( ); A. 2yz xy z - B. 2yz z xy - C. 2xz xy z - D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()x ax b xe +C.2()x ax b ce ++D.2()xax b cxe ++ (4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A222sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).2 B.1 C. 12 D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ . 7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy -+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段. 6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分10⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
大一下高数期末知识点总结

大一下高数期末知识点总结高等数学是大学理工科专业中的一门重要基础课程,对于理解和掌握其他专业课程具有至关重要的作用。
下面将对大一下学期高等数学的主要知识点进行总结。
一、极限与连续1. 极限的定义及基本性质- 数列极限的定义- 函数极限的定义- 极限的四则运算法则2. 确定极限的方法- 代入法- 夹逼准则- 单调有界准则- 极限的唯一性3. 连续函数- 连续函数的定义- 连续函数的基本性质- 连续函数的四则运算法则二、导数与微分1. 导数的概念- 导数的定义- 右导数与左导数- 导数与函数图像的关系2. 基本求导公式- 幂函数求导法则- 反函数求导法则- 乘积法则与商法则- 复合函数求导法则3. 高阶导数与高阶导数的求法 - 高阶导数的概念- 高阶导数的求法- Leibniz公式4. 函数的微分与线性化- 微分的定义- 微分的应用- 线性化的概念及应用三、不定积分1. 不定积分的概念与性质- 不定积分的定义- 不定积分的线性性质- 不定积分的换元法则2. 基本初等函数的不定积分- 幂函数的不定积分- 三角函数的不定积分- 指数函数与对数函数的不定积分3. 特殊函数的不定积分- 有理函数的不定积分- 特殊三角函数的不定积分- 分部积分法四、定积分与其应用1. 定积分的概念与性质- 定积分的定义- 定积分的性质- 定积分的换元法则2. 定积分的计算方法- 几何意义与微元法- 换元法- 分部积分法3. 积分学基本定理- 积分的存在性定理- 牛顿-莱布尼茨公式- 反常积分的收敛性五、微分方程1. 一阶常微分方程- 可分离变量的一阶方程 - 齐次方程与非齐次方程 - 线性方程与伯努利方程2. 二阶线性常微分方程- 齐次线性方程的解- 常系数非齐次线性方程的特解- 高阶线性常微分方程总结:高等数学是一门抽象而严谨的学科,其中的知识点需要通过理论学习和大量的练习才能掌握。
以上只是大一下学期高等数学的主要知识点总结,希望能为同学们的学习提供一定的参考。
大一下学期高等数学期末考试试题及答案

高等数学A (下册)期末考试试题【A 卷】院(系)别 班级学号姓名成绩一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a r 、b r满足0a b +=r r r ,2a =r ,2b =r ,则a b ⋅=r r.2、设ln()z x xy =,则32zx y∂=∂∂ . 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为.4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数在3x =处收敛于 ,在x π=处收敛于.5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程.2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂.5、计算曲面积分,dSz∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部.三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、 (本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰,其中∑为曲面221(0)z x y z =--≥的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]tF t z f x y z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z =与z =所围成的闭区域,求3()lim t F t t +→. -------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交;不得带走试卷。
大一下学期高等数学期末考试试题及答案

高等数学A (下册)期末考试试题【A 卷】院(系)别 班级学号 姓名成绩一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ⋅=.2、设ln()z x xy =,则32zx y∂=∂∂ . 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为 .4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数在3x =处收敛于,在x π=处收敛于.5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰.※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程.2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnnn n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂.5、计算曲面积分,dSz ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部. 三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、 (本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)Ix dydz y dzdx z dxdy ∑=++-⎰⎰,其中∑为曲面221(0)z x y z =--≥的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]tF t z f x y z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z =与z =30()lim t F t t+→. -------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷。
大一高数下知识点总结详细

大一高数下知识点总结详细大一的下学期,高等数学课程内容较为深入,学生们需要掌握更多的数学知识点。
以下是对大一高数下学期的知识点总结,帮助学生们回顾和巩固所学内容。
1. 极限与连续- 函数极限的概念和性质- 常见函数的极限计算- 无穷小量和无穷大量- 连续函数的定义和性质- 已知导函数求原函数2. 导数与微分- 导数的定义和性质- 基本的导数公式- 高阶导数与高阶微分- 隐函数的求导法则- 参数方程的求导法则3. 微分中值定理与导数应用- 罗尔定理与拉格朗日中值定理 - 洛必达法则与洛必达不定式计算 - 反函数求导法则- 曲线的凹凸性和拐点- 最值问题的求解4. 不定积分- 不定积分的定义和性质- 基本的不定积分公式- 换元法和分部积分法- 有理函数的积分- 特殊函数的积分计算5. 定积分- 定积分的概念和性质- 牛顿-莱布尼茨公式- 平均值定理和积分中值定理 - 定积分的几何应用- 参数方程下的弧长与曲线面积6. 微分方程基础- 微分方程的定义和基本概念 - 一阶常微分方程求解- 可分离变量方程和齐次方程 - 二阶线性常微分方程- 常系数线性常微分方程7. 多元函数与偏导数- 多元函数的定义和性质- 偏导数的概念及其计算- 隐函数求导与全微分- 多元函数的极值与条件极值 - 二重积分的概念和计算8. 重积分- 三重积分的概念和计算- 坐标变换与重积分的应用 - 曲线曲面的面积和体积- 重积分的物理应用- 广义积分的概念和收敛性9. 空间解析几何- 点、向量及其运算- 点线面的关系- 平面与直线的位置关系- 空间曲线与曲面- 曲线与曲面的参数方程以上是大一高数下学期的主要知识点总结,希望对广大大一学生有所帮助。
通过复习和掌握这些知识点,相信你将能够顺利应对考试,并打下坚实的数学基础。
加油!。
大一高数期末考试,下学期高数3,高数期末试题,总结归纳[精品

千里之行,始于足下。
大一高数期末考试,下学期高数3,高数期末试题,总结归纳[精品大一高数期末考试,下学期高数3,高数期末试题,总结归纳[精品]》高等数学是大学数理基础课程中的重要组成部分,对于提高学生的数学素养和逻辑思维能力具有重要意义。
下面将对大一高数期末考试试题进行总结归纳,帮助同学们更好地复习高数课程。
首先,期末考试试题涉及了高数课程的各个知识点。
在这次考试中,我们见到了微积分、极限与连续、导数与微分、等多个重点内容,这反映了高等数学的综合性质。
因此,学生在备考期末考试时,应注重同步学习,对每个知识点进行深入理解和掌握。
其次,试题中强调了理论联系实际。
高等数学不仅仅是一门理论学科,更是应用数学的基础。
通过期末考试试题,我们可以看到大量的实际问题与数学知识相结合,要求学生在解题过程中能够灵活运用数学知识,解决实际问题。
因此,学生在学习高数过程中,要有意识地与实际问题结合,进行思维拓展和练习。
再次,试题中涉及了不同难度层次的问题。
从试题的难易程度来看,有些问题属于基础性问题,需要学生熟练掌握定义、定理和公式等基础知识,能够熟练运用;而有些问题则较为复杂,需要学生深入理解知识点,并能够将其与其他知识点进行有机结合,解决问题。
因此,学生在复习高数中,要分析试题的难易程度,合理安排复习时间,注重基础知识的巩固,同时也要挑战难题,提高解题能力。
第1页/共2页锲而不舍,金石可镂。
最后,试题中体现了综合性考核。
期末考试试题涉及了多个知识点,考察学生的综合运用能力和思维逻辑能力。
因此,学生在备考期末考试时,要注重梳理知识框架,形成整体理解,通过解决综合性问题,提高应对复杂问题的能力。
通过对大一高数期末考试试题的总结归纳,我们可以发现高数课程的重要性和多样性。
只有全面掌握高等数学的核心知识和解题技巧,才能在考试中取得优异成绩。
因此,学生在日常学习中,要注重理论与实际的结合,加强基础知识的学习与巩固,注重解题思路的培养,提高数学素养和解题能力。
高数大一下学期期末总结

高数大一下学期期末总结高数是大学数学的基础课程,是建立大学数学思维与发展数学能力的重要一环。
在大一下学期中,我们学习了高等数学的第二部分,内容包括了定积分与微分方程。
通过学习这些知识,我对数学的认识有了更深入的理解,并且学到了一些解决实际问题的方法和思路。
在本篇总结中,我将回顾这个学期的学习成果,并提出自己的思考和感悟。
高数下学期的内容主要包括定积分与微分方程两个部分。
在定积分的学习中,我们学习了定积分的定义、定理、应用等内容,包括求面积、曲线长度、旋转体体积等。
定积分是微积分的核心概念之一,通过学习定积分,我对微积分的整体结构和思维方式有了更全面和深入地认识。
通过课堂上的例题演练和课后习题的完成,我对定积分的应用有了更深入的理解,并且掌握了一些解题方法和技巧。
在微分方程的学习中,我们学习了微分方程的基本概念、解的存在唯一性定理、一阶线性微分方程和常系数线性微分方程等内容。
通过对微分方程的学习,我对微分方程的基本概念有了更透彻的理解,并且通过求解一些实际问题的微分方程,我对微分方程的应用有了更深入的了解。
微分方程是数学与现实问题相结合的桥梁,通过学习微分方程,我也培养了一定的实际问题转化为数学问题的能力和思维。
同时,在解题过程中,我也了解到了数值解法和近似解法的重要性,它们在实际问题中的应用非常广泛。
在学习过程中,我遇到了一些困难和问题。
首先,定积分的应用题目往往比较复杂,需要结合数学理论和实际问题进行分析和解决。
这就需要我对数学知识的理解和掌握有一个整体的、全面的认识。
其次,微分方程的解法有多种方法,针对不同的问题需要采用不同的方法。
这就需要我具备一定的选择和判断能力,能够灵活运用所学的知识和方法解决问题。
最后,数学是一门需要大量练习的学科,学以致用才能真正理解和掌握。
因此,我要在复习总结中加强对习题的练习,提高解题的能力和效率。
通过这个学期的学习,我不仅学到了高等数学的知识,也培养了一些基本的数学思维和解决实际问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北科技大学
高等数学(下)考试试题3
一、 填空题(每题4分,共16分)
1.(4分) 级数1n n u ∞
=∑收敛的必要条件是 .
2. (4分) 交换二次积分的次序100(,)y
dy f x y dx ⎰⎰= .
3. (4分) 微分方程2442x y y y xe '''-+=的一个特解形式可以设为 .
4. (4分) 在极坐标系下的面积元素d σ= .
二、 选择题(每题4分,共16分)
1. (4分) 已知曲面224z x y =--上点P 处的切平面平行于平面2210x y z ++-=,则点P 的坐标是 ( ).
A. (1,-1,2);
B. (-1,1,2);
C. (1,1,2);
D. (-1,-1,2).
2. (4分) 级数13
121(1)
n n n ∞-=-∑为( ).
A.绝对收敛;
B. 条件收敛;
C.发散;
D. 收敛性不确定.
3. (4分) 若∑是锥面222
x y z +=被平面0z =与1z =所截下的部分,则曲面积分22()x y dS ∑+=⎰⎰( ).
A.
1200d r rdr πθ⋅⎰⎰; B. 21200d r rdr πθ⋅⎰⎰;
C. 1200d r rdr πθ⋅⎰;
D.
21200d r rdr πθ⋅⎰. 4. (4分)
幂级数1(1)n n n n ∞-=-∑的收敛半径为( ).
A. 2;R =
B.1;2R =
C.3;R =
D.1.3
R = 三、 解答题(每题7分,共63分)
1.(7分) 设sin(),xy z x y e =++求dz .
2. (7分) 计算三重积分,I xdxdydz Ω
=⎰⎰⎰其中Ω为三个坐标面及平面
21x y z ++=所围成的闭区域.
3. (7分) 求(1)I y z dS ∑
=++⎰⎰,其中∑是平面5y z +=被圆柱面
2225x y +=截出的有限部分.
4. (7分) 求幂级数1(1)(1)n
n n x n ∞
=--∑的收敛域. 5. (7分) 将21()2f x x x
=--展开为麦克劳林级数. 6. (7分) 求曲线积分(sin )(cos 1)x x L I e y y dx e y dy =-+-⎰,其中L 为
22x y ax +=上从(,0)A a 到(0,0)O 的上半圆周.
7. (7分) 求微分方程24y xy x '+=在初始条件03x y ==下的特解.
8. (7分) 求曲面积分(1)(22)(33)I x dydz y dzdx z dxdy ∑
=+++++⎰⎰ ,
其中∑为曲面222
4x y z ++=的内侧.
9.(7分) 计算曲线积分()L I x y ds =+⎰,其中L 是以(0,0)O ,(1,0),(0,1)
A B 为顶点的三角形折线.
四、(5分) 试确定参数t 的值,使得在不含直线0y =上点的区域上,曲线积分
222222()()t t
C
x x y x x y I dx dy y y ++=-⎰与路径无关,其中C 是该区域上一条光滑曲线,并求出当C 从(1,1)A 到(0,2)B 时I 的值.
评 分 标 准
一、 1.lim 0;n n u →∞= 2.11
0(,);x dx f x y d y ⎰⎰ 3.*222()x y x Ax Bx C e =++; 4..d rdrd σ=θ
二、 1. C; 2. A; 3.D. 4.D.
三、 1.解 c o s ()xy x z x y ye =++
3 分 c o s ()xy
y z x y xe =++ 3 分
[c o s ()][c o s ()x y x y d z x y y e d x x y x e d y =+++++ 7分 2.解 11122000x x y I dx dy xdz ---=⎰⎰
⎰ 3 分 11200(12)x xdx x y dy -=--⎰⎰ 5分
12301(2)4
x x x dx =-+⎰ 6分 148
= 7分 3.解 :5z y ∑=- 1分
22:25D x y +≤
2分
(15D
I y y =++-⎰⎰ 4分
D
dxdy = 6分
=
7分 4. 解 1R = 2分
当2x =时收敛 4分
当0x =时发散 6分
收敛域为(0,2]. 7分
5.解 21111231212x x x x ⎡⎤
⎢⎥⎢⎥=+---⎛⎫⎢⎥+ ⎪⎢⎥⎝⎭⎣⎦
2分 ()11316(1)2
x x =+-+ 3分 0011(1)362n
n n n n x x ∞∞==⎛⎫=+- ⎪⎝⎭
∑∑ 5分 10111(1)32n n n n x ∞+=⎛⎫=+- ⎪⎝⎭∑ 6分 1x <
7分 6.解sin x P e y y =-, cos 1x
Q e y =- 1分 1Q P x y
∂∂-=∂∂ 3分 由格林公式得D
I dxdy =⎰⎰ 6分
221228
a a π⎛⎫==π ⎪⎝⎭ 7分 7.解()224xdx x y e C xe dx ⎰-=+⎰ 3分
222[2()]x x e
C e d x -=+⎰ 4分 22x Ce -=+ 5分
将03x y ==代入上式得 1C = 6分
所求特解为22x y e
-=+ 7分
8.解 利用高斯公式得
6I dv Ω
=⎰⎰⎰
4分 4643
=⋅π⋅ 6分 32=π 7分
9.解 ()()()O A O B B A
I x y d s x y d s x y d s =+++++
⎰⎰⎰ 101()2OA
x y ds xdx +==⎰⎰ 2分 101()2OB
x y ds ydy +==⎰⎰ 4分
1
0()(1BA x y ds x x +=+-⎰⎰ 6分
1I ∴= 7分 四、 解 221
2222()(2)t P x x y ty x y y y
-∂+=⋅--∂ 1分 221
22222()()t Q x x y x y tx x y
-∂-+=⋅++∂ 2分 令P Q y x
∂∂=∂∂可得22(21)()0t x y ++= 因为0,y ≠所以12
t =- 3分 因曲线积分与路径无关,故取从点(1,1)A 经点(0,1)D 到点(0,2)B 的折线积分
010I =+⎰ 4分
1= 5分。