分子晶体与原子晶体课件
合集下载
认识晶体(完整版)ppt课件

第一节
认识晶体
精选ppt
1
一、晶体的特性
1.晶体与非晶体
(1)晶体:内部微粒(原子、离子或分 子)在空间按一定规律做周期性重复 排列构成的固体物质。
非晶体:内部原子或分子的排列呈现杂 乱无章的分布状态。
精选ppt
2
2.晶体的特性
(1)具有规则的几何外形。
(2)自范性:在适宜条件下,晶体能够 自发地呈现封闭的、规则的多面体外形。
练习1:根据离子晶体的晶胞结构,判断下 列离子晶体的化学式:(A表示阳离子)
A B
化学式: AB
精选ppt
31
Hale Waihona Puke 练习2:根据离子晶体的晶胞结构,判断下 列离子晶体的化学式:(A表示阳离子)
A B
化学式: A2B
精选ppt
32
练习3:根据离子晶体的晶胞结构,判断下列 离子晶体的化学式:(A表示阳离子)
顶 ----1/8 棱----1/4 面----1/2 心----1
精选ppt
38
2001年报道的硼和镁形成的化合物刷新了 金属化合物超导温度的最高记录。如图所 示的是该化合物的晶体结构单元:镁原子 间形成正六棱柱,且棱柱的上下底面还各 有1个镁原子,6个硼原子位于棱柱内。则 该化合物的化学式可表示为
微粒数为:8×1/8 + 6×1/2 = 4
(3)体心立方:在立方体顶点的微粒 为8个晶胞共享,处于体心的金属原 子全部属于该晶胞。
微粒数为:8×1/8 + 1 = 2 长方体晶胞中不同位置的粒子对晶胞的贡献:
顶点 ----1/8 棱----1/精4选ppt 面----1/2 心----1 25
精选ppt
微粒数为:12×1/6 + 2×1/2 + 3 = 6
认识晶体
精选ppt
1
一、晶体的特性
1.晶体与非晶体
(1)晶体:内部微粒(原子、离子或分 子)在空间按一定规律做周期性重复 排列构成的固体物质。
非晶体:内部原子或分子的排列呈现杂 乱无章的分布状态。
精选ppt
2
2.晶体的特性
(1)具有规则的几何外形。
(2)自范性:在适宜条件下,晶体能够 自发地呈现封闭的、规则的多面体外形。
练习1:根据离子晶体的晶胞结构,判断下 列离子晶体的化学式:(A表示阳离子)
A B
化学式: AB
精选ppt
31
Hale Waihona Puke 练习2:根据离子晶体的晶胞结构,判断下 列离子晶体的化学式:(A表示阳离子)
A B
化学式: A2B
精选ppt
32
练习3:根据离子晶体的晶胞结构,判断下列 离子晶体的化学式:(A表示阳离子)
顶 ----1/8 棱----1/4 面----1/2 心----1
精选ppt
38
2001年报道的硼和镁形成的化合物刷新了 金属化合物超导温度的最高记录。如图所 示的是该化合物的晶体结构单元:镁原子 间形成正六棱柱,且棱柱的上下底面还各 有1个镁原子,6个硼原子位于棱柱内。则 该化合物的化学式可表示为
微粒数为:8×1/8 + 6×1/2 = 4
(3)体心立方:在立方体顶点的微粒 为8个晶胞共享,处于体心的金属原 子全部属于该晶胞。
微粒数为:8×1/8 + 1 = 2 长方体晶胞中不同位置的粒子对晶胞的贡献:
顶点 ----1/8 棱----1/精4选ppt 面----1/2 心----1 25
精选ppt
微粒数为:12×1/6 + 2×1/2 + 3 = 6
《分子晶体》课件

此外,分子晶体还可以用于制造药物和药物载体。通过设计和合成具有特定结构 和性质的分子晶体,可以开发出具有疗效的药物和药物载体,用于治疗疾病和改 善人类健康。
在生物学中的应用
分子晶体在生物学中也有着广泛的应用,如用于研究生物大分子的结构和功能。生物大分子如蛋白质 、核酸和多糖等具有复杂的结构和功能,通过研究和了解它们的结构和功能,可以更好地理解生命过 程和疾病机制。
对称面
某些分子晶体中存在对称 面,使得晶体具有对称性 。
对称中心
某些分子晶体中存在对称 中心,使得晶体具有对称 性。
03
分子晶体的分类
有机分子晶体
总结词
有机分子晶体是指由有机分子构成的晶体,其结构单元是碳原子和氢原子等有 机元素。
详细描述
有机分子晶体在自然界中广泛存在,如蛋白质、核酸等生物大分子都是有机分 子晶体。此外,许多塑料、合成纤维等高分子材料也是有机分子晶体。这些晶 体的结构和性质与构成它们的有机分子密切相关。
《分子晶体》ppt课 件
目 录
• 分子晶体简介 • 分子晶体的结构 • 分子晶体的分类 • 分子晶体的应用 • 分子晶体的未来发展
01
分子晶体简介
分子晶体的定义
01
分子晶体是由分子通过分子间作 用力(范德华力)相互结合形成 的晶体。
02
分子晶体中不存在离子或共价键 的结合,而是分子与分子之间的 相互作用。
详细描述
科研人员正在探索新型的分子晶体材 料,这些材料具有更高的稳定性、更 优秀的物理和化学性能,能够满足各 种高科技领域的需求。
分子晶体在新能源领域的应用
总结词
分子晶体在新能源领域的应用前景广 阔,如太阳能电池、燃料电池等。
详细描述
在生物学中的应用
分子晶体在生物学中也有着广泛的应用,如用于研究生物大分子的结构和功能。生物大分子如蛋白质 、核酸和多糖等具有复杂的结构和功能,通过研究和了解它们的结构和功能,可以更好地理解生命过 程和疾病机制。
对称面
某些分子晶体中存在对称 面,使得晶体具有对称性 。
对称中心
某些分子晶体中存在对称 中心,使得晶体具有对称 性。
03
分子晶体的分类
有机分子晶体
总结词
有机分子晶体是指由有机分子构成的晶体,其结构单元是碳原子和氢原子等有 机元素。
详细描述
有机分子晶体在自然界中广泛存在,如蛋白质、核酸等生物大分子都是有机分 子晶体。此外,许多塑料、合成纤维等高分子材料也是有机分子晶体。这些晶 体的结构和性质与构成它们的有机分子密切相关。
《分子晶体》ppt课 件
目 录
• 分子晶体简介 • 分子晶体的结构 • 分子晶体的分类 • 分子晶体的应用 • 分子晶体的未来发展
01
分子晶体简介
分子晶体的定义
01
分子晶体是由分子通过分子间作 用力(范德华力)相互结合形成 的晶体。
02
分子晶体中不存在离子或共价键 的结合,而是分子与分子之间的 相互作用。
详细描述
科研人员正在探索新型的分子晶体材 料,这些材料具有更高的稳定性、更 优秀的物理和化学性能,能够满足各 种高科技领域的需求。
分子晶体在新能源领域的应用
总结词
分子晶体在新能源领域的应用前景广 阔,如太阳能电池、燃料电池等。
详细描述
分子晶体与原子晶体PPT课件

注:①分子间作用力越大,熔沸点越高(相对 分子质量,分子极性,氢键)
② 分子晶体熔化时一般只破坏分子间作 用力,不破坏化学键,也有例外,如S8
(2)较小的硬度;
(3)一般都是绝缘体,熔融状态也不导电。 有些在水溶液中可以导电.
➢原因:分子间作用力较弱
.
14
5、典型的分子晶体:
(1)所有非金属氢化物:H2O,H2S,NH3, CH4,HX
(1)范德华力
(2)分子间氢键
.
26
讨论
CO2和SiO2的一些物理性质如下所示,通过 比较,判断SiO2晶体是否属于分子晶体。
CO2 SiO2
熔点/oC -56.2 1723
状态(室温) 气态 固态
结论:SiO2不是分子晶体。 那么SiO2是什么晶体呢?
.
27
二、原子晶体
1、定义:原子间以共价键相结合而形成 的空间网状结构的晶体。
.
24
〖思考2〗为何干冰的熔沸点比冰低,密度却 比冰大?
由于冰中除了范德华力外还有氢键作用, 破坏分子间作用力较难,所以熔沸点比干冰 高。
由于分子间作用力特别是氢键的方向性, 导致晶体冰中有相当大的空隙,所以相同状 况下体积较大
由于CO2分子的相对分子质量>H2O,所 以干冰的密度大。
.
25
〖归纳要点〗分子的密度取决于晶体 的体积,取决于紧密堆积程度,分子 晶体的紧密堆积由以下两个因素决定:
7
一、分子晶体
一、概念
分子间以分子间作用力(范德华力,氢 键)相结合的晶体叫分子晶体。
构成分子晶体的粒子:分子,
粒子间的相互作用:分子间作用力。
分子晶体熔化时:
一般只破坏分子间作用力,
② 分子晶体熔化时一般只破坏分子间作 用力,不破坏化学键,也有例外,如S8
(2)较小的硬度;
(3)一般都是绝缘体,熔融状态也不导电。 有些在水溶液中可以导电.
➢原因:分子间作用力较弱
.
14
5、典型的分子晶体:
(1)所有非金属氢化物:H2O,H2S,NH3, CH4,HX
(1)范德华力
(2)分子间氢键
.
26
讨论
CO2和SiO2的一些物理性质如下所示,通过 比较,判断SiO2晶体是否属于分子晶体。
CO2 SiO2
熔点/oC -56.2 1723
状态(室温) 气态 固态
结论:SiO2不是分子晶体。 那么SiO2是什么晶体呢?
.
27
二、原子晶体
1、定义:原子间以共价键相结合而形成 的空间网状结构的晶体。
.
24
〖思考2〗为何干冰的熔沸点比冰低,密度却 比冰大?
由于冰中除了范德华力外还有氢键作用, 破坏分子间作用力较难,所以熔沸点比干冰 高。
由于分子间作用力特别是氢键的方向性, 导致晶体冰中有相当大的空隙,所以相同状 况下体积较大
由于CO2分子的相对分子质量>H2O,所 以干冰的密度大。
.
25
〖归纳要点〗分子的密度取决于晶体 的体积,取决于紧密堆积程度,分子 晶体的紧密堆积由以下两个因素决定:
7
一、分子晶体
一、概念
分子间以分子间作用力(范德华力,氢 键)相结合的晶体叫分子晶体。
构成分子晶体的粒子:分子,
粒子间的相互作用:分子间作用力。
分子晶体熔化时:
一般只破坏分子间作用力,
高中化学3.2分子晶体与原子晶体K1 K2优秀课件

干冰晶体中,每个CO2分子周围,离该分子最近且距离相 等的CO2分子有12个CO2分子?
65
87
31
42
〔2〕冰 晶体的结构如以下图所示
构成冰晶体的结构微粒是H2O 分子,微粒间的相互作用力主要 是氢键〔也存在范德华力〕 在冰的晶体中,每个水分子与 四面体顶角方向的4个相邻水分 子相互吸引,这样的排列使冰晶 体中的水分子的空间利用率不高, 留有相当大的空隙。
〔2〕 SiO2
观察SiO2晶体结构
SiO2中每个Si与4个O结合构成 正四面体,同时每个O与2个Si结合。
SiO2晶体中, Si原子与O原子个数比为: 1﹕(4×1/2)=1﹕2 Si原子个数与Si—O键数之比为: 1﹕4 注意:原子晶体中不存在单个分子,它的化学式代表 晶体中各构成粒子的个数比,而不代表真实的分子组成。
二、原子晶体
1.结构特点: (1)构成晶体粒子:原子
晶体熔化 破坏它
(2)晶体里粒子间的作用:共价键。
2.定义:在晶体里,所有相邻原子都以共价键相结合而形成三 维网状结构的晶体。
3.原子晶体性质的共性: 熔点高,硬度大,难溶于一些常见的溶剂
4 .常见原子晶体 〔1〕金刚石 在金刚石晶体中,
每个C与多少个C成键? 4 C采取何种杂化方式? SP3杂化 形成怎样的空间结构? 正四面体的立体网状结构 键角? 109°28′
C. 金刚石和HCl
D. CCl4和KCl
例题2.C60、金刚石和石墨的结构模型如以下图所示〔石墨仅表 示出其中的一层〕
〔1〕C60、金刚石和石墨三者互为 A、同分异构体 C、同系物
B
;
B、同素异形体
D、同位素
〔2〕固态时,C60属于 分子 〔填“离子〞、“原子〞或 “分子〞〕晶体;
《晶体物理》课件

色散与光谱线
色散
当白光通过棱镜时,会分解成不同颜色的光谱。这种现象称为色散。在晶体中, 由于晶格结构的周期性,光波的传播速度会随波长而变化,从而导致色散现象。 了解色散现象对于研究晶体的结构和性质具有重要意义。
光谱线
当单色光通过物质时,其波长可能会发生变化。这种变化在光谱上表现为线或暗 线。在晶体中,由于晶格结构的周期性,光波的波长可能会发生变化,从而产生 光谱线。了解光谱线对于研究晶体的结构和性质具有重要意义。
热传导概述
热传导是指热量在物质内部 或不同物质之间传递的过程 。对于晶体而言,其热传导 机制与晶体的结构和原子间 相互作用等因素有关。
热传导的物理模型
描述晶体热传导的物理模型 有多种,如Fourier导热定 律、扩散传热模型等。这些 模型可以帮助我们更好地理 解晶体热传导的机制和特性 。
03 晶体光学性质
详细描述
随着科技的不断进步,新型晶体材料的探索 成为了一个备受关注的研究领域。科研人员 通过实验和计算模拟相结合的方法,不断探 索具有优异性能的新型晶体材料,如拓扑晶 体、超硬材料、高温超导材料等。这些新型 晶体材料在能源、环境、医疗等领域具有广 泛的应用前景。
晶体物理在新能源领域的应用
要点一
总结词
《晶体物理》ppt课件
目录
Contents
• 晶体物理概述 • 晶体振动与热力学性质 • 晶体光学性质 • 晶体电学性质 • 晶体磁学性质 • 晶体物理前沿研究
01 晶体物理概述
定义与特性
定义
晶体物理是一门研究晶体内部原 子或分子的排列规律、结构特征 以及与物理性质之间关系的科学 。
特性
晶体具有长程有序的结构,其原 子或分子的排列呈现周期性重复 的特点,这使得晶体具有一系列 独特的物理性质。
《晶体结构及其变化》课件

THANKS
感谢观看
晶体生长与退火
晶体生长
晶体生长是指晶体从小的结晶核开始,逐渐生长成为较大的 晶体的过程。晶体生长过程中,原子或分子在结晶核上按一 定的规律排列,形成晶体结构。
退火
退火是指将晶体加热至较高温度,然后缓慢冷却的过程。退 火可以消除晶体中的内应力,提高晶体的稳定性。
晶体形变与断裂
晶体形变
晶体形变是指晶体在外力作用下 发生形状改变的现象。晶体形变 过程中,原子或分子的排列发生 变化,导致晶体结构的变化。
分子排列方式对晶体 的物理性质有重要影 响,如密度、溶解度 等。
离子排列
在离子晶体中,离子通过静电 力相互连接,形成离子键。
离子排列方式决定了晶体的离 子导电性、光学性质等。
常见的离子晶体有氯化钠、氧 化镁等。
共价键与金属键
共价键是原子间通过共享电子形 成的化学键,常见于非金属元素
间。
金属键则是金属原子间通过电子 自由运动形成的化学键。
02
晶体结构的组成
原子排列
原子是构成晶体的基本单元,它 们在晶体中按照一定的规律排列
,形成晶格结构。
原子的排列方式决定了晶体的性 质,如硬度、熔点、导电性等。
常见的原子排列方式包括面心立 方、体心立方和密排六方等。
分子排列
在分子晶体中,分子 作为基本单元,通过 分子间作用力相互连 接。
分子排列可以通过X 射线晶体学等方法进 行测定。
晶体断裂
当晶体受到的形变超过其承受极 限时,会发生断裂。断裂过程中 ,晶体的原子或分子的排列被打 乱,形成非晶态物质。
晶体相变与转变
晶体相变
当外部条件发生变化时,如温度、压 力等,晶体的相会发生转变。相变过 程中,晶体的原子或分子的排列发生 变化,形成新的晶体结构。
分子晶体与原子晶体第一课时精品课件

3.干冰的外观和冰相像,可由二氧化碳气体压缩成液 态后再急剧膨胀而制得。右图为干冰晶体结构示意 图。通过观察分析,可知每个CO2分子周围与之相邻 等距的CO2分子有_______个。在一定温度下,已测 得干冰晶胞(即图示)的边长a=5.72×10-8cm,则 该温度下干冰的密度为____________g/cm3。
第二节 分子晶体与原子晶体
第一课时 分子晶体
观察下列两种晶体的晶胞找出两种晶体的共同点?
碘晶胞
二氧化碳晶胞
结论:构成微粒都是分子。 都是面心立方晶胞。
分子晶体的定义、组成微粒和作用力 定义:分子间以分子间作用力相结合形成
的晶体。
分子晶体中存在的微粒: 分子
粒子间的作用力:分子间作用力
分子晶体的两种堆积方式:
①密堆积:如果分子间作用力只有范德华力,无分子间 氢键-分子采用密堆积,如:C60、干冰 、I2、O2。
思考:与CO2分子距离最近的CO2分子共有多少个?
重要结论:与CO2分子距离最近的CO2分子共有12个
②非密堆积:如果分子间作用力还有氢键,则采用非 密堆积(如:HF 、冰、NH3 )
冰的结构
2、为何分子晶体的硬度小,熔沸点低?
①构成晶体的微粒是分子 ②分子之间以分子间作用力(主要是范德华力)相结 合,范德华力远小于化学键的作用
3、为何干冰的熔沸点比冰低,密度却比冰大? 由于冰中除了范德华力外还有氢键作用,破坏分子 间作用力较难,所以熔沸点比干冰高。 在冰中由于氢键的方向性,导致晶体中有相当大的 空隙,所以相同状况下冰的体积较大,密度比干冰小。
5、如何比较分子晶体熔沸点的高低? ①一般来说,分子晶体中范德华力越大,物质的熔、 沸点越高。 ②分子间氢键的形成使物质的熔、沸点升高;分子内 氢键的形成使物质的熔、沸点降低。
3.1四种晶体

粒子间作用力:离子键 配位数(缩写为C.N.) 一个离子周围最邻近的异电性离子的数目
2、常见离子晶体
强碱、金属氧化物、部分盐类 ①NaCl 晶体
阴离子配位数 6
阳离子配位数 6
NaCl 晶体
每个晶胞中 Cl—有 4 个 Na +有 4 个 每个Cl— 周围最近且等距离的Cl—有 12 个 每个Na+周围最近且等距离的Na+有 12 个
__2_:_3___.
小结1:分子晶体与原子晶体的比较
相邻原子间以共价键相结 分子间以分子间 合而形成空间网状结构 作用力结合
原子 共价键 很大 很大 不溶于任何溶剂
不导电,个别为半导体
分子 分子间作用力
较小
较小 部分溶于水 固体和熔化状态 都不导电,部分 溶于水导电
第三章 晶体的结构与性质
第三节 金属晶体
简单立方堆积的空间占有率 =52%
球半径为r 正方体边长为a =2r
②体心立方堆积(钾型)K、Na、Fe
体心立方堆积的配位数 =8
体心立方堆积的空间占有率 =68%
体对角线长为c 面对角线长为b 棱线长为a 球半径为r
c2=b2+a2 b2=a2+a2 c=4r (4r)2=3a2
③六方最密堆积(镁型)Mg、Zn、Ti
12
6
3
A
54
B
A
B A
六方最密堆积的配位数 =12
六方最密堆积的晶胞
六方最密 堆积的晶胞
六方最密堆积的空间占有率 =74% 上下面为菱形 边长为半径的2倍 2r
高为2倍 正四面体的高
2 6 2r 3
温馨提示:为更好地满足您的学习和使用需求,课件在下载后可以自由编辑,请您根据实际情况进行调整!Thank you for
2、常见离子晶体
强碱、金属氧化物、部分盐类 ①NaCl 晶体
阴离子配位数 6
阳离子配位数 6
NaCl 晶体
每个晶胞中 Cl—有 4 个 Na +有 4 个 每个Cl— 周围最近且等距离的Cl—有 12 个 每个Na+周围最近且等距离的Na+有 12 个
__2_:_3___.
小结1:分子晶体与原子晶体的比较
相邻原子间以共价键相结 分子间以分子间 合而形成空间网状结构 作用力结合
原子 共价键 很大 很大 不溶于任何溶剂
不导电,个别为半导体
分子 分子间作用力
较小
较小 部分溶于水 固体和熔化状态 都不导电,部分 溶于水导电
第三章 晶体的结构与性质
第三节 金属晶体
简单立方堆积的空间占有率 =52%
球半径为r 正方体边长为a =2r
②体心立方堆积(钾型)K、Na、Fe
体心立方堆积的配位数 =8
体心立方堆积的空间占有率 =68%
体对角线长为c 面对角线长为b 棱线长为a 球半径为r
c2=b2+a2 b2=a2+a2 c=4r (4r)2=3a2
③六方最密堆积(镁型)Mg、Zn、Ti
12
6
3
A
54
B
A
B A
六方最密堆积的配位数 =12
六方最密堆积的晶胞
六方最密 堆积的晶胞
六方最密堆积的空间占有率 =74% 上下面为菱形 边长为半径的2倍 2r
高为2倍 正四面体的高
2 6 2r 3
温馨提示:为更好地满足您的学习和使用需求,课件在下载后可以自由编辑,请您根据实际情况进行调整!Thank you for
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.分子晶体的种类
(1)所有非金属氢化物,如 H2O、NH3、CH4、HX等。
(2)部分非金属单质,如X2、 O2、H2、S8、P4、 C60 等。 (3)部分非金属氧化物 CO2, SO2、NO2、P4O6、P4O10等。
(4)几乎所有的酸 ,如 H2SO4、HNO3、H3PO4等。
(5)绝大多数有机物晶体, 如乙醇、冰醋酸、蔗糖等。
②晶体中最小的环为6元 环,但6个C原子不在同一 个平面上。
③晶体中C原子个数与 C-C键个数之比为:1:2。
二氧化硅的晶体结构示意图
Si O
109º 28´
180º
共价键
①在晶体中每个Si原子和 4个O原子以共价键结合 形成正四面体结构。每 个O原子又与2个Si原子 相连,所以在SiO2的晶 体中硅、氧原子个数比 为1:2。
2
4、试比较戊烷的三种同 分异构体熔沸点的高低?
① CH3—CH2—CH2—CH2—CH3 ② CH3—CH—CH2—CH3 CH3 CH3 ①>②>③ ③ CH3—C—CH3 CH3
分子晶体熔沸点大小的比较:
1、组成和结构相似的分 子晶体,相对分子质量越 大,熔沸点越高,氢键的 存在使熔沸点反常(偏 高)。
学习目标:
1 、了解分子晶体概念与结构特 点; 2、了解晶体类型与性质之间的 关系; 3、理解分子间作用力和氢键对 物质性质的影响; 4、知道一些常见的属于分子晶 体的物质类别。
试判断下列物质是晶体还是 非晶体:
水晶
分子型晶体
原子型晶体
离子型晶体
钠晶体的晶胞
金属型晶体
混合晶体
观察两个晶胞有何共同点?
上述表格反应了分子晶体 的什么物理特性,为什么?
2.物理特性:
⑵较小的硬度; ⑶一般都是绝缘体,固态或 熔融状态下也不导电;
⑴较低的熔点和沸点,易升华;
⑷相似相溶规律。
思考: 1、试比较CI4、CBr4、 CCl4、CF4四种分子晶体 熔沸点的高低。
CI4﹥CBr4 ﹥ CCl4 ﹥CF4
2.试比较H2O、H2S、H2Se、 H2Te四种分子晶体的熔沸 点的高低? H2O>H2Te > H2Se > H2S 3.试比较CO和N2熔沸点 的高低? CO >N
干冰晶胞
碘晶胞
一、分子晶体
1.概念:分子间以分子间作用 力相结合而成的晶体 ( 或只含 分子的晶体)称为分子晶体。
如:碘晶体只含I2分子,属于 分子晶体。在分子晶体中, 分子内的原子间以共价键结 合,而相邻分子靠分子间作 用力或氢键相互吸引。
注意: ⑴构成微粒:分子。
⑵粒子间的作用力:分子 内原子间以共价键结合 (稀有气体除外),相邻 分子间靠分子间作用力 (范德华力)或氢键结合。
二.原子晶体 1、概念:相邻原子间以共 价键相结合而形成的空间 网状结构的晶体。 注意: (1) 构成原子晶体的粒子 是:原子;
(2)粒子间的作用力:共价键。
(3)立体结构:整块晶体是 一个三维的共价网状结构, 不存在单个小分子,是一个 “巨分子”,又称共价晶体。 强调:原子晶体气化或 熔化时破坏的是共价键。
分子的非密堆积
冰中1个水分子周 冰的结构 围有4个水分子
练习:干冰汽化时,下列所述 内容发生变化的是( BC )
A分子内共价键 B分子间作用力 C分子间距离
D分子间的氢键
学习目标: 1、了解原子晶体的概念与 结构特点,能够判断原子晶 体; 2、了解金刚石等典型原子 晶体的结构特征,能描述 金刚石、二氧化硅等原子 晶体的结构与性质的关系;
②在SiO2晶体中最小环上 有12个原子。 ③每n mol SiO2 晶体中, Si—O键数目为4n mol。
1、为何CO2熔沸点低? 而破坏CO2分子却比SiO2 更难? 2、怎样从原子结构角度 理解金刚石、硅和锗的熔 点和硬度依次下降?
思考:
5.原子晶体熔键长越短, 键能越大,共价键越稳定, 物质的熔沸点越高,硬度 越大。
4.典型的原子晶体
金刚石的晶体结构示意图
109º 28´
共价键
思考:在金刚石晶体中, 每个C与多少个C成键?形 成怎样的空间结构?最小 碳环由多少个C组成?它们 是否在同一平面内?
在金刚石晶体中,碳原子个 数与C-C键数之比为多少?
小结:
①在金刚石晶体中,每个 C原子以4个共价键与相 邻的4个C原子相结合,形 成正四面体结构,其中 C-C-C夹角109°28′,碳 3 原子采取sp 杂化。
2、组成和结构不相似的 分子晶体(相对分子质量 接近),分子的极性越大, 熔沸点越高。
3、对于同分异构体,支 链越多,熔沸点越低。
练习:下列属于分子晶体性 质的是( B )
A.熔点1070℃,易溶于水,水溶液导电 B.能溶于CS2,熔112.8℃,沸点444.6℃ C.熔点1400℃,可做半导体材料, 难溶于水 D.熔点97.81℃,质软,导电,密度为 0.97g/cm3
4.晶体分子的结构特征 (1)密堆积:只有范德 华力,无分子间氢键-分 子密堆积(这类晶体,每 个分子周围有12个紧邻的 分子,如:C60、干冰 、 I 2 、 O2 )
分子的密堆积
干冰的晶体结构图
与CO2分子距离最近的CO2分子共有 12 个 )
(2)非密堆积:有分子间 氢键。【氢键具有方向性, 使晶体中的空间利用率不 高,留有相当大的空隙, 这种晶体不具有分子密堆 积特征。】如:HF 、冰、 NH3 。
观察·思考 • 对比分子晶体和原子晶体 的数据,原子晶体有何物 理特性?
2.物理性质 熔点和沸点高 硬度大
一般不导电,但晶体硅、 晶体锗是半导体。 难溶于一些常见的溶剂
3、常见的原子晶体
①某些非金属单质:金刚石(C), 晶体硅(Si)、晶体硼(B),晶体锗 (Ge)等。 ②某些非金属化合物:如碳化硅 (SiC) 、氮化硼(BN) 。 ③某些氧化物:如二氧化硅(SiO2)、 Al2O3等。