脑脊液检测

合集下载

脑脊液检查课件

脑脊液检查课件
细胞:10%。
浆膜腔积液 检查
学习要点
❖ 浆膜腔积液得发生机制及分类 ❖ 检查内容
一般性状 化学检查 细胞学检查 细菌学检查 ❖ 渗漏鉴别 ❖ 常见渗出液得特点 ❖ 临床应用
基本知识
❖ 人体得胸腔、腹腔、心包腔及关节腔称为浆 膜腔。
❖ 生理状态下,腔内有少量液体起润滑作用。 ❖ 病理情况下,腔内液体增多称为浆膜腔积液
化学检查
1、蛋白质测定
正常阴性或弱阳性
①蛋白定性试验(Pandy试验)
>0、25g/L可呈弱阳性 原理:蛋白+饱和石炭酸→蛋白盐→混浊或沉淀
②定量试验
原理:蛋白+生物碱 → 混浊 浊度与蛋白量成正比 参考值:0、2~0、45g/L(成) 0、2~0、4g/L (儿)
蛋白质测定得临床意义:
增加 减少
粘蛋白定性试验(Rivalta试验)
❖ 粘蛋白就是一种酸 性糖蛋白,其等点 为3∽5,因在酸性 溶液中析出,产生 白色淀。
❖ 渗出液常阳性,而 漏出液常阴性,
葡萄糖测定
❖ 渗出液
化脓菌感染↓↓↓ 结核菌感染↓↓ 恶性肿瘤↓ 类风湿<3、33mmol/L SLE基本正常
❖ 漏出液:与血糖基本相等。
神经梅毒
常见病得脑脊液特点
正常 化脑
压力 外观
蛋白

定性 定量
氯化物 细胞
80~180 透明
↑↑↑
混浊
- 0、2~0、 2、5~4、120~130 0~8
4
5
+++ ↑源自↑↓↓↓↓↑↑↑
细菌
- +
结脑 ↑↑
微混 ++ ↑↑
↓↓
↓↓↓

临床 脑脊液 检验 标准

临床 脑脊液 检验 标准

临床脑脊液检验标准一、颜色和透明度脑脊液的颜色应呈现无色或轻微黄色。

透明度应清晰,无浑浊或沉淀物。

二、压力测定脑脊液的压力应在正常范围内,通常为0.69-1.96kPa(70-200mmH₂O)。

压力过高或过低可能提示颅内压异常。

三、细胞计数和分类脑脊液中的细胞计数应在正常范围内,通常为(0-5)×10⁶/L。

细胞分类应包括粒细胞、单核细胞和淋巴细胞。

异常的细胞计数和分类可能提示感染、炎症或其他病理情况。

四、蛋白质测定脑脊液中的蛋白质含量应在正常范围内,通常为0.15-0.45g/L。

蛋白质含量升高可能提示炎症、感染或其他病理情况。

五、葡萄糖测定脑脊液中的葡萄糖含量应在正常范围内,通常为2.5-4.5mmol/L。

葡萄糖含量降低可能提示感染、炎症或其他病理情况。

六、氯化物测定脑脊液中的氯化物含量应在正常范围内,通常为120-130mmol/L。

氯化物含量降低可能提示结核性脑膜炎等疾病。

七、细菌学和真菌学检查脑脊液应进行细菌学和真菌学检查,以排除感染性疾病。

通过培养和涂片等方法,可以确定是否存在细菌或真菌感染。

八、寄生虫和包囊虫抗体检查对于疑似寄生虫感染的患者,应进行寄生虫和包囊虫抗体检查。

通过检测抗体水平,可以确定是否存在寄生虫感染。

九、免疫学检查脑脊液的免疫学检查可以用于评估中枢神经系统疾病患者的免疫状态。

通过检测免疫球蛋白、补体等指标,可以了解患者的免疫功能状态。

十、肿瘤细胞检查对于疑似中枢神经系统肿瘤的患者,应进行肿瘤细胞检查。

通过检测脑脊液中的肿瘤细胞,可以确定是否存在中枢神经系统肿瘤。

脑脊液实验室检查

脑脊液实验室检查

02
脑脊液实验室检查的方法
腰椎穿刺术
01
定义
腰椎穿刺术是一种通过腰椎间隙插入针头抽取脑脊液的方法。
02 03
操作步骤
在无菌条件下,患者取侧卧位,背部与床面垂直。选择腰椎间隙,局部 消毒后,用带针芯的穿刺针穿透皮肤和椎间韧带,进入蛛网膜下腔,抽 出针芯,缓慢抽取脑脊液。
注意事项
腰椎穿刺术是一种有创性检查,需严格掌握适应症和禁忌症,如颅内压 升高、脊柱畸形等。术后需平卧4-6小时,以防低颅压头痛。
小脑延髓池穿刺术
定义
小脑延髓池穿刺术是一种通过枕骨大孔穿刺小脑延髓池抽取脑脊液的方法。
操作步骤
在无菌条件下,患者取侧卧位,头部前屈。选择枕骨大孔部位,局部消毒后,用带针芯的穿刺针穿透皮肤、肌肉和椎 骨,进入小脑延髓池,抽出针芯,缓慢抽取脑脊液。
注意事项
小脑延髓池穿刺术风险较高,需严格掌握适应症和禁忌症,如脊柱畸形、颈椎外伤等。术后需平卧2-4小 时,以防低颅压头痛。
04
脑脊液实验室检查结果分析
脑脊液常规检查结果分析
细胞计数
正常值一般在(0-8)×10^6/L,若 细胞计数升高,可能提示存在中枢神 经系统感染、肿瘤、脑出血等疾病。
葡萄糖测定
正常值一般在2.8-4.5mmol/L,若葡 萄糖含量降低,可能提示细菌性脑膜 炎或真菌性脑膜炎。
蛋白质测定
正常值一般在0.15-0.45g/L,若蛋白 质含量升高,可能提示炎症、肿瘤或 脑脊液循环障碍。
差。
检查后的护理与观察
休息观察
患者在接受脑脊液检查后应卧床休息,观察是否有头痛、恶心、 呕吐等不适症状,如有异常应及时就医。
饮食护理
患者在检查后应保持清淡饮食,避免过度油腻和刺激性食物,以免 加重身体负担。

脑脊液检验ppt课件

脑脊液检验ppt课件

A.脉络丛C
B.室管膜C
C.蛛网膜C
临床意义:见于气脑造影,小儿脑积
水.
5.CSF肿瘤C
在CSF脱落C中,肿瘤C最具有诊断价值. CSF中肿瘤C多为转移肿瘤C.
CSF中肿瘤C一般分为四种类型: 原发性肿瘤C. 继发性肿瘤C. 白血病C L瘤C.
肿瘤C的异5常.特CS征F:肿瘤C
(1).C本身的改变:
米水柱(相当于60滴/分).
(二).CSF外观检查
正常CSF外观无色.透明,久置不 凝.
出现混浊,提示含有少量红.白细 胞.霉菌.瘤细胞.
当细胞含量达300~700/mm3即可出 现混浊.
出现尘埃状微混,提示细胞轻度增 多,见于CNS急性感染早期.
呈毛玻璃状,提示细胞中度增多. 见于结核.霉菌.性脑膜炎.
(二).CSF的分布
CSF的总量为120~180ml, (平均为150ml).
占体内水分总量的1.5%.分布如下: 1. 每个侧脑室10~15ml. 2.第三.四脑室共约含5~10ml. 3.脑蛛网膜下腔与各脑池(脚间池.桥脑 池.小脑延髓池)约含25~30ml. 4.脊髓蛛网膜下腔约含70~75ml.
七.CSF细胞学的检测与诊断
(一)正常CSF C成分: 正常成人CSF C (0~5个/mm3). 儿童CSF C(0~10个/mm3). 其C学分类为小L.C,M.C(二者之比为
7:3).比例相当恒定.仅占1~3%激活性 单核样 C. 正常人CSF中不含红 C.
(二).CSF的正常C及其演变C
A.核的改变:▲ 核大,核浆比例失常,
核的染色质增多.
▲核的形态和结构异常.
▲.核分裂的活跃.
B.胞浆的改变:可有胞浆色素颗粒

脑脊液潘氏试验步骤

脑脊液潘氏试验步骤

脑脊液潘氏试验步骤1.准备工作:(1)检测器具:试纸、离心管、镊子、注射器、分装管、药用酒精、创可贴等。

(2)患者准备:检查前一小时禁食水和食物,避免过度劳累。

2.患者体位:(1)侧卧位:患者侧卧,头稍微低于身体,以保持脑脊液流通。

(2)头正中位:患者头部正对前方,颈部略向胸前伸直。

3.皮肤消毒:(1)用药用酒精擦拭检查部位,保证无明显污染。

(2)用干净的棉球将酒精擦拭干净,避免残留酒精进入脑脊液。

4.麻醉与穿刺:(1)选取合适的穿刺点:一般选择第3、4腰椎间隙作为穿刺点。

(2)进行局部麻醉:将注射器中的适量麻醉药液通过刺激剂进入穿刺点周围皮肤和软组织。

(3)穿刺操作:将已经消毒的穿刺器从第3、4腰椎间隙的皮肤上方45度角注入,逐渐向下刺入。

(4)顺利穿刺后,用干净的纱布轻轻按压穿刺点,避免脑脊液外溢,并对穿刺点进行消毒。

5.收集脑脊液:(1)使用干净的离心管和有刻度的注射器,收集脑脊液。

(2)调整注射器的活塞,以避免打损脑脊液。

(3)将脑脊液缓慢抽取至预定容器中,适当分装以备实验室检测。

6.观察脑脊液外观:(1)检查脑脊液的颜色:正常脑脊液呈透明无色,若呈现黄色或其他异常颜色,可能表示存在感染、出血等问题。

(2)检查脑脊液的清澈程度:正常脑脊液应该清澈透明,若呈现混浊情况,可能表示存在菌群、血细胞等异常。

7.测量脑脊液压力:(1)使用水银柱或压力计等仪器测量脑脊液压力。

(2)用刻度纸记录脑脊液的压力值。

8.实验室检测:(1)对脑脊液进行生化学分析:包括蛋白质、糖类、氯离子、钠离子等相关指标的测定。

(2)进行细胞计数:检测脑脊液中的红细胞、白细胞数量及形态等指标。

(3)其他检测项目:如培养细菌、病毒等,以确诊感染病例。

9.结束工作:(1)测量脑脊液压力结束后,将针头拔出,并用创可贴进行止血。

(2)将采集的脑脊液用相应的容器密封,送至实验室检测。

(3)对穿刺部位进行消毒处理,告知患者注意事项,观察是否有异常症状。

临床脑脊液检查采集送检顺序规范及采集注意事项

临床脑脊液检查采集送检顺序规范及采集注意事项

临床脑脊液检查采集送检顺序规范及采集
注意事项
脑脊液检查采集送检顺序规范
由于穿刺伤,第一管可能含有血碎片、组织液和污染的皮肤微生物,可能在培养中产生错误的结果,第一管不应该被用于微生物学检查,它最适合用于化学和免疫学检测。

如果仅获得少量脑脊液病情必须使用单个管收集,必须首先用于微生物检测,以确保无菌培养,再进行细胞计数,如果有足够的剩余量,可以做化学和免疫学检测。

脑脊液采集注意事项
1)采集顺序
第一管:化学和免疫学检查
第二管:细菌性检查
第三管:细胞计数和分类(常规检查)
如疑有肿瘤可再留一管:脱落细胞学检查。

2)送检时间
最好于抗生素使用之前,收集标本后,常温下15分钟至1小时内送到实验室,脑脊液标本不可放置冰箱保存。

2、脑脊液细菌培养的局限性
细菌培养是诊断中枢神经系统感染的金标准,但是也有很多的局限性,主要表现为两个方面:假阴性和假阳性。

造成假阴性和假阳性的原因,首先细菌培养和鉴定药敏试验与检查者的经验能力直接相关;
假阴性主要的影响因素:培养标本放置时间过长,培养条件不正
确等;
假阳性的结果:主要是由于污染,污染来源两个方面,一是临床采取标本时,由于操作的不严格造成附近正常菌群的污染,另外一种是实验室操作时造成的污染。

3、寡克隆区带的应用是什么?
临床上对于中枢神经系统疾病,特别是脱髓鞘病的诊断主要依赖影像学检查和临床表现进行分析,但由于脱髓鞘性疾病在早期病理学改变并不明显,影像学检查和常规并不能有效的及时发现。

一般脑脊液IgG的增加发生较早,所以对患者血清和CSF同时进行电泳以检测寡克隆区带是否存在,也是早期诊断脱髓鞘疾病的一种检测指标。

脑脊液检测

脑脊液检测

第一管:生化
三、氯化物 原理:离子选择电极法 参考范围 成人:120-130mmol/L;儿童:111-123mmol/L 临床意义 脑脊液低蛋白含量较少,为了维持脑脊液和血浆渗透压平
衡,氯化物含量为血浆的1.2-1.3倍 (1)减低:细菌性或真菌性脑膜炎早期、细菌性脑膜炎的后期、血氯减 低;病毒性脑膜炎、脊髓灰质炎、脑肿瘤时,氯化物稍减低或不减低 (2)增高:主要见于浆液性脑膜炎。
脑脊液的实验室检查
目录 /CONTENTS
01 脑脊液标本应如何采集与处理 02 如何对一份脑脊液标本进行检验 03 血性脑脊液检查的质量控制 04 常见中枢神经系统疾病脑脊液如何改变
01 脑脊液标本应如何
采集与处理
一、脑脊液采集 腰椎穿刺 小脑延髓池穿刺 侧脑室穿刺
成人脑脊液总量约120180ml,新生儿为10-60ml, 健康儿童脑脊液总量100150ml
= -112.785 ×106/L ???
二、脑脊液显微镜检查
问题: 用校正公式进行脑脊液白细胞计数的校正,结果为什么会 出现负值?
校正后脑脊液白细胞=校正前白细胞 -
脑脊液红细胞数 ×血液白细胞数
血液红细胞数
实际来源于血液的白细 胞和脑脊液本身白细胞
理论上来源于血液的白 细胞
三、脑脊液显微镜检查的质量控制
2.形态:如发现较多的红细 胞有皱缩现象,应予以描 述报告,以协助临床鉴别 陈旧或新鲜性出血。
三、脑脊液显微镜检查的质量控制
3.辨别:注意红细胞和淋巴细胞与新型 隐球菌相区别 (1)新型隐球菌具有“出芽”现象,不 溶于乙酸,滴加0.35mol/L的乙酸后, 显微镜下保持原型,淋巴细胞则细胞核 和细胞质更为明显 (2)加印度墨汁一滴,加盖玻片,高 倍镜下新型隐球菌有后荚膜,不着色

脑脊液检查

脑脊液检查

感染性 细菌 病毒 支原体 非感染性 外伤 化学刺激 肿瘤 风湿
检查内容
一般性状检查 化学检查 显微镜检查 细菌学检查

一般性状检查
漏出液 渗出液
颜 色
透明度 比 重
淡黄色
清晰透明 小于1.018 不易凝固
黄色或其他颜色
呈不同程度混浊 大于1.018 易自行凝固
显微镜检查-细胞学检查

细胞计数
正常无RBC,有少量WBC 穿刺外伤RBC:WBC=700:1 参考值

成人 (0~8)×106/L 儿童 (0~15)×106/L


细胞分类

正常为淋巴、单核细胞(3:1)
显微镜检查-细胞学检查 Clinical significance

CNS感染性疾病

CNS肿瘤性疾病


脑寄生虫病


脑室和蛛网膜下腔出血


均匀血性,RBC/WBC,N 出血>2~3d,吞噬细胞
显微镜检查-细菌检查

直接涂片或离心沉淀薄涂片 培养/接种

疑为

化脑→G染色,镜检


结脑→静置24h,薄膜涂片抗酸杆菌染色
隐脑→涂片+印度墨汁染色,见未染色的荚膜
常见脑及脑膜疾病的脑脊液特点表7-1

化学检查-蛋白质检查

正常含量极微(血脑屏障),大部分为白蛋白


病理增加,为球蛋白
蛋白定性试验(Pandy试验)

正常:阴性/弱阳性(>0.25g/L) 参考值:腰椎穿刺 0.15 ~0.45g/L

蛋白定量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LABORATORY INVESTIGATIONMicroRNAs in cerebrospinal fluid as biomarker for disease course monitoring in primary central nervous system lymphomaAlexander Baraniskin •Jan Kuhnhenn •Uwe Schlegel •Wolf Schmiegel •Stephan Hahn •Roland SchroersReceived:6March 2012/Accepted:29May 2012/Published online:23June 2012ÓSpringer Science+Business Media,LLC.2012Abstract Diagnosis of primary lymphomas of the central nervous system (PCNSL)largely depends on histopathol-ogy of tumor biopsies.Recently,we identified miRNAs detected in the CSF of PCNSL patients as novel non-invasive biomarkers for this disease.In combined analyses of miR -21,miR -19b ,and miR -92CSF levels,it was pos-sible to differentiate PCNSL from other neurological dis-orders.In the current study,we first confirmed our previous findings in an enlarged PCNSL cohort (n =39;sensitivity 97.4%).Also,we sought to establish the potential role of CSF miRNAs as biomarkers for disease course monitoring.In sequential miRNA measurements in CSF derived from nine patients with different disease courses,an intriguing correlation of miRNA levels and PCNSL status during treatment and/or disease follow-up was demonstrated.Finally,we demonstrated that miRNA levels in serum of PCNSL patients (n =14)were not elevated as comparedto controls.In summary,this study provides the first evi-dence that CSF miRNAs have the potential as biomarkers for treatment monitoring and disease follow-up of patients with PCNSL.Keywords Primary central nervous system lymphoma ÁCerebrospinal fluid (CSF)ÁSerum ÁMicroRNA (miRNA)ÁDisease courseIntroductionPrimary lymphomas of the central nervous system (PCNSL)represent a subcategory of extranodal non-Hodgkin lymphomas (NHL)confined to the CNS [1].Because PCNSL represent highly aggressive brain tumors,early diagnosis is essential for successful treatment and potential improvement of prognosis [2].Stereotactic needle biopsy including histopathology remains the standard diagnostic procedure for patients with suspected PCNSL [3].However,definitive histopathological diagnosis cannot always be achieved,especially in patients treated with corticosteroids.Identification of biomarkers in the cere-brospinal fluid (CSF)in order to accelerate the non-inva-sive diagnosis of PCNSL represents an attractive research goal.To date,the diagnosis of recurrent or progressive PCNSL mostly relies on neuroimaging.Hence,identifica-tion of novel biomarkers such as microRNAs for disease course monitoring is also an attractive research goal.Recently,we have demonstrated that microRNAs detected in the CSF by real-time quantitative polymerase chain reaction can serve as non-invasive biomarkers for PCNSL [4].MicroRNAs are an abundant class of small non-protein-coding RNA molecules that function as nega-tive gene regulators by silencing gene expression at aElectronic supplementary material The online version of this article (doi:10.1007/s11060-012-0908-2)contains supplementary material,which is available to authorized users.A.Baraniskin ÁW.Schmiegel ÁR.Schroers (&)Department of Medicine,Hematology and Oncology,Ruhr-University of Bochum,Knappschaftskrankenhaus Bochum-Langendreer,In der Schornau 23/25,44892Bochum,Germany e-mail:Roland.Schroers@rub.deA.Baraniskin ÁS.HahnCenter of Clinical Research,Ruhr-University of Bochum,Bochum,GermanyJ.Kuhnhenn ÁU.SchlegelDepartment of Neurology,Ruhr-University of Bochum,Bochum,GermanyJ Neurooncol (2012)109:239–244DOI 10.1007/s11060-012-0908-2post-transcriptional level by means of pleiotropic sup-pression of sequence-complementary mRNA targets[5].In our previous study,combined expression analyses of miR-21,miR-19b,and miR-92in CSF revealed that CSF levels of miRNA could differentiate,with high specificity (96.7%)and sensitivity(95.7%),patients with PCNSL from other neurologic disorders[4].In the current study,we were able to confirm our pre-vious results in an expanded cohort of PCNSL patients.In addition,we analyzed miRNA levels in the CSF of indi-vidual PCNSL patients at different time points following diagnosis,questioning whether miRNAs could serve as markers of disease course.Furthermore,we investigated whether miR-21,miR-19b,and miR-92can also be detected in serum of PCNSL patients as compared to control subjects.Materials and methodsPatient characteristics,CSF samples,serum samples, microRNA quantificationCSF samples from39immunocompetent patients,in which a histopathological diagnosis of diffuse large B cell type lymphoma(DLBCL)had been established,were included in this study.CSF samples were collected before chemo-therapy by diagnostic lumbar puncture after written informed consent.The University of Bochum Ethical Committee had approved CSF and peripheral blood sample collections.The characteristics of the control group (n=37)have been described in our previous publication [4,6].Consecutive CSF samples were collected by diag-nostic lumbar puncture or puncture of Ommaya reservoirs from individual PCNSL patients during treatment and during disease follow-up.Serum samples were obtained at the time point of CSF sample collections.Serum samples were centrifuged(5009g,10min,room temperature)to remove cells and debris and were stored at-80°C until further processing.Preparation of CSF and serum samples including RNA extraction,reverse-transcription,and microRNA quantification by real-time polymerase reaction were performed as has recently been described in detail[4]. StatisticsStatistical analyses were performed with SPSS(v.20;SPSS) and GraphPad Prism(v.5.0).Group-wise comparisons of distributions of clinical and biologic data were performed, applying2-tailed Mann–Whitney U tests and Kruskal–Wallis tests with Dunn multiple comparisons.Results were considered statistically significant at P values\0.05.ResultsCirculating microRNAs in CSF as biomarkerfor detection of PCNSLTo confirm and expand the results of our recent study unraveling miR-21,miR-19,and miR-92CSF levels for PCNSL diagnosis,we included16patients with newly diagnosed PCNSL into our original cohort of23patients [4].The expanded PCNSL cohort(n=39)consisted of20 male and19female patients;age was between42and 87years(mean age,66years).At the time of CSF col-lection,the disease was newly diagnosed in35of39 PCNSL patients.Altogether,21of39patients(54%)were treated with corticosteroids at the time of CSF sample collection.Making use of miRNA quantification by real-time polymerase chain reactions,the levels of the four miRNAs miR-24,miR-21,miR-19b,and miR-92were quantified in each CSF sample as recently reported[4]. Applying normalization of the amount of target miRNA relative to the amount of miR-24and considering REL above the cut-offs for miR-21and for one of each miR-19b or miR-92,respectively[4],all new patients were correctly classified as PCNSL,independent of prior corticosteroid treatment(Supplementary Table S1).In summary,38of39 PCNSL patients were properly identified.Thus,the sensi-tivity of combined CSF analyses of miR-21,miR-19b,and miR-92was97.4%in our enlarged PCNSL cohort. Circulating miRNAs in CSF as biomarkers of disease course of PCNSLLongitudinal studies of miRNA levels in CSF of nine patients with PCNSL were performed.For this purpose, sequential CSF samples were collected at diagnosis und at different time points during disease course by means of lumbar puncture prior to chemotherapy and by CSF sample collection from Ommaya reservoirs which are routinely used for intra-ventricular chemotherapy in our standard treatment protocol[7].Dependent on outcome,the patients were classified into three groups:(1)continuing complete remission of PCNSL(n=5);(2)recurrent PCNSL after initial remission(n=2);and(3)progressive disease despite therapy(n=2;Table1).As previously described [4],samples with relative expression levels(REL)above the cut-off for miR-21and above cut-offs for one of each miR-19b or miR-92,respectively,were classified as ‘‘miRNA status positive’’(Table1;Fig.1).As cut-offs,the following REL were used:8.0REL for miR-21,1.4REL for miR-19b,and2.5REL for miR-92[4].Longitudinal REL data of each indicative miRNA in the CSF of all nine patients correlated well with the clinical courses(Fig.1; Table1).Five PCNSL patients with continuous completeremission showed a marked decrease of miRNA expression levels and turned from‘‘positive’’to‘‘negative’’miRNA status in the CSF(Table1),as exemplified for patient1in Fig.1a.In two patients(6and7,Table1)transient responses to chemotherapy followed by progressive PCNSL were demonstrated in consecutive MRIs.In accordance,the CSF miRNA levels initially decreased and subsequently increased during disease progression as determined by qRT-PCR(Fig.1b).Of note,the microRNA status in the CSF of patient6turned back from‘‘negative’’to‘‘positive’’and accordingly indicated PCNSL relapse 72days before relapse was detected by MRI.Finally, markedly increasing levels of CSF miR-21,miR-19b,and miR-92were observed in one patient with primary pro-gressive disease(patient8,Table1)and in another patient relapsing after complete remission for12months(patient 9,Table1;Fig.1c).Interestingly,the CSF miRNA levels correlated to the tumor volume as measured in MRIs (Fig.1).These data support the diagnostic value of CSF miRNA levels for disease course monitoring.Importantly, in contrast to CSF miRNA,standard CSF parameters such as total cell count and protein concentration did not show consistent changes correlating with the PCNSL status during treatment and follow-up.Serum miRNAs in PCNSL patientsDetection of PCNSL related miRNAs in serum would facilitate the diagnostic procedure exploiting these novel biomarkers.Accordingly,we investigated whether the levels of PCNSL biomarkers miR-21,miR-19b,and miR-92 as detected in serum specimens differed between PCNSL patients(n=14)and control patients with various neuro-logic disorders(headache,epilepsy,syncope and stroke; n=8).Total RNA was isolated from frozen serum sam-ples and miRNA levels were measured in qRT-PCR asTable1PCNSL patients: clinical characteristics and relative miRNA expression levels in CSFL lumbar,O Ommaya reservoir Patient DiseasestageCSFsourceRELmiR-21RELmiR-19bRELmiR-92miRNAstatus PCNSL patients with persistent complete remission1Diagnosis L138.524.390.4Positive Therapy L 2.80.5 1.9NegativeCR L 1.70.6 2.0Negative 2Diagnosis L37.4 6.821.1Positive Therapy O7.50.8 3.7NegativeCR O 3.10.20.8Negative 3Diagnosis O11.1 1.47.1Positive Therapy O 2.00.4 2.0NegativeTherapy O0.40.10.4NegativeCR O0.80.20.6Negative 4Diagnosis L12.9 4.333.4Positive Therapy L 5.50.4 2.0Negative 5Diagnosis O21.7 3.917.0Positive Therapy O16.90.7 1.0NegativeCR O 2.90.10.5Negative PCNSL patients with transient remission6Diagnosis L10.9 2.1 6.8Positive Therapy O19.40.40.7NegativeTherapy O8.50.7 2.8PositiveRecurrence O9.0 2.17.7PositiveRecurrence L108.8 1.98.1Positive 7Diagnosis L10.1 4.59.6Positive Therapy L7.50.4 1.0NegativeRecurrence L10.9 1.10.02Negative PCNSL patients with recurrent disease8Diagnosis L 3.264.414.3Negative Progressive disease L276.3447.3129.3Positive 9CR L 6.2 1.6 4.9Negative Recurrence L18.09.811.8Positivepreviously reported [4].In these analyses we did not find significant differences in expression levels of miR -21,miR -19b,and miR -92in serum as demonstrated in Table 2.DiscussionRecently,we have demonstrated that combined qRT -PCR expression analyses of miR -21,miR -19b ,and miR -92in the CSF can serve as non-invasive biomarker for PCNSL [4].These three microRNAs were initially chosen in a candi-date approach based on our prior knowledge about their expression profiles in diffuse large B-cell lymphoma and primary CNS lymphoma tissue specimens.Moreover,important pleiotropic roles of our candidate microRNAs miR -21,miR -19b ,and miR -92in tumorigenesis and lym-phomagenesis are well established.Indeed,miR -21is a unique miRNA in that it is overexpressed in most tumor types analyzed thus far [8,9].Furthermore,higher levels of miR -21are associated with worse prognosis of DLBCL,and miR -21acts as a key oncogene in B-lymphomagenesis in vivo [8,10].Both miR -19b and miR -92are members of the poly-cistronic microRNA-17-92cluster and are over-expressed in DLBCL [9].In addition,the microRNA-17-92cluster promotes lymphomagenesis [11].Clustering of microRNA genes is an essential element of genomic organization.About 40%of miRNAs were found as part of a poly-citronic cluster [12].Although miR -19b and miR -92are adjacently located within the same primary microRNA transcript,different concentrations of both mi-croRNAs and different microRNA ratios are described in the literature [13]and were detected in our study (Table S1).These findings can be explained by various post-transcriptional mechanisms regulating microRNA biogen-esis and activity including the RNA-binding protein and Drosha processing [14].In addition,binding of some mi-croRNAs to proteins such as Argonaute2and their incor-poration into microvesicles protect microRNAs from degradation in body fluids [15,16].Therefore,even though miR -19b and miR -92are parts of the same poly-citronic cluster and are located on the same primary miRNA tran-script,they are characterized by different profiles in tissues and in body fluids.To further substantiate the results of our previous study [4]identifying miR -21,miR -19b ,and miR -92CSF expression for the purpose of PCNSL detection,we expanded the original cohort with 16patients.In the enlarged PCNSL cohort,the high sensitivity of 97.4%was demonstrated,viz.38of 39patients with PCNSL were classified correctly.These data confirm our previousmiRNA status tumor volume cell count positive 3500 42 53 negative not apparent4 43 negative not apparent2 45miRNA status tumor volume cell count positive 44051 2 negative 6000 1 positive 6000 3 positive 1440 (new lesion)3 positive 20000 6 miRNA status tumor volume negative not apparent 5 R ETable 2Serum levels of miRNAs in patients with newly diagnosed PCNSL versus control patientsPCNSL patients (n =14)Control patients (n =8)P valueCt aSD b Ct SD miR -2122.600.1722.630.580.58c miR -19b21.840.1422.370.530.43c miR -9220.740.1621.060.530.74c miR -2422.570.2223.180.540.48c a Data are means of CT values (groupwise)b Standard deviationcThe P value is for comparison of miRNA expression among PCNSL patients and control patients and was calculated using the Mann–Whitney U testfindings and further support the potential of miRNA quantification in the CSF as a non-invasive test for PCNSL.PCNSL patients frequently suffer from lymphoma relapse or disease progression.Here,diagnosis is primarily based on neuroimaging.Considering previous reports on miRNA detection in plasma during the course of sys-temic non-Hodgkin’s lymphomas[17],we addressed CSF miRNA levels over time of individual PCNSL patients as potential biomarkers for the purpose of disease follow-up. In our pilot study,longitudinal determinations of miRNA levels in CSF of nine patients with PCNSL were per-formed.Serial miRNA measurements of all nine patients agreed with tumor status based on objective criteria based on neuroimaging and correlated to the tumor volume as measured in MRIs.Of note,contrary to CSF miRNA, currently established standard CSF parameters such as total cell count and protein concentration did not show any changes correlating with the PCNSL disease course.A crucial feature of an ideal PCNSL biomarker is that its differential expression indicates the course of disease and provides insight into disease status with greater sensitivity than other diagnostic methods.Measurements of individual CSF miRNA expression profiles within prospective clinical studies including larger patient samples may ultimately facilitate early,noninvasive diagnosis,risk stratification, and determination of appropriate therapeutic interventions in patients with indeterminatefindings in neuroimaging. Although the number of patients studied here is relatively small,our study provides the rationale for future investi-gations of miRNAs in CSF as follow-up biomarkers of PCNSL patients in a larger cohort.Accumulating reports suggest that circulating miRNAs are detectable in peripheral blood and have the potential to be utilized as biomarkers for diverse malignancies[18,19]. Previously,Lawrie et al.demonstrated that miR-155,miR-210,and miR-21were elevated in the serum of de novo DLBCL patients,including CNS involvement in one case. Furthermore,miR-21expression was associated with relapse free survival[20].Ohyashiki et al.[17]reported about miR-92in plasma as a novel biomarker not only for diagnosis but also for monitoring DLBCL patients after chemotherapy.In the current study,we found no significant differences in expression levels of miR-21,miR-19b,and miR-92in serum between PCNSL patients and control patients.A possible reason for this conflicting result is the blood–brain barrier which separates CNS lymphomas from blood circulation[21].Thus,detection of miRNAs derived from PCNSL is apparently restricted to the CNS com-partment including the CSF.In conclusion,we validated our previously identified PCNSL-associated CSF miRNA profile in an extended patient cohort.We further demonstrated that CSF miRNAs have a potential as novel biomarkers not only for disease diagnosis but also for therapeutic and follow-up monitoring of individual PCNSL patients.Wefinally showed that serum miRNA levels in PCNSL patients are not helpful in diagnostic differentiation from controls with other neuro-logical disease.Acknowledgments This study was supported by a grant from the Ruhr-University of Bochum(FORUM),and by a grant(PURE)from the Ministry of Science,North Rhine-Westphalia,Germany.We thank Andriy Alekseyev for analyzing the MRI scans.Also,we thank S.Plambeck and G.Kersten for excellent technical assistance.Conflict of interest All authors declare that there is no potential conflict of interest.References1.Kluin PM,Deckert M,Ferry JA(2008)Primary diffuse largeB-cell lymphoma of the CNS.In:Swerdlow SH,Campo E,Harris NL,Jaffe ES,Pileri S,Stein H,Thiele J,Vardiman JW(eds) WHO classification of tumours of haematopoietic and lymphoid tissues.WHO,Lyon,pp240–2412.Deckert M,Engert A,Bruck W,Ferreri AJ,Finke J,Illerhaus G,Klapper W,Korfel A,Kuppers R,Maarouf M,Montesinos-Rongen M,Paulus W,Schlegel U,Lassmann H,Wiestler OD, Siebert R,Deangelis LM(2011)Modern concepts in the biology, diagnosis,differential diagnosis and treatment of primary central nervous system lymphoma.Leukemia25:1797–18073.Baraniskin A,Deckert M,Schulte-Altedorneburg G,Schlegel U,Schroers R(2011)Current strategies in the diagnosis of diffuse large B-cell lymphoma of the central nervous system.Br J Haematol156:421–4324.Baraniskin A,Kuhnhenn J,Schlegel U,Chan A,Deckert M,GoldR,Maghnouj A,Zollner H,Reinacher-Schick A,Schmiegel W, Hahn SA,Schroers R(2011)Identification of microRNAs in the cerebrospinalfluid as marker for primary diffuse large B-cell lymphoma of the central nervous system.Blood117:3140–3146 5.Ventura A,Jacks T(2009)MicroRNAs and cancer:short RNAsgo a long way.Cell136:586–5916.Baraniskin A,Kuhnhenn J,Schlegel U,Maghnouj A,Zollner H,Schmiegel W,Hahn S,Schroers R(2011)Identification of mi-croRNAs in the cerebrospinalfluid as biomarker for the diagnosis of glioma.Neuro Oncol14:29–337.Juergens A,Pels H,Rogowski S,Fliessbach K,Glasmacher A,Engert A,Reiser M,Diehl V,Vogt-Schaden M,Egerer G, Schackert G,Reichmann H,Kroschinsky F,Bode U,Herrlinger U,Linnebank M,Deckert M,Fimmers R,Schmidt-Wolf IG, Schlegel U(2010)Long-term survival with favorable cognitive outcome after chemotherapy in primary central nervous system lymphoma.Ann Neurol67:182–1898.Medina PP,Nolde M,Slack FJ(2010)OncomiR addiction in anin vivo model of microRNA-21-induced pre-B-cell lymphoma.Nature467:86–909.Robertus JL,Harms G,Blokzijl T,Booman M,de Jong D,vanImhoff G,Rosati S,Schuuring E,Kluin P,van den Berg A(2009) Specific expression of miR-17-5p and miR-127in testicular and central nervous system diffuse large B-cell lymphoma.Mod Pathol22:547–555wrie CH,Soneji S,Marafioti T,Cooper CD,Palazzo S,Pat-erson JC,Cattan H,Enver T,Mager R,Boultwood J,Wainscoat JS,Hatton CS(2007)MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-likesubtypes of diffuse large B cell lymphoma.Int J Cancer 121:1156–116111.He L,Thomson JM,Hemann MT,Hernando-Monge E,Mu D,Goodson S,Powers S,Cordon-Cardo C,Lowe SW,Hannon GJ, Hammond SM(2005)A microRNA polycistron as a potential human oncogene.Nature435:828–83312.Altuvia Y,Landgraf P,Lithwick G,Elefant N,Pfeffer S,AravinA,Brownstein MJ,Tuschl T,Margalit H(2005)Clustering and conservation patterns of human microRNAs.Nucleic Acids Res 33:2697–270613.Thomson JM,Newman M,Parker JS,Morin-Kensicki EM,Wright T,Hammond SM(2006)Extensive post-transcriptional regulation of microRNAs and its implications for cancer.Genes Dev20:2202–220714.Chakraborty S,Mehtab S,Patwardhan A,Krishnan Y(2012)Pri-miR-17-92a transcript folds into a tertiary structure and autore-gulates its processing.RNA18:1014–102815.Arroyo JD,Chevillet JR,Kroh EM,Ruf IK,Pritchard CC,GibsonDF,Mitchell PS,Bennett CF,Pogosova-Agadjanyan EL, Stirewalt DL,Tait JF,Tewari M(2011)Argonaute2complexes carry a population of circulating microRNAs independent of vesicles in human plasma.Proc Nat Acad Sci USA108:5003–500816.Valadi H,Ekstrom K,Bossios A,Sjostrand M,Lee JJ,Lotvall JO(2007)Exosome-mediated transfer of mRNAs and microRNAs isa novel mechanism of genetic exchange between cells.Nat CellBiol9:654–65917.Ohyashiki K,Umezu T,Yoshizawa S,Ito Y,Ohyashiki M,Ka-washima H,Tanaka M,Kuroda M,Ohyashiki JH(2011)Clinical impact of down-regulated plasma miR-92a levels in non-Hodg-kin’s lymphoma.PLoS One6:e1640818.Hu Z,Chen X,Zhao Y,Tian T,Jin G,Shu Y,Chen Y,Xu L,ZenK,Zhang C,Shen H(2010)Serum microRNA signatures iden-tified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer.J Clin Oncol 28:1721–172619.Shen J,Todd NW,Zhang H,Yu L,Lingxiao X,Mei Y,GuarneraM,Liao J,Chou A,Lu CL,Jiang Z,Fang H,Katz RL,Jiang F (2011)Plasma microRNAs as potential biomarkers for non-small-cell lung b Invest91:579–587wrie CH,Gal S,Dunlop HM,Pushkaran B,Liggins AP,Pul-ford K,Banham AH,Pezzella F,Boultwood J,Wainscoat JS, Hatton CS,Harris AL(2008)Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma.Br J Haematol141:672–67521.Teplyuk NM,Mollenhauer B,Gabriely G,Giese A,Kim E,Smolsky M,Kim RY,Saria MG,Pastorino S,Kesari S,Kri-chevsky AM(2012)MicroRNAs in cerebrospinalfluid identify glioblastoma and metastatic brain cancers and reflect disease activity.Neuro Oncol14:689–700。

相关文档
最新文档