数的整除教师版
数的整除教师版

一、常见数字的整除判定方法1.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2.一个位数数字和能被3一个数各位数数字和能被93.114.被7、性质c 整除.即如果c ︱a ,c ︱(a ±b ).性质整除,那么a 也能被c 整除.即如果b ∣a ,c ∣a .用同样的方法,我们还可以得出:性质3如果数a 能被数b 与数c 的积整除,那么a 也能被b 或c 整除.即如果bc ∣a ,那么b ∣a ,c ∣a .性质4如果数a 能被数b 整除,也能被数c 整除,且数b 和数c 互质,那么a 一定能被b知识精讲数的整除与c 的乘积整除.即如果b ∣a ,c ∣a ,且(b ,c )=1,那么bc ∣a .例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4)∣12.性质5如果数a 能被数b 整除,那么am 也能被bm 整除.如果b |a ,那么bm |am (m 为非0整数);性质6如果数a 能被数b 整除,且数c 能被数d 整除,那么ac 也能被bd 整除.如果b |a ,且d |c ,那么bd |ac ;当两个整数a 和(0)b b ≠,a 被b 除的余数为0a ,也把a 叫作b 的倍数,b 叫作a 的约数;如果a 被b b 不【例1】某数被13除,商是9【例23个数字之和是多少?7311++=+□□,92|+□,7=□;()()7313|+-+=+□□,8=□;8923=,所以737393736=-=□,6=□;3个数字之和是78621++=。
【例3】在方框中填上两个数字,可以相同也可以不同,使4□32□是9的倍数.⑴请随便填出一种,并检查自己填的是否正确;⑵一共有多少种满足条件的填法?【解析】 一个数是9的倍数,那么它的数字和就应该是9的倍数,即4+□+3+2+□是9的倍数,而4+3+2=9,所以只需要两个方框中的数的和是9的倍数.⑴依次填入3、6,因为4+3+3+2+6=18是9的倍数,所以43326是9的倍数;⑵经过分析容易得到两个方框内经典例题的数的和是9的倍数,如果和是9,那么可以是(9,0);(8,1);(7,2);(6,3);(5,4);(4,5);(3,6);(2,7);(1,8);(0,9),共10种情况,还有(0,0)和(9,9),所以一共有12种不同的填法.【例4】一位后勤人员买了72本笔记本,可是由于他吸烟不小心,火星落在帐本上,把这笔帐的总数烧去两个数字.帐本是这样的:72本笔记本,共□67.9□元(□为被烧掉的数字),请把□处数字补上,并求笔记本的单价.【解析】8|79□,【例5】【解析】6,8中之一。
数的整除(教师)

课前准备:数的整除一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
5. 能被7整除:①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6. 能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7. 能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、整除的性质:1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
例题讲解:能被2、3、5整除的数的典型例题例1.在下面的□里填数字,使这个数既能被5整除,又能被3整除.50□0;2□□5;11□2□.例2.从0、4、5、7四个数中,任意选三个数组成同时能被2、3、5整除的三位数.例3.在方框里填上适当的数使它能同时被2、3整除.415□例4.如果12345□□能被234整除,问□□应为哪两个数字?例:5:一个班50个学生,老师要学生1-50报数,然后要求报的数能被2整除的学生向后转,然后要求报的数能被3整除的同学向后转,再要报的数能被5整除的同学向后转,最后面向老师站着的学生有多少个?提示:最终面向老师站着的学生包括1.一次都没有转的学生 2。
高中数学数字整除问题教案

高中数学数字整除问题教案
教学目标:
1. 掌握整除的概念和判定方法。
2. 训练学生分析问题并运用整除性质进行解题。
3. 提高学生数学推理和逻辑思维能力。
教学重点:
1. 整除的定义和性质。
2. 数学问题中的整除运用。
教学难点:
1. 理解和掌握整除的应用。
2. 运用整除性质解决复杂问题。
教学准备:
1. 教师准备相关教学资料和教学案例。
2. 学生准备好纸笔进行课堂练习。
教学过程:
一、导入:
教师通过引导学生回顾整除的定义和判定方法,提出本节课要讨论整除问题,并引入相关实际问题。
二、讲解:
1. 整除的定义和性质:通过案例或实例讲解整除的概念和性质,引导学生理解整除乘法法则和整除性质。
2. 数学问题中的整除运用:通过实际问题讲解如何运用整除性质解决问题。
三、练习:
教师出示一些数字整除问题,让学生进行思考和运用整除性质解题,并进行课堂讲解和订正。
四、作业:
布置相关数字整除问题作业,让学生巩固所学知识。
五、总结:
通过课堂讨论和总结,引导学生理解整除的重要性和应用,并巩固整个内容。
教学延伸:
教师可以结合实际生活中的整除问题,引导学生思考和解决,提高学生数学推理和应用能力。
专题01 数的整除(专项培优训练)(教师版)

专题01 数的整除(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.68一.填空题(共12小题,满分24分,每小题2分)1.(2分)(2020秋•浦东新区期末)能同时被2和5整除的最小两位数是 10 .解:能被2整除的整数的尾数可为0,2,4,6,8;能被5整除的整数的尾数可为0,5;∴能同时被2和5整除的最小的两位数是10.故答案为:10.2.(2分)(2021秋•宝山区校级月考)能被2、3、5同时整除的最小的三位数是 120 ,最小的四位数是 1020 .解:因为2、3、5的最小公倍数是2×3×5=30,而100÷30=3……10,1000÷30=33……10,所以30×4=120,30×34=1020,即能被2、3、5同时整除的最小的三位数是120,最小的四位数是1020.故答案为:120,1020.3.(2分)(2019秋•徐汇区校级月考)写出一个能被7整除的最小偶数(正数) 14 .解:7×2=14,14为能被7整除的最小偶数.故答案为:14.4.(2分)(2019秋•嘉定区期中)将4、5、0这三个数排成一个三位数,能被5整除最大的是 540 .解:因为将4、5、0这三个数排成一个三位数,可能是450,540,所以能被5整除最大的是540.故答案为:540.5.(2分)(2021秋•长宁区校级期中)能同时被2,3,5整除的最大三位数是 990 .解:能被5整除的数的个位数字是5或0,能被2整除的数的尾数是0,2,4,6,8,所以这个三位数的个位数为0,因为数990中,9+9+0=18,18是3的倍数,所以最大三位数是990,故答案为:990.6.(2分)(2022秋•徐汇区期末)既能被2整除,又能被5整除的最小正整数是 10 .解:根据能被2,5整除的数的特征可知,既能被2整数,又能被5整除的最小正整数是:10.故答案为:10.7.(2分)(2020秋•浦东新区期中)两个合数的最大公因数是3,最小公倍数是30,则这两个数分别是: 6和15 .解:30×3=90,因为90=6×15,所以这两个数分别为6和15;故答案为:6和15.8.(2分)(2014秋•浦东新区期中)商店开展有奖购物活动,一等奖的中奖号码是一个三位数,百位上的数字是最小的素数,十位上的数字是最小的自然数,个位数字上是最小的合数,这个一等奖的中奖号码是 204 .解:最小的素数是2,最小的自然数是0,最小的合数是4,∵一等奖的中奖号码是一个三位数,百位上的数字是最小的素数,十位上的数字是最小的自然数,个位数字上是最小的合数,∴这个一等奖的中奖号码是 204;故答案为:204.9.(2分)(2021秋•嘉定区期末)一个长方形的周长为30厘米,且长和宽都是素数,这个长方形的面积是 26 平方厘米.解:长和宽的和是:30÷2=15(厘米),∵15=2+13,∴长方形的面积为13×2=26(平方厘米).故这个长方形的面积是26平方厘米.故答案为:26.10.(2分)(2021秋•金山区期末)如果A=2×3×3×a,B=2×2×3×a,且A、B的最小公倍数是180,那么a= 5 .解:由题意得2×3×3×a×2=180,解得:a=5.故答案为:5.11.(2分)(2021秋•青浦区校级期末)定义新运算“*”如下:对于两个自然数a和b,它们的最大公因数与最小公倍数的和记为a*b,例如:6*8=2+24=26,根据上面的定义运算,12*15= 63 .解:∵12=2×2×3,15=3×5,∴12和15的最大公约数是3,最小公倍数是2×3×2×5=60,所以12*15=3+60=63;故答案为:63.12.(2分)(2021秋•宝山区校级月考)一个能被2和3整除的四位数,它的千位上的数是奇数又是合数,它的百位上的数不是素数也不是合数,它十位上的数是最小的素数,个位上的数是 6或0 .解:∵它的千位上的数是奇数又是合数,∴千位是9,∵它的百位上的数不是素数也不是合数,∴百位是1,∵它十位上的数是最小的素数,∴十位是2,∵又能被2和3整除的四位数,∴个位数字是6或0,故答案为:6或0.二.选择题(共6小题,满分12分,每小题2分)13.(2分)(2022秋•闵行区校级期中)下列各组数中,第一个数能被第二个数整除的是( )A.25和50B.42和3C.10和4D.9和1.5解:A,50÷25=2,本选项符合题意;B,,本选项不符合题意;C,,本选项不符合题意;D,,本选项不符合题意;故选:A.14.(2分)(2022秋•徐汇区校级期中)下列说法中,正确的个数有( )①32能被4整除;②1.5能被0.5整除;③13能整除13;④0能整除5;⑤25不能被5整除;⑥0.3不能整除24.A.2个B.3个C.4个D.5个解:①32能被4整除,说法正确;②1.5不能被0.5整除,说法错误;③13能整除13,说法正确;④0不能整除5,说法错误;⑤25能被5整除,说法错误;⑥0.3不能整除24,说法正确.说法正确的有3个.故选:B.15.(2分)(2021秋•奉贤区期末)下列各组数中,第一个数能被第二个数整除的是( )A.3.6和1.2B.35和8C.27和3D.13.4和2解:A、3.6和1.2都不是整数,第一个数不能被第二个数整除,故此选项不符合题意;B、∵35÷8=4…3,∴35不能被8整除,第一个数不能被第二个数整除,故此选项不符合题意;C、∵27÷3=9,∴27能被3整除,第一个数能被第二个数整除,故此选项符合题意;D、13.4不是整数,第一个数不能被第二个数整除,故此选项不符合题意.故选:C.16.(2分)(2020秋•静安区期末)一个整数既能被6整除,又能被8整除,则它还一定能被( )整除.A.10B.12C.16D.18.解:因为6的因数是2和3,8的因数是2和4,所以一个数能被6整除,又能被8整除,所以这个数能被12整除.故选:B.17.(2分)(2022秋•杨浦区期中)下列各组数中,第一个数能被第二个数整除的是( )A.12和5B.4.5和1.5C.4和28D.36和9A.12÷5=,不符合题意,故A错误;B.4.5和1.5不是整数,不符合题意,故B错误;C.4÷28=,不符合题意,故C错误;D.36÷9=4,符合题意,故D正确;故选:D.18.(2分)(2022秋•闵行区期末)下列说法正确的是( )A.因为10÷4=2.5,所以10是4的倍数B.所有正整数,不是素数就是合数C.2既是偶数又是素数D.比3小的自然数只有1和2解:A.10÷4=2.5,2.5不是整数,故此选项说法错误;B.1既不是素数也不是合数,此选项说法错误;C.2既是偶数又是素数,说法正确;D.比3小的自然数有0、1、2故选:C.三.简答题(共6小题,满分33分)19.(8分)(2021秋•宝山区校级月考)求下列各组数的最大公因数和最小公倍数:(1)8和9;(2)12和48;(3)13和104;(4)34和51.解:(1)8和9是互质数,互为质数的两个数的最大公因数是1,故8和9的最大公因数是1,互为质数的两个数的最小公倍数是它们的乘积,故8和9的最小公倍数是:8×9=72:(2)12=3×2×2和48=2×2×2×2×3,故12和48的最大公因数是:2×2×3=12,12和48的最小公倍数是:3×2×2×2×2=48;(3)13和104=13×8,故13和104的最大公因数是13,13和104的最小公倍数是:13×8=104:(4)34=17×2和51=3×17,故34和51的最大公因数是17,34和51的最小公倍数是:17×3×2=102.20.(4分)(2021秋•宝山区校级月考)分解素因数:(1)32;(2)150.解:(1)把32分解素因数:32=2×2×2×2×2;(2)把150分解素因数:150=2×5×3×5.21.(3分)(2021秋•长宁区校级期中)用短除法求54与144的最大公因数和最小公倍数.解:如图,用短除法把54和144分解质因数为:∴最大公因数=2×3×3=18,最小公倍数=2×3×3×3×8=432.22.(6分)(2020秋•浦东新区月考)在下面素数表内的空白处,填上适当的素数.100以内的素数 2 35711 13 17 1923293137 41 43475359 61 677173798389 97 ……解:根据质数的定义(一个自然数,如果只有1和它本身两个因数,这样的数叫做质数,又叫做素数),得:100以内的素数2357111317192329313741434753596167717379838997……故答案为:2;13;17;41;61;97.23.(6分)(2020秋•徐汇区校级期中)在从五个数字0,1,5,6,7中取三个可以拼出的三位数中(直接写出答案).(1)写出能被9整除的所有三位数;(2)写出能同时被2,5,3整除的所有三位数;(3)写出能被33整除的所有三位数.解:(1)∵5+6+7=18,18是9倍数,∴由5、6、7组成的三位数能被9整除,∴能被9整除的所有三位数有:567、576、657、675、756、765;(2)∵能同时被2,5,3整除的所有三位数必是30的倍数,∴本位数的个位为0,各个数位数字和是3的倍数,∴由0、1、5或0、5、7两组数字组成的个位为0的三位数才能被2,5,3整除,∴能同时被2,5,3整除的所有三位数的:150、510、570、750;(3)∵被33整除,∴各个数位数字和能被3整除;奇数位上的数字与偶数位上的数字之差能被11整除,∴能被33整除的所有三位数为:165、561.24.(6分)(2019秋•浦东新区期中)两百年前,德国数学家哥德巴赫发现:任何一个不小于6的偶数都可以写成两个奇素数(既是奇数又是素数)之和,简称:“l+1“.如6=3+3,12=5+7等等.众多数学家用很多偶数进行检验,都说明是正确的,但至今仍无法从理论上加以证明,也没找到一个反例.这就是世界上著名的哥德巴赫猜想.你能检验一下这个伟大的猜想吗?请把偶数42写成两个奇素数之和.42= 7 + 35 ,或者42= 13 + 29 .你是否有更大的发现:把42写成4个奇素数之和?42= 3 + 7 + 15 + 17 .解:根据题意得:42=7+35或42=13+29;42=3+7+15+17(答案不唯一);故答案为:7,35;13,29;3,7,15,17.四.解答题(共6小题,满分31分)25.(4分)(2022秋•松江区期中)一张长36厘米,宽20厘米的长方形纸片,把它裁成大小相等的正方形小纸片而没有剩余,裁出的正方形纸片最少有多少张?解:∵36=2×2×3×3,20=2×2×5,∴36、20的最大公因数为:2×2=4,∴36×20÷(4×4)=720÷16=45(张),答:裁出的正方形纸片最少有45张.26.(4分)(2022秋•嘉定区期中)有三根绳子,分别长36米,54米,63米,现在要将它们裁成长度相等的短绳且没有剩余,每根短绳最长可以是几米?这样的短绳有几根?解:∵36=2×3×2×3,54=2×3×3×3,63=3×3×7,∴36,54,63的最大公因数是9,4+6+7=17,答:每根短绳最长可以是9米,这样的短绳有17根.27.(4分)(2022秋•闵行区校级期中)从运动场的一端到另一端全长100米,从一端起到另一端止每隔4米插一面小红旗.现在要改成每隔5米插一面小红旗,有多少面小红旗不用移动?解:5和4的最小公倍数是20,∴100÷20+1=5+1=6(面).答:有6面小红旗不用移动.28.(6分)(2022秋•宝山区期中)如果两个相邻的奇数都是素数,就说它们是一组孪生素数.如11和13就是一组孪生素数,(1)请你举出除此之外的两组孪生素数;(2)如果三个相邻的奇数都是素数,就说它们是“三胞胎素数”,请写出一组“三胞胎素数”.(本题只需直接写出答案)解:(1)3和5是一组孪生素数,5和7是一组孪生素数;(2)3、5、7是“三胞胎素数”.29.(5分)(2021秋•宝山区校级月考)有两列公交车,宝山6路每30分钟发一次车,宝山8路每25分钟发一次车.请问:一位公交指挥员从早晨6点30分同时发车后,直到下午4点,这两班车在哪些时刻同时发车?解:,根据题意可得:30和25的最小公倍数是150,150÷60=2.5,即两个半小时,∴从早晨6点30分同时发车后,再同时发车时间为9点,11点半,14点,∴两班车在上午9点,11点半,下午2点同时发车.30.(8分)(2022秋•徐汇区校级期中)“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这是驰名中外的中国古代问题之一,它是我国古代的一本著名的数学名书《孙子算经》中的一道题目,人们把它称为“韩信点兵”.这道题目可以译为:一个数除以3余2,除以5余3,除以7余2,求适合条件的最小的数?这就是外国人所称的“中国剩余定理”,是数学史上极有名的问题.表示的具体解法是:先分别求出能被5和7整除而被3除余1的数(70),能被3和7整除而被5除余1的数(21),能被3和5整除而被7除余1的数(15),然后用被3、5、7除所得的余数(即2、3、2)分别去乘这三个数,再相加,也就是70×2+21×3+15×2=233.最后从233中减去3、5、7的最小公倍数105,如果得出的差还是比105大,就再减去105,一直到得数比105小为止.233﹣105×2=23.这就是适合条件的最小的数.同学们,你能不能用这样的方法来解答下面的题目呢?或许你有更好的办法!一个数除以5余3,除以6余4,除以7余1,求适合条件的最小自然数.解:能被6和7整除而被5除余1的数(126),能被5和7整除而被6除余1的数(175),能被5和6整除而被7除余1的数(120),126×3+175×4+120×1=378+700+120=1198.1198﹣210×5=1198﹣1050=148.答:适合条件的最小自然数是148。
苏教版数学四年级下册教案能被3整除的数

苏教版数学四年级下册教案能被3整除的数一、知识点1. 整除的概念我们知道,如果一个数除以另外一个数,余数是0,那么前一个数就叫做“被除数”,后一个数叫做“除数”,这就是整除的基本概念。
2. 能被3整除的数那么怎样才是能被3整除的数呢?我们可以通过以下几个方式进行判断:2.1 个位数是1、4、7的数如果一个数的个位数是1、4、7,那么这个数不可能被3整除。
例如:•91 ÷ 3 = 30 余 1•84 ÷ 3 = 28 余 0•77 ÷ 3 = 25 余 22.2 数位上数字之和能被3整除的数假设一个数是a,那么它的数位分解式可以表示为:a = sk × 10k + sk-1 × 10k-1 + … + s1 × 101 + s0其中,a 的最高位是 sk,最低位是 s0。
如果a能被3整除,那么有以下结论:(1)如果 s0 为1、4、7,那么 a 不能被3整除;(2)如果 s0 为0、2、5、8,那么 a 能被3整除,这种情况下如果 s1 + s2 + … + sk 能被3整除,那么 a 就能被3整除。
例如:•3333 ÷ 3 = 1111 余 0•4848 ÷ 3 = 1616 余 0•2673 ÷ 3 = 891 余 0•742 ÷ 3 = 247 余 11. 观察与总结法通过以上的知识点,我们可以看出,判断一个数能否被3整除,我们可以通过观察其数位上的数字,或者观察其个位上的数字,这是一种非常直观的方法。
我们可以引导学生通过大量的练习来掌握这种方法。
2. 提问法我们可以通过教师提问的方式,让学生思考一个数能否被3整除的判断方法,然后再将这些方法总结出来。
这种方式可以激发学生的兴趣,提高其思考能力。
3. 练习法练习是提高学生技能的有效途径,我们可以通过大量的练习来加深学生对于能被3整除的数的认识。
数的整除数学教案

数的整除数学教案
标题:小学五年级数学——数的整除
一、教学目标:
1. 理解并掌握数的整除的基本概念。
2. 掌握被除数、除数、商的概念,以及它们之间的关系。
3. 能够熟练进行整数的整除运算,并能解决相关的实际问题。
二、教学重点与难点:
重点:理解数的整除概念,掌握整除的性质。
难点:理解和应用整除的性质。
三、教学过程:
(一)导入新课
通过生活中的例子引入整除的概念,例如分苹果、分糖果等。
(二)新知讲解
1. 整除的概念:如果a除以b(b不等于0),得到的商是整数,而且没有余数,我们就说a能被b整除,或者说b能整除a。
2. 被除数、除数、商的概念:在除法算式中,a÷b=c,a叫做被除数,b叫做除数,c叫做商。
(三)例题解析
通过具体的例题,让学生了解如何判断一个数能否被另一个数整除,以及如何进行整除运算。
(四)课堂练习
设计一些练习题,让学生自己动手做,以此来巩固所学知识。
(五)归纳总结
回顾本节课的主要内容,强调整除的概念和性质,引导学生总结学习经验。
(六)作业布置
布置一些与整除有关的习题,让学生在课后进行自我检测和巩固。
四、教学反思:
对于学生在课堂上的反应和理解情况进行反思,以便于调整教学方法和策略。
六年级数学上册《数的整除》教案

六年级数学上册《数的整除》教案一、教学内容本节课选自六年级数学上册,第三章《数的整除》的第一小节。
详细内容包括:整除的概念、特征和性质,整除与除尽的区别,以及整数的约数和倍数。
二、教学目标1. 理解整除的概念,掌握整除的特征和性质。
2. 能够判断一个数是否能被另一个数整除,并能运用整除解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点难点:整除与除尽的区别,整数的约数和倍数。
重点:整除的概念和性质,以及整除的判断方法。
四、教具与学具准备教具:黑板、粉笔、多媒体设备。
学具:练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入利用多媒体展示学校运动会场景,提出问题:“如果每个班级有6个人,怎样才能平均分配到比赛项目中?”2. 例题讲解(1)讲解整除的概念,通过例题36÷6=6,解释整除的定义。
(2)分析整除的性质,如:如果一个数能被另一个数整除,那么这个数的倍数也能被整除。
3. 随堂练习(2)找出36的所有约数,并判断哪些是它的倍数。
4. 知识巩固(1)让学生用自己的话解释整除与除尽的区别。
(2)举例说明整除在实际问题中的应用。
(2)拓展思考:一个数的约数和倍数之间有什么关系?六、板书设计1. 板书数的整除2. 主要内容:(1)整除的定义(2)整除的性质(3)整除与除尽的区别(4)整数的约数和倍数七、作业设计1. 作业题目:(2)找出40的所有约数,并判断哪些是它的倍数。
2. 答案:(1)能被整除的数:20、24、27。
(2)40的约数:1、2、4、5、8、10、20、40。
八、课后反思及拓展延伸本节课通过实践情景引入,让学生在轻松的氛围中学习整除的概念和性质。
在讲解例题时,注意引导学生运用逻辑思维分析问题。
课后,鼓励学生进行拓展思考,加深对整数的约数和倍数关系的理解。
在下一节课中,可以继续探讨因数和倍数的拓展知识,提高学生的数学素养。
重点和难点解析1. 实践情景引入的设计。
第一讲数的整除(教师版)

第一讲数的整除(教师版)奥数特训四年级下册教材91、在一条公路上,每隔100千米有一个仓库(如图),共有五个仓库。
一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有50吨货物,其余两个仓库是空的。
现在想将所有的货物集中存放在一个仓库里。
如果每吨货物运输1千米需要0.5元的运费,那么最少要花多少运费才行?2、有89吨货物要甲地运往乙地。
大卡车的载重量是7吨,小卡车的载重量是4吨。
大卡车与小卡车每车次的耗油量分别是14公升和9公升。
问如何选派车辆才能使运输耗油量最少?这时共需用油多少公升?3、某公司运输队每天有5辆汽车为7个工厂作循环运输任务。
每个工厂需配备的装卸工如图所示。
如果每个工厂固定的装卸工太多,会造成浪费,可让一部分装卸工跟车装卸。
这样,有人跟车,有人固定。
怎样合理安排才能使装卸工人数最少?-1-奥数特训四年级下册教材94、某工地A有20辆卡车。
要把60车渣土从A地运往B,把40车砖从C运到D(工地道路图如图所示)。
问如何调运最省油?5、把16拆成几个互不相同的自然数,使这些自然数的乘积最大。
解:拆成的数不能有1,而2+3+4+5+6>16,所以16至多拆成4个互不相同的自然数。
这有两种拆法:16=2+3+5+6=2+3+4+7由于5某6>4某7,所以拆成2+3+5+62某3某5某6=180.6、把长239米的钢筋截成17米和24米长的钢筋,如何截法最省材料?解:239=17某7+24某5所以应截成17米的7根,24米的5根。
7、把1、2、3、4、5、6、7、8、9这九个数字填在九个方框中(每个数字只用一次),使三个三位数相乘的积最大。
□□□某□□□某□□□解:要使乘积最大,这三个三位数也要最大,首位是9、8、7,十位是6、5、4,个位是3、2、1。
又在和一定的情况下,两数差越小则积越大。
所以这三个三位数是941、852、763.8、兄弟俩骑车郊游,弟弟先出发,速度是每分钟行200米,5分钟后,哥哥带一条狗出发,以每分钟250米的速度去追弟弟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的整除知识精讲一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m 为非0整数);性质6如果数a能被数b整除,且数c能被数d 整除,那么ac也能被bd 整除.如果b|a,且d|c,那么bd|ac;当两个整数a 和(0)b b ≠,a 被b 除的余数为0时(商为整数),则称a 被b 整除或b 整除a ,也把a 叫作b 的倍数,b 叫作a 的约数;如果a 被b 除所得的余数不为0,则称a 不能被b 整除,或b 不整除a .【例1】某数被13除,商是9,余数是8,则某数等于________。
【分析】9138125⨯+=【例2】173□是一个四位数。
数学老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9、11、8整除。
”问:数学老师在方框中先后填入的3个数字之和是多少? 【分析】因为9173|□,所以917311|+++=+□□,92|+□,7=□;因为11173|□,所以()()117313|+-+=+□□,8=□; 因为8173|□,所以873|□,因为7398923÷=,所以737393736=-=□,6=□;所以数学老师在方框中先后填入的3个数字之和是78621++=。
【例3】在方框中填上两个数字,可以相同也可以不同,使4□32□是9的倍数. ⑴请随便填出一种,并检查自己填的是否正确; ⑵一共有多少种满足条件的填法?【解析】 一个数是9的倍数,那么它的数字和就应该是9的倍数,即4+□+3+2+□是9的倍数,而4+3+2=9, 所以只需要两个方框中的数的和是9的倍数.⑴依次填入3、6,因为4+3+3+2+6=18是9的倍数,所以43326是9的倍数;⑵经过分析容易得到两个方框内的数的和是9的倍数,如果和是9,那么可以是(9,0);(8,1);(7,2);(6,3);(5,4);(4,5);(3,6);(2,7);(1,8);(0,9),共10种情况,还有(0,0)和(9,9),所以一共有12种不同的填法.经典例题【例4】一位后勤人员买了72本笔记本,可是由于他吸烟不小心,火星落在帐本上,把这笔帐的总数烧去两个数字.帐本是这样的:72本笔记本,共□67.9□元(□为被烧掉的数字),请把□处数字补上,并求笔记本的单价.【解析】把□67.9□元作为整数□679□分.既然是72本笔记本的总线数,那就一定能被72整除,又因为7289=⨯,(8,9) 1=.所以8|□679□,9|□679□.8|□679□,根据能被8整除的数的特征,8 |79□,通过计算个位的□2=.又9|□6792,根据能被9整除的数的特征,9|(□6792++++),显然前面的□应是 3.所以这笔帐笔记本的单价是:367.9272 5.11÷=(元).【例5】在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。
【解析】方法一:设补上数字后的六位数是865abc,因为这个六位数能分别被3、4、5整除,所以它应满足以下三个条件:第一:数字和(865)+++++是3的倍数;a b c第二:末两位数字组成的两位数bc是4的倍数;第三:末位数字c是0或5。
由以上条件,4| bc,且c只能取0或5,又能被4整除的数的个位数不可能是5,∴c只能取0,因而b只能取0,2,4,6,8中之一。
又3| 8650+除以3余2。
ab,且(8+6+5)除以3余1,∴a b为满足题意“数值尽可能小”,只需取0b=。
∴要求的六位数是865020。
a=,2方法二:利用试除法,由于要求最小数,用865000进行试除分别被3、4、5整除,就是被60整除,865000601441640+=能被60整除÷=,所以86500020865020∴要求的六位数是865020。
【例6】要使156a b c分别是多少?abc能被36整除,而且所得的商最小,那么,,【解析】分解为互质的几个数的乘积,3649=⨯分别考虑所以6c能被4整除,从而c只可能是1,3,5,7,9.要使商最小,,a b应尽可能小,先取0a=,又b=,5++是9的倍数所以1c=时,取得a b c b c+++++=++,所以3b c15612最小值.【例7】一个六位数2008A B 能被72整除,那么A 的值为多少?【分析】7289=⨯,所以,如果2008A B 能被8整除,那么B 的值为0或8,而各位数数字之和为9的倍数,当B 的值为0或8时,所对应的A 的值为8或9(0被排除)。
【例8】已知一个五位数691能被55整除,那么符合题意的五位数是几?【分析】 设这个五位数是691A B ,能被55整除,因为55511=⨯,这个五位数既能被5整除又能被11整除,所以B 只能等于0或5。
当0B =时,6910A 能被11整除,()906111A ++-+=,9A =,即96910能被55整除。
当5B =时,6915A 能被11整除,()956111A ++-+=,1174A =-=,即46915能被55整除。
所求五位数是96910或46915。
【例9】牛叔叔给45名工人发完工资后,将总钱数记在一张纸上。
但是记账的那张纸被香烟烧了两个洞,上面只剩下“678□□”,其中方框表示被烧出的洞。
牛叔叔记得每名工人的工资都一样,并且都是整数元。
请问:这45名工人的总工资有可能是多少元呢? 【分析】设这45名工人的总工资是678A B 元;因为每名工人的工资都一样,并且都是整数元; 所以45678|A B ; 因为4559=⨯;所以5678|A B 且9678|A B ;因为5678|A B ,所以5|B ,0B =或5;因为9678|A B ,所以967821|A B A B ++++=++,93|A B ++; 当0B =时,93033|A B A A ++=++=+,6A =; 当5B =时,93538|A B A A ++=++=+,1A =; 这45名工人的总工资有可能是67680或67185元。
【例10】已知两个三位数abc 与def 的和abc def +能被37整除,试说明:六位数abcdef 也能被37整除.【解析】 1000999()abcdef abc def abc abc def =⨯+=⨯++,因为999能被37整除,所以999abc ⨯能被37整除,而()abc def +也能被37整除,所以其和也能被37整除,即abcdef 能被37整除.【例11】若4232b c d ++=,试问abcd 能否被8整除?请说明理由.【解析】 由能被8整除的特征知,只要后三位数能被8整除即可. 10010bcd b c d =++,有(42)9688(12)bcd b c d b c b c -++=+=+能被8整除,而4232b c d ++=也能被8整除,所以abcd 能被8整除.【例12】200920092009200909n 个能被11整除,那么,n 的最小值为多少?【解析】 200920092009200909n 个中奇位数减偶位数的差为(92)979n n -⨯+=+,当5n =时,(79)n +是11的倍数,所以n 的最小值是5.【例13】试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.) 【解析】 设原序数为abcd ,则反序数为dcba ,则abcd +dcba 100010010100010010a b c d d c b a =+++++++()() 10011101101001a b c d =+++1191101091a b c d =+++(),因为等式的右边能被11整除,所以abcd + dcba 能被11整除【例14】试说明一个两位数,如果将个位数字和十位数字对调后得到一个新的两位数,则新数与原数的差一定能被9整除.【解析】 设原来的两位数为ab ,则新的两位数为ba . ba -ab(10)(10)9()b a a b b a =---=-.因为9()b a -能被9整除,所以他们的差能被9整除.【例15】一个六位数abcdef ,如果满足4abcdef fabcde ⨯=,则称abcdef 为“迎春数”(如4102564410256⨯=,则102564就是“迎春数”).请你求出所有“迎春数”的总和.【解析】 方法一:显然,f 不小于4,原等式变形为4(10)100000abcde f f abcde ⨯⨯+=+化简得2564abcde f =,当4f =时,10256abcde =,于是abcdef 为102564.同理.5f =,6,7,8,9,可以得到abcdef 为128205,153846,179487,205128,230769.所有的和是999999.方法二:显然,f 不小于4,若4f =,e 为4f ⨯末尾数字,所以6e =; de 为4ef ⨯的末2位,所以5d =; cde 为4def ⨯的末3位,所以2c =; bcde 为4cdef ⨯的末4位,所以0b =;abcdef 为4bcdef ⨯的末5位,所以1a =; 于是abcdef 为102564.同理.5f =,6,7,8,9,可以得到abcdef 为128205,153846,179487,205128,230769.所有的和是999999.【习题1】要使1232能被5整除,至少要加上( )。