北京城区一模单选分类练习

合集下载

北京城区一模单选分类练习

北京城区一模单选分类练习

2012城区一模单选分类练习时态题26. —Has Linda come back from Canada? 朝阳—Yes.She _____ there for eight years.A. has stayedB. staysC. stayedD. had stayed31. —I’m trying to find yesterday’s Beijing Morning Post. Have you seen it?石景山—I’m afraid that I it away. I thought you had finished reading it.A. threwB. had thrownC. throwD. has thrown22. Liu Fang is a company CEO now, but sheas a teacher in a middle school for three years. 石景山A. workedB. has workedC. worksD. had worked21. ---Did you happen to hear the recent news? 西城---Yes, Alice ______ the gold medal in the speech contest, which I find hard to believe.A. winsB.wonC. had wonD. will win27. —That’s a great sweater. I have never seen anything like it be fore. 东城— You think so? My grandmother ______ it for me.A. makesB. madeC. has madeD. had made25. I _____ toward the door to go outside when suddenly Jim opened it unexpectedly. 西城A. walkedB. was walkingC. had walkedD. hadbeen walking32. David ________ a customer when the fire started. 丰台A. servedB. was servingC. had servedD. wouldserve21. ---What happened to Bill? 海淀---He _____ really fast when suddenly he ran headfirst into a parked car.A. had runB. was runningC. has runD. has been running24. ---Do we have to wear our school uniforms tomorrow? 海淀---I think so. We _____ the coming-of-age ceremony in the afternoon.A. will be attendingB. have attendedC. attendD. attended28. —Bob is always complaining about not having any money. 西城-- The problem is that he doesn’t work hard and never ________.A. doesB. hadC. hasD. did31. ––Have you seen my e-mail about our TESLproject? 朝阳––Yes.Luckily I checked my e-mails yesterday. Normally I ______ my e-mailbox for days.A. haven’t openedB. didn’t openC. hadn’t openedD. don’t open32. Most of the telephone lines ______ in the hurricane last night, and so today it’s almost impossibleto get through to anybody. 西城A. destroyedB. had destroyedC. were destroyedD. had been destroyed32. Although the EiffelTower _____ to last for 20 years, it is still standing today. 海淀A. has designedB. had designedC. is designedD. wasdesigned34. Jane was elected chairman of the committee. This is the first time that a woman ______ to the post.朝阳A. has appointedB. had appointedC. has been appointedD. had been appointed24. — What are your rules for carry-on luggage, Madam? 东城— You ______ only one piece of luggage on the plane, Sir.A. allowB. allowedC. are allowedD. were allowed21. Since the end of the war, many of the priceless antiques ________ to their rightful owners. 丰台A. have returnedB. had returnedC. had been returnedD. have been returned25. My brother is tall with curly hair, wearing a pair of glasses. You ______ him very easily. 东城A. recognizedB. have recognizedC. will recognizeD. hadrecognized30. —Jack, do you know anything about Doctor Brown? 东城— I ______ to him for years. I don’t see how anyoneelse could do better.A. wentB.will goC. had goneD. have been going23. I’m sorry you ______ so long, but it’ll still be some time before Jim gets back.丰台A. waitB. waitedC. had waitedD. have been waiting26. —Guess what? I happened to meet Johnson in the street last Friday. 石景山—If my memory serves me correctly, you each other for ages.A. haven’t seenB. hadn’t seenC. didn’t seeD. don’t see27. When she entered the police station, she recognized the man who _____ her at once.丰台A. was attackingB. attackedC. had attackedD.would attack28. Jonny, I can’t believe how much you have changed! You _____ at least one foot! 海淀A. growB. grewC. have grownD. aregrowing23. — I thought you would join in my birthday party tomorrow. 石景山— I would if I to attend an important meeting.A. don’t haveB. didn’t haveC. will not haveD. would not have32. —I don’t think I want to live in the dormitory next year.东城—But check out the cost first. I wouldn’t be surp rised if you ______ your mind.A. changedB. will changeC. have changedD. would have changed30. We shouldn’t have come north for Christmas vacation. If we ______, we wouldn’t be stuck in the snow right now. 西城A. wasn’tB. didn’tC. hadn’tD. weren’t30. —Excuse me, visiting hours are over. It’s time for you to leave.丰台—I’m sorry, I didn’t know the time or I ________ earlier.A. will leaveB. would leaveC. had leftD. would have left23. Thank you so much! But for your text message, I _____ home without my ID card this morning.海淀A. would have leftB. wouldleaveC. had leftD. left28. —The wind is always blowing here.丰台—How I wish it ________ today.A. won’t blowB. didn’t blowC. doesn’t blowD. isn’t blowing非谓语26.Some seemingly harmless blogs might become harmful when _____ on the Internet by millions ofpeople. 海淀A. to readB. readingC. readD. being read25. With the victory at the French Open, Li Na has reached NO. 4 in the world,________ the previous Asian record. 丰台A. equaledB. equalingC. to have equaledD. having equaled25. The heavy snow lasted for a week, _____ a serious traffic confusion in the whole area. 朝阳A. causingB. causedC. having causedD. being caused32. Not with the quality of your goods, I will certainly not advise others to buy them. 石景山A. being impressedB. impressingC. impressedD. having impressed23. Many things such as going abroad and owning a car, _____ impossible in the past, are now verycommon. 西城A. being consideredB. to be consideredC. consideringD. considered28. ______ equal opportunities, both Frank and Billy may accomplish the task. 东城A. GivenB. GivingC. To giveD. To be given27. The tea house situated near platform 6 is now offering free cups of tea to those _____ for theXi’an train. 西城A. waitingB. waitC. to waitD. waited33. Programmes, ________ to bring the old and the young together, are growing inpopularity all over the world.A. designedB. to be designedC. designingD. having designed26. The question ______ at the next meeting will be a hard one. 东城A. to discussB. to be discussedC. discussingD. being discussed28. Prices climbed high in 2011, with the monthly CPI figure an 11-year-high of 6.9 percent inNovember. 石景山A. hitB. to hitC. to have hitD. hitting33. Many of the students who hope to enter the university will be disappointed because only one third______ for admission will be accepted. 东城A. applyB. to applyC. appliedD. applying29. The seats ______ for children and seniors are right at the front of the buses.朝阳A. reservedB. reservingC. to reserveD. having reserved33. Have you ever picked some beautiful vegetables for your dinner saladthat they are extremelybitter? 石景山A. foundB. findingC. to findD. find28. ______ valuable experience, he asked to be sent to remote areas. 朝阳A. To gainB. GainingC. GainedD. Being gained34. ______ the housing price, several measures have been adopted in the last two years. 海淀A. LoweringB. Having loweredC. To lowerD. To have lowered从句25. In English class, our teacher often creates an environment _____ we are given the opportunity tosolve problemsourselves. 海淀A. whenB. whichC. whereD. that30. There are many examples throughout the world ______ talented players are ignored by theirnational managers. 朝阳A. whenB. whereC. whichD. whose27. Huge amounts of oil have been found on the Gulf of Mexico floor, the effects of _____ haven’tdisappeared yet.石景山A. itB. thatC. whichD. whom35. Sam remembered several occasions in the past ______ he had experienced a similar feeling. 东城A.whatB. whichC. whereD. why24. Most people go to the theatre not to see a play _____ plot is complicated, but to listen to brilliantdialogues between actors. 西城A. whereB. whatC. whichD. whose26. Our usual walk is to or from the subway, ________ is how we get to work.丰台A. whichB. whereC. asD. that23. Several times Kelly heard her name called but when she turned around to see ______ it was, no one was in the room. 东城A. whoB. whereC. whyD. what26. ______ made things worse, he said, was that his roommate never took part in any of the cleaningwork. 西城A. WhatB. WhichC. ThatD. Who31. In order to assess ______ the treatment will fit your lifestyle, please take a moment to answer afew questions about yourself. 西城A. whatB. howC. whyD. where22. In college, you will discover ________ learning is about, from teacher-taught to self-learner. 丰台A. whichB. thatC. whatD. where33. He is quite strange, for everything he does is opposite to ___ is considered normal behavior. 朝阳A. whetherB. thatC. whatD. which29. Once in the forest, you ought to remain you are waiting for help. 石景山A. losing。

2024北京高三一模数学题目(含答案)利用导数研究函数的性质

2024北京高三一模数学题目(含答案)利用导数研究函数的性质

一、单选2024北京高三一模数学题目(含答案)利用导数研究函数的性质题1.(2024北京朝阳高三一模)已知n 个大于2的实数12,,,n x x x ⋅⋅⋅,对任意()1,2,,i x i n =⋅⋅⋅,存在2i y ≥满足i i y x <,且i i y xi i x y =,则使得12115n n x x x x -++⋅⋅⋅+≤成立的最大正整数n 为()A .14B .16C .21D .232.(2024北京海淀高三一模)函数()f x 是定义在(4,4)-上的偶函数,其图象如图所示,(3)0f =.设()f x '是()f x 的导函数,则关于x 的不等式(1)()0f x f x '+⋅≥的解集是()A .[0,2]B .[3,0][3,4)-C .(5,0][2,4)-D .(4,0][2,3)- 3.(2024北京海淀高三一模)已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为()A .1,1B .1,2C .2,1D .2,24.(2024北京房山高三一模)若函数(]()ln ln(1),,0()1,0,exx x x x ∞∞⎧-∈-⎪=⎨∈+⎪⎩,则函数()()g x f x x c =++零点的个数为()A .1B .2C .1或2D .1或35.(2024北京延庆高三一模)已知函数()321x f x x =--,则不等式()0f x <的解集是()A .()0,1B .()0,∞+C .(),0∞-D .()(),01,∞∞-⋃+二、填空题6.(2024北京顺义·二模)已知函数()()213f x kx b x =-++,给出下列四个结论:①当0k =时,对任意b ∈R ,()f x 有1个极值点;②当18k >时,存在b ∈R ,使得()f x 存在极值点;③当0b =时,对任意k ∈R ,()f x 有一个零点;④当103b <<时,存在k ∈R ,使得()f x 有3个零点.其中所有正确结论的序号是.7.(2024北京海淀高三一模)已知函数()f x =①函数()f x 是奇函数;②R k ∀∈,且0k ≠,关于x 的方程0()f x kx -=恰有两个不相等的实数根;③已知P 是曲线()y f x =上任意一点,1,02A ⎛⎫- ⎪⎝⎭,则12AP ≥;④设()11,M x y 为曲线()y f x =上一点,()22,N x y 为曲线()y f x =-上一点.若121x x +=,则1MN ≥.其中所有正确结论的序号是.8.(2024北京石景山高三一模)黎曼函数在高等数学中有着广泛应用,其一种定义为:[]0,1x ∈时,()()*1,,N ,0,0,10,1p p x p q q q q R x x ⎧⎛⎫=∈⎪ ⎪=⎨⎝⎭⎪=⎩为既约真分数和内的无理数.若数列*1,n n a R n n -⎛⎫=∈ ⎪⎝⎭N ,给出下列四个结论:①1n a n =;②21n n a a ++<;③1112n i i i a a +=<∑;④11ln 2ni i n a =+≥∑.其中所有正确结论的序号是.9.(2024北京石景山高三一模)设函数()323,13,1x ax x f x x a x ⎧+≤=⎨+>⎩,①若()f x 有两个零点,则实数a 的一个取值可以是;②若()f x 是R 上的增函数,则实数a 的取值范围是.10.(2024北京延庆高三一模)已知函数()221ln 1.x ax x f x a x x x⎧+<⎪=⎨≥⎪⎩,,,给出下列四个结论:①存在实数a ,使得函数()f x 的最小值为0;②存在实数0a <,使得函数()f x 的最小值为1-;③存在实数a ,使得函数()f x 恰有2个零点;④存在实数a ,使得函数()f x 恰有4个零点.其中所有正确结论的序号是.三、解答题11.(2024北京东城高三一模)已知函数()()ln 1f x x x =-.(1)求曲线()y f x =在2x =处的切线方程;(2)设()()g x f x '=,求函数()g x 的最小值;(3)若()2f x x a>-,求实数a 的值.12.(2024北京朝阳高三一模)已知函数()()()1e R xf x ax a =-∈.(1)讨论()f x 的单调性;(2)若关于x 的不等式()()1f x a x >-无整数解,求a 的取值范围.13.(2024北京顺义·二模)设函数()e cos xf x a x =+,a ∈R .曲线()y f x =在点()()0,0f 处的切线方程为2y x =+.(1)求a 的值;(2)求证:方程()2f x =仅有一个实根;(3)对任意()0,x ∈+∞,有()sin 2f x k x >+,求正数k 的取值范围.14.(2024北京房山高三一模)已知函数1()e axf x x=+.(1)当0a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)设2()()g x f x x '=⋅,求函数()g x 的极大值;(3)若e a <-,求函数()f x 的零点个数.15.(2024北京西城高三一模)已知函数()()1ln e xf x x ax x a=++.(1)当1a =时,求曲线()y f x =在点()()1,1f 处切线的斜率;(2)当1a =-时,讨论()f x 的单调性;(3)若集合(){}1xf x ≥-∣有且只有一个元素,求a 的值.16.(2024北京海淀高三一模)已知函数12()e a x f x x -=.(1)求()f x 的单调区间;(2)若函数2()()e ,(0,)g x f x a x -=+∈+∞存在最大值,求a 的取值范围.17.(2024北京门头沟高三一模)已知函数()()21ln 12f x ax x x a x =-+-.(1)当1a =时,求曲线()y f x =在点())1,1f 处的切线方程;(2)当a<0时,求()f x 的极值;(3)当112a ≤≤时,判断()f x 零点个数,并说明理由.18.(2024北京石景山高三一模)已知函数()()e 0axf x x a =>.(1)求曲线()y f x =在点()()0,0f 处的切线方程;(2)求()f x 在区间[]1,1-上的最大值与最小值;(3)当1a =时,求证:()ln 1f x x x ≥++.19.(2024北京丰台高三一模)已知函数()()e ln 1xf x x x =++-,曲线():C y f x =在点()()00,x f x 处的切线为():l yg x =,记()()()h x f x g x =-.(1)当00x =时,求切线l 的方程;(2)在(1)的条件下,求函数()h x 的零点并证明()0xh x ≥;(3)当00x ≠时,直接写出函数()h x 的零点个数.(结论不要求证明)20.(2024北京延庆高三一模)已知函数()()ln 22f x x a x =-++-.(1)若曲线()y f x =的一条切线方程为1y x =-,求a 的值;(2)若函数()f x 在区间()1,2上为增函数,求a 的取值范围;(3)若21,e x ∀∈+∞⎛⎫⎪⎝⎭,()f x 无零点,求a 的取值范围.参考答案1.D【分析】构造函数()()ln 2xf x x x=≥,结合函数单调性可得e 4ix <≤,则有()1211e 154n n x x x x n -++⋅≥⋅-⋅≥+,即可得解.【详解】由i i y xi i x y =,且2i y ≥,2i x >,故ln ln i i i i y x x y =,即ln ln i ii ix y x y =,令()()ln 2xf x x x=≥,()21ln x f x x -'=,故当()2,e x ∈时,()0f x ¢>,当()e,+x ∈∞时,()0f x '<,即()f x 在()2,e 上单调递增,在()e,+∞上单调递减,由ln ln i ii ix y x y =,即()()i i f x f y =,故e i x >,2e i y ≤<,又()()ln 2ln 42424f f ===,故4i x ≤,即e 4i x <≤,若12115n n x x x x -++⋅⋅⋅+≤,则有()1211e154n n x x x x n -++⋅≥⋅-⋅≥+,即601en ≤+,由e 2.72≈,故60122.06123.07e +≈+=.故最大正整数n 为23.故选:D.【点睛】关键点点睛:本题关键点在于借助函数()ln xf x x=的性质,结合其单调性得到2e i y ≤<,从而得到e 4i x <≤,则有()1211e154n n x x x x n -++⋅≥⋅-⋅≥+,即可得解.2.D【分析】借助函数图象与导数的关系计算即可得.【详解】由(3)0f =,且()f x 为偶函数,故(3)0f -=,由导数性质结合图象可得当()4,0x ∈-时,()0f x '<,当()0,4x ∈时,()0f x '>,当0x =时,即()00f '=,则由(1)()0f x f x '+⋅≥,有41444x x -<+<⎧⎨-<<⎩,解得43x -<<,亦可得()()100f x f x ⎧+>>'⎪⎨⎪⎩,或()()100f x f x ⎧+<<'⎪⎨⎪⎩,或()10f x +=,或()0f x '=,由()()100f x f x ⎧+>>'⎪⎨⎪⎩可得41304x x -<+<-⎧⎨<<⎩或31404x x <+<⎧⎨<<⎩,即23x <<,由()()100f x f x ⎧+<<'⎪⎨⎪⎩可得31340x x -<+<⎧⎨-<<⎩,即40x -<<,由()10f x +=,可得13x +=±,即2x =或4x =-(舍去,不在定义域内),由()0f x '=,可得0x =,综上所述,关于x 的不等式(1)()0f x f x '+⋅≥的解集为(4,0][2,3)- .故选:D.3.B【分析】借助分段函数性质计算可得m ,借助导数的几何意义及零点的存在性定理可得n .【详解】令()0f x =,即0x ≤时,30x =,解得0x =,0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x -=-,有()3200023x x x -=-,整理可得301x =-,即01x =-,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x -=-++,有()()000l 2g elg 11x x x -+=-+,整理可得()()()000221lg 10lg e x x x ++-++=,令()()()()()2l 0g 2l 1e 1g g x x x x x =++-++>,则()()2lg 1g x x '=-+,令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增,当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减,由()()992lg e 99220099lg e 0g =+⨯+-=>,()02020g =-=>,故()g x 在()0,99x ∈上没有零点,又()()9992lg e 999210003999lg e 10000g =+⨯+-⨯=-<,故()g x 在()99,999上必有唯一零点,即当00x >时,亦可有一条切线符合要求,故2n =.故选:B.4.A【分析】令()()0g x f x x c =++=,则()f x x c +=-,则函数()g x 零点的个数即为函数(),y f x x y c =+=-图象交点的个数,构造函数()()h x f x x =+,利用导数求出函数()h x 的单调区间,作出其大致图象,结合图象即可得解.【详解】(]()(]()[)ln ln(1),,0ln(1),,0(),0,11,0,1e ,1,x x x x x f x x x x x x∞∞∞∞⎧⎪-∈-⎧-∈-⎪⎪==∈⎨⎨∈+⎪⎪⎩⎪∈+⎩,令()()0g x f x x c =++=,则()f x x c +=-,则函数()g x 零点的个数即为函数(),y f x x y c =+=-图象交点的个数,令()()(]()[)ln(1),,02,0,11,1,x x x h x f x x x x x x x∞∞⎧⎪-+∈-⎪=+=∈⎨⎪⎪+∈+⎩,当(],0x ∈-∞时,()()ln 1h x x x =-+,则()11011x h x x x =+=-'≥-,所以函数()h x 在(],0-∞上单调递增,且()00h =,当()0,1x ∈时,()()20,2h x x =∈,当[)1,x ∞∈+时,()1h x x x =+,则()2221110x h x x x-=='-+≥,所以函数()h x 在[)1,+∞上单调递增,且()12h =,又当x →-∞时()h x ∞→-,当x →时,()h x ∞→+,作出函数()h x的大致图象如图所示,由图可知函数(),y f x x y c =+=-的图象有且仅有一个交点,所以函数()()g x f x x c =++零点的个数为1个.故选:A.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.5.A【分析】利用导数及导函数的单调性判断极小值点在001x <<,再由函数的单调性及(0)(1)0f f ==可得不等式的解集.【详解】因为()32ln 3x f x '=-单调递增,且(0)ln 320f '=-<,(1)3ln 320f '=->,所以存在唯一0(0,1)x ∈,使得0()0f x '=,所以当0x x <时,()0f x '<,当0x x >时,()0f x '>,所以函数()f x 在()0,x -∞上单调递减,在()0,x +∞上单调递增,又(0)(1)0f f ==,且001x <<,所以由()0f x <可得01x <<,故选:A 6.①④【分析】对①:借助导数研究函数的单调性即可得极值点个数;对②:借助导函数的导函数研究导函数可得导函数无零点,故函数不存在极值点;对③:举出反例即可得;对④:将零点个数转化为直线y kx b =+与曲线213y x =+的交点个数,从而可通过研究过()0,b 的曲线213y x =+的切线,结合零点的存在性定理得到直线y kx b =+与曲线213y x =+的关系.【详解】对①:当0k =时,()213f x b x =,()()2232x f x x -'=+,则(),0x ∈-∞时,()0f x ¢>,当()0,x ∈+∞时,()0f x '<,故()f x 在(),0∞-上单调递增,在()0,∞+上单调递减,故对任意b ∈R ,()f x 有1个极大值点0x =,故①正确;对②:当18k >时,()()2232f x k x x +-'=-,若()f x 存在极值点,则()f x '有变号零点,则()2232xk x -=+必须有解,令()()2232xx g x -=+,则()()()()()()()()2222224332222611238386333x x x x x x g x x x x x +'+=--+++-=++-+=,故当()(),11,x ∈-∞-⋃+∞时,()0g x '>,当()1,1x ∈-时,()0g x '<,故()g x 在(),1-∞-、()1,+∞上单调递增,在()1,1-上单调递减,又0x ≥时,()0g x ≤,()()()28211131g =+-⨯--=,即()18g x ≤恒成立,故当18k >时,()2232x k x -=+无解,故②错误;对③:当0b =时,()213f x kx x =-+,当0k =时,()2103f x x =>+,此时函数()f x 无零点,故③错误;对④:当103b <<时,若存在k ∈R ,使得()f x 有3个零点,则直线y kx b =+与曲线213y x =+有三个不同交点,由直线y kx b =+过点()0,b ,曲线213y x =+过点10,3⎛⎫⎪⎝⎭,又103b <<,213y x =+是偶函数,且在()0,∞+上单调递减,故当0k <时,直线y kx b =+与曲线213y x =+在第二象限必有一交点,同理,当0k >时,直线y kx b =+与曲线213y x =+在第一象限必有一交点,过点()0,b 作曲线213y x =+0201,3x x ⎛⎫ ⎪+⎝⎭,则切线方程为()()00020222133x y x x x x --+-=+,即()()00020222133x b x x x --+⨯-=+,则()()22020313x b x +=+,由103b <<,则()()0220231133x x +<+,即()()2220011540x x +-++>,即()()()22220000141130x x x x +-+-=->,即203x ≥,故当103b <<时,存在()0,x ∈-∞+∞ ,使曲线213y x =+有过点()0,b 的切线,且切点为021,3x x ⎛⎫ ⎪+⎝⎭,当0x >时,切线斜率为()22230x x +<-,则当()02022,03x k x ⎛⎫- ⎪∈ ⎪+⎝⎭时,有()00f x <,又()1030b f =->,则存在()100,x x ∈,使()10f x =,此时函数y kx b =+单调递减,而2103y x =>+恒成立,故存在()20,x x ∈+∞,使()20f x =,即当0x >时,存在()02022,03x k x ⎛⎫- ⎪∈ ⎪+⎝⎭,使得()f x 有3个零点,同理可得,当0x <()02020,23x k x ⎛⎫- ∈ ⎪+⎝⎭,使得()f x 有3个零点,故④正确.故答案为:①④.【点睛】关键点点睛:第④个结论关键点在于将零点个数转化为直线y kx b =+与曲线213y x =+的交点个数,从而可通过研究过()0,b 的曲线213y x=+的切线,结合零点的存在性定理去得到直线y kx b =+与曲线213y x =+的关系.7.②③④【分析】对①:计算定义域即可得;对②:对0k >与0k <分类讨论,结合二次函数求根公式计算即可得;对③:借助两点间的距离公式与导数求取最值计算即可得;对④:结合函数性质与③中所得结论即可得.【详解】对①:令30x x -≥,即有()()110x x x +-≥,即[][]1,01,x ∞∈-⋃+,故函数()f x 不是奇函数,故①错误;对②:0()f x kx kx -==kx =,当0x =00-=,故0是该方程的一个根;当0x ≠,0k >kx =,故0x >,结合定义域可得[]1,x ∞∈+,有322x x k x -=,即()2210x x k x --=,令2210x k x --=,440k ∆=+>,有22k x =或22k x =(负值舍去),则20122k x +=,故2210x k x --=必有一个大于1的正根,即0()f x kx -=必有一个大于1的正根;当0x ≠,0k <kx =,故0x <,结合定义域有[)1,0∈-x ,有322x x k x -=,即()2210x x k x --=,令2210x k x --=,440k ∆=+>,有22k k x =或22k k x =(正值舍去),令244k t +=>,即24k t =-,则2221171174242412222k t x ⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭==>=-,即1x =-,故2210x k x --=在定义域内亦必有一根,综上所述,R k ∀∈,且0k ≠,关于x 的方程0()f x kx -=恰有两个不相等的实数根,故②正确;对③:令(),P x y,则有y =222321124AP x x x⎛⎫=++=++⎪⎝⎭,令()3214g x x x =++,[][]1,01,x ∞∈-⋃+,()()23232g x x x x x =='++,当()21,1,3x ∞⎛⎫∈--⋃+ ⎪⎝⎭时,()0g x '>,当2,03x ⎛⎫∈- ⎪⎝⎭时,()0g x '<,故()g x 在21,3⎛⎫-- ⎪⎝⎭、()1,∞+上单调递增,在2,03⎛⎫- ⎪⎝⎭上单调递减,又()1111144g -=-++=,()110044g =+=,故()14g x ≥恒成立,即214AP ≥,故12AP ≥,故③正确;对④:当12x x =时,由[][]1,01,x ∞∈-⋃+,121x x +=,故1212x x ==-,此时,124y y =-==,则12MN =≥,当12x x ≠时,由()y f x =与()y f x =-关于x 轴对称,不妨设12x x <,则有1210x x -≤<≤或121012x x -≤≤<≤≤,当121012x x -≤≤<≤≤时,由2121x x x -≥≥,有121MN x x =≥-≥,故成立;当1210x x -≤<≤时,即有211x x =-,由③知,点M 与点N 在圆2211:24A x y ⎛⎫++= ⎪⎝⎭上或圆外,设点()1,M x m '与点()2,N x n '在圆上且位于x 轴两侧,则1M N ''=,故1MN M N ''≥=;综上所述,1MN ≥恒成立,故④正确.故答案为:②③④.【点睛】关键点点睛:结论④中的关键点在于借助结论③,结合函数的对称性,从而得到当1x 、2x 都小于零时,MN 的情况.8.②③④【分析】根据黎曼函数的定义和性质逐项分析.【详解】对于①,N ,1n n +∈∴= 时,()11001a R ==≠,故①错误;对于②,111n a n +=+,212n a n +=+,+12n n a a +∴>,故②正确;对于③,11223341111111123341ni i n n i a a a a a a a a a a n n ++==++++=⨯+⨯++⋅+∑ 11111111123341212n n n =-+-++--<++ ,故③正确;对于④,123111123ni n i a a a a a n==++++=+++∑ ,()2n ≥,构造函数()e 1xg x x =--,()0x >,则()e 10xg x ='->,()g x 单调递增,()(0)0g x g ∴>=,即当0x >时e 1x x >+,11132111e 1,e 1,,e 123n n>+>+>+ ,11123345111111eln 2342232nn n n n n +++++⎛⎫>⨯⨯⨯⨯=∴+++> ⎪⎝⎭,当1n =时,110ni i a a ===∑,11ln 02+=,11ln 2ni i n a =+⎛⎫∴≥ ⎪⎝⎭∑,故④正确.故选:②③④.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.9.1-(13a <-内的值都可以)01a ≤≤或2a ≥【分析】①分析函数的性质,确定零点所在的区间,通过解方程的方法,即可求解;②根据分段函数的形式,确定两段函数都是单调递增,并根据分界点处函数值的关系不等式,即可求解.【详解】①函数()23f x x a =+在()1,+∞上单调递增,()2130f a =+>,所以函数()f x 在区间()1,+∞上无零点,则函数()33f x x ax =+在(],1-∞上有2个零点,即330x ax +=,()230x x a +=,则0x =,或x =或x =,a<0,1>,解得:13a <-,所以a 的一个值是1-;②函数()23f x x a =+在()1,+∞上单调递增,则在(],1-∞上,()33f x x ax =+也单调递增,且321331a a +≤⨯+,若函数在()33f x x ax =+在区间(],1-∞单调递增,则()2330f x x a '=+≥,即2≥-a x 在区间(],1-∞上恒成立,即()2maxa x≥-,即0a ≥,不等式321331a a +≤⨯+,解得:2a ≥或1a ≤,综上可知,01a ≤≤或2a ≥.故答案为:1-(13a <-内的值都可以);01a ≤≤或2a ≥10.①③【分析】取特殊值判断①,当0a <时,分别分析分段函数两部分的最值判断②,根据分段函数每部分的零点确定函数的零点可判断③④.【详解】当0a =时,()210 1.x x f x x ⎧<=⎨≥⎩,,,,显然函数的最小值为0,故①正确;当0a <时,ln ()(1)a xf x x x =≥,()21ln ()a x f x x-'=,当1e x <<时,()0f x '<,当e x <时,()0f x '>,所以()f x 在[)1,e 上单调递减,在[)e,+∞上单调递增,所以e x =时,()f x 有最小值(e)eaf =,由1e a =-可得a e =-,此时,1x <时,2()2e f x x x =-,()f x 在(,1)-∞上单调递减,所以()(1)12e f x f >=-,与最小值为1-矛盾,若1x <时,2()2f x x ax =+的对称轴方程为0x a =->,当1x a =-<时,即1a >-时,2min ()()f x f a a =-=-,若21a -=-,则1a =-与1a >-矛盾,当1x a =-≥时,()f x 在(,1)-∞上单调递减,无最小值,综上,当0a <时,函数()f x 的最小值不为1-,故②错误;由②知,1a <-时,1x <时,()f x 单调递减且(0)0f =,当1x ≥时,()0f x ≤且(1)0f =,所以函数恰有2个零点,故③正确;当0a >时,ln ()0(1)a xf x x x=≥≥且仅有(1)0f =,即ln ()(1)a x f x x x =≥有且只有1个零点,当0a <时,ln ()0(1)a xf x x x=≤≥且仅有(1)0f =,即ln ()(1)a x f x x x =≥有且只有1个零点,综上0a ≠时,ln ()(1)a xf x x x=≥有且只有1个零点,而2()2(2)f x x ax x x a =+=+在1x <上至多有2个零点,所以0a ≠时,函数没有4个零点,当0a =时,函数有无数个零点,故④错误.故答案为:①③【点睛】关键点点睛:本题的关键是对a 分类讨论,利用导数研究[)1,+∞上的函数性质,结合二次函数性质研究另一段函数.11.(1)24y x =-(2)2(3)2a =【分析】(1)求导,再根据导数的几何意义即可得解;(2)利用导数求出函数()g x 的单调区间,进而可求出最小值;(3)分1a ≤和1a >两种情况讨论,在1a >时,再分x a >和1x a <<两种情况讨论,分离参数,构造函数并求出其最值,即可得解.【详解】(1)()()()ln 111xf x x x x '=-+>-,则()()22,20f f '==,所以曲线()y f x =在2x =处的切线方程为()22y x =-,即24y x =-;(2)()()()()ln 111xg x f x x x x '==-+>-,()()()22112111x x x g x x x x ---'=+=---,当12x <<时,()0g x '<,当2x >时,()0g x '>,所以函数()g x 在()1,2上单调递减,在()2,+∞上单调递增,所以()()min 22g x g ==;(3)函数()f x 的定义域为()1,+∞,当1a ≤时,0x a ->,则()2f x x a>-,即()()2f x x a >-,即()22a f x x -<-,由(2)得()2f x '≥,令()()2h x f x x =-,则()()()201h x f x x ''=-≥>,所以()h x 在()1,+∞上单调递增,又当1x →时,()h x →-∞,因为1a ≤,所以22a -≥-,此时()22a f x x -<-不恒成立,故1a ≤不符题意;当1a >时,若x a >,则0x a ->,则()2f x x a>-,即()()2f x x a >-,即()22a f x x -<-,由上可知函数()()2h x f x x =-在(),a +∞上单调递增,所以()()()()ln 12h x h a a a a x a >=-->,所以()2ln 12a a a a -≤--,解得2a ≥①,若1x a <<,则()2f x x a>-,即()()2f x x a <-,即()22a f x x ->-,由上可知函数()()2h x f x x =-在()1,a 上单调递增,所以()()()()ln 1211h x h a a a a a <=--<<,所以()2ln 12a a a a -≥--,解得2a ≤②,由①②可得2a =,综上所述,2a =.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.12.(1)答案见解析(2)1a ≥【分析】(1)首先求函数的导数,再分0,0,0a a a ><=三种情况讨论()f x 的单调性;(2)不等式转化为11e x x a x -⎛⎫-< ⎪⎝⎭,设函数()1e x x h x x -=-,利用导数求函数的取值范围,再结合不等式,讨论a 的取值,即可求解.【详解】(1)()()1e xf x a ax '=--,当()0f x '=,得1ax a-=,当0a >时,1,a x a -⎛⎫∈-∞ ⎪⎝⎭时,()0f x ¢>,()f x 单调递增,1,-⎛⎫∈+∞ ⎪⎝⎭a x a 时,()0f x '<,()f x 单调递减,当0a <时,1,a x a -⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减,1,-⎛⎫∈+∞ ⎪⎝⎭a x a 时,()0f x ¢>,()f x 单调递增,当0a =时,()e xf x =,函数()f x 在R 上单调递增,综上可知,0a >时,函数()f x 的单调递增区间是1,a a -⎛⎫-∞ ⎝⎭,单调递减区间是1,a a -⎛⎫+∞⎪⎝⎭,0a <时,函数()f x 的单调递减区间是1,a a -⎛⎫-∞ ⎪⎝⎭,单调递增区间是1,a a -⎛⎫+∞⎪⎝⎭,0a =时,函数()f x 的增区间是(),-∞+∞,无减区间.(2)不等式()()1e 1xax a x ->-,即11e x x a x -⎛⎫-< ⎪⎝⎭,设()1e x x h x x -=-,()2e 21e ex x xx x h x -+-'=-=,设()e 2xt x x =+-,()e 10x t x '=+>,所以()t x 单调递增,且()01t =-,()1e 20t =->,所以存在()00,1x ∈,使()00t x =,即()00h x '=,当()0,x x ∈-∞时,()0h x '<,()h x 单调递减,当()0,x x ∈+∞时,()0h x '>,()h x 单调递增,所以()()00000e 1e x x x x h x h x -+≥=,因为e 1xx ≥+,所以()()()00002000000011e 110e e e x x x x x x x x x x h x h x +-+-++≥=≥=>,当0x ≤时,()()01h x h ≥=,当1x ≥时,()()11h x h ≥=,不等式()()1e 1xax a x ->-无整数解,即11e x x a x -⎛⎫-< ⎪⎝⎭无整数解,若0a ≤时,不等式恒成立,有无穷多个整数解,不符合题意,若1a ≥时,即11a≤,因为函数()h x 在(],0-∞上单调递减,在[)1,+∞上单调递增,所以Z x ∈时,()()(){}1min 0,11h x h h a ≥=≥,所以()1h x a<无整数解,符合题意,当01a <<时,因为()()1011h h a==<,显然0,1是()1a h x ⋅<的两个整数解,不符合题意,综上可知,1a ≥.【点睛】关键点点睛:本题第二问的关键1是不等式的变形11e x x a x -⎛⎫-< ⎪⎝⎭,第二个关键是确定函数()1ex x h x x -=-的单调性,以及确定()()011h h ==.13.(1)1a =;(2)证明见解析;(3)01k <≤.【分析】(1)根据切点在曲线和切线上可得;(2)分0x >,0x =,0x <,利用导数讨论单调性,通过单调性讨论即可得证;(3)令()e cos sin 2xF x x k x =+--,分01k <≤,1k >两种情况,利用导数讨论最值即可得解.【详解】(1)解:因为()e cos x f x a x =+,所以()00e 1f a a =+=+,又点()()0,0f 在切线2y x =+上,所以()02f =,所以12a +=,即1a =.(2)证明:欲证方程()2f x =仅有一个实根,只需证明e cos 20x x +-=仅有一个零点,令()e cos 2x g x x =+-,则()e sin xg x x '=-,令()()e sin xh x g x x =-'=,则()e cos x h x x '=-,讨论:(1)当0x >时,()0e cos e cos 1cos 0x h x x x x =->-=-≥',所以()h x 在()0,∞+上单调递增,所以()()01h x h >=,即()e sin 10xg x x =>'->,所以()g x 在()0,∞+上单调递增,()()00g x g >=,即此时无零点;(2)当0x =时,()00g =,即此时有一个零点;(3)当0x <时,()0e cos 2e cos 21cos 0x g x x x x =+-<+-=-+≤所以,当0x <时,()0g x <,即此时无零点综上可得,()e cos 2xg x x =+-仅有一个零点,得证.(3)当()0,x ∞∈+时,e cos sin 2x x k x +>+,即e cos sin 20x x k x +-->恒成立,令()e cos sin 2xF x x k x =+--,则()e sin cos xF x x k x =-'-,由(Ⅱ)可知,()0,x ∞∈+时e sin 1x x ->,所以()e sin cos 1cos xF x x k x k x '=-->-,讨论:(1)当01k <≤时,因为1cos 1x -≤≤,所以cos k k x k -≤≤,即11cos 1k k x k -≤-≤+,所以()1cos 10F x k x k >≥'--≥,即当01k <≤时,()0F x '>,所以()e cos sin 2xF x x k x =+--在()0,x ∞∈+时单调递增,所以()()00F x F >=恒成立,即满足条件e cos sin 20x x k x +-->,(2)当1k >时,由()e sin cos xF x x k x =-'-可知()010F k ='-<,又()ππe 0F k '=+>,所以存在()00,πx ∈,使得()00F x '=,所以,当()00,x x ∈时,()0F x '<,()F x 单调递减,当()0,x x ∞∈+时,()0F x '>,()F x 单调递增,所以()()000F x F <=,即不能保证e cos sin 20x x k x +-->恒成立,综上可知,正数k 的取值范围是01k <≤.【点睛】思路点睛:根据不等式恒成立求参数范围常用方法:(1)参变分离,将问题转化为函数最值问题;(2)根据参数分类讨论,利用导数求函数最值即可求解.14.(1)3y x =-+(2)答案见解析(3)1【分析】(1)求导,再根据导数的几何意义即可得解;(2)求导,分0a =,0a >和a<0三种情况讨论,再结合极大值的定义即可得解;(3)令1()e 0ax f x x =+=,则1e ax x =-,再分x 的正负讨论,当0x <时,分离参数可得()ln x a x-=-,则函数()f x 零点的个数即为函数()ln ,x y a y x -==-图象交点的个数,构造函数()()()ln 0x h x x x-=-<,利用导数求出其单调区间和极值,作出函数的大致图象,结合图象即可得解.【详解】(1)当0a =时,1()1f x x=+,()21f x x '=-,则()()11,12f f =-'=,所以曲线()y f x =在点(1,(1))f 处的切线方程为()21y x -=--,即3y x =-+;(2)21()e ax f x a x'=-,则()22()()e 10ax g x f x x ax x =⋅=-≠',则()()()222e e 2e 0ax ax axg x ax a x ax ax x =+=+≠',当0a =时,()1g x =-,此时函数()g x 无极值;当0a >时,令()0g x '<,则0x >或2x a <-,令()0g x '<,则20x a -<<,所以函数()g x 在(2,,0,a ∞∞⎛⎫--+ ⎪⎝⎭上单调递增,在2,0a ⎛⎫- ⎪⎝⎭上单调递减,所以()g x 的极大值为2241eg a a ⎛⎫-=- ⎪⎝⎭;当a<0时,令()0g x '<,则0x <或2x a>-,令()0g x '<,则20x a <<-,所以函数()g x 在()2,0,,a ∞∞⎛⎫--+ ⎪⎝⎭上单调递增,在20,a ⎛⎫- ⎪⎝⎭上单调递减,而函数()g x 的定义域为()(),00,∞∞-⋃+,所以此时函数()g x 无极值.综上所述,当0a ≤时,函数()g x 无极大值;当0a >时,()g x 的极大值为241ea -;(3)令1()e 0axf x x =+=,则1e ax x =-,当0x >时,1e ,00axx>-<,所以0x >时,函数()f x 无零点;当0x <时,由1e axx =-,得1ln ax x ⎛⎫=- ⎪⎝⎭,所以()ln x a x-=-,则0x <时,函数()f x 零点的个数即为函数()ln ,x y a y x-==-图象交点的个数,令()()()ln 0x h x x x -=-<,则()()2ln 1x h x x --'=,当e x <-时,()0h x '>,当e 0x -<<时,()0h x '<,所以函数()h x 在(),e ∞--上单调递增,在()e,0-上单调递减,所以()()max 1e eh x h =-=,又当x →-∞时,()0h x >且()0h x →,当0x →时,()h x ∞→-,如图,作出函数()h x 的大致图象,又e a <-,由图可知,所以函数()()ln ,x y a h x x-==-的图象只有1个交点,即当0x <时,函数()f x 只有1个零点;综上所述,若e a <-,函数()f x 有1个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.15.(1)2e 2+(2)单调递增区间为(),1-∞-;单调递减区间为()1,0-(3)1a e=-【分析】(1)根据条件,利用导数的几何意义,即可求出结果;(2)对函数求导得到()()11e x f x x x ⎛⎫=+- ⎪⎝⎭',由函数()f x 定义域知1e 0x x -<,再利用导数与函数单调性间的关系,即可求出结果;(3)对函数求导得到()()1e 1x f x x x a ⎛⎫=++ ⎪⎝⎭',再分0a >和a<0两种情况讨论,利用导数与函数单调性间的关系,求出函数的单调区间,结合条件,即可求出结果.【详解】(1)当1a =时,()ln e xf x x x x =++,所以()()111e x f x x x=+++',得到()12e 2f '=+,所以曲线()y f x =在点()(1,)1f 处切线的斜率为2e 2+.(2)当1a =-时,()()ln e xf x x x x =+--,易知()f x 的定义域为(),0∞-,又()()()1111e 1e x x f x x x x x ⎛⎫=+-+=+- ⎪⎝⎭',因为(),0x ∈-∞,所以1e 0xx-<,所以(),1x ∈-∞-时,()0f x ¢>,()1,0x ∈-时,()0f x '<所以()f x 的单调递增区间为(),1-∞-;单调递减区间为()1,0-.(3)因为()()1ln e xf x x ax x a =++,所以()()1e 1x f x x x a ⎛⎫=++ ⎪⎝⎭',易知0a ≠,当0a >时,()f x 的定义域为()0,∞+,所以()0f x ¢>恒成立,故()f x 在)∞+上单调递增,又12111e 0af a a a⎛⎫=+> ⎪⎝⎭,所以0a >不合题意,当0a <时,()f x 的定义域为(),0∞-,此时1e0xx a+<,所以(),1x ∈-∞-时,()0f x ¢>,()1,0x ∈-时,()0f x '<,故()f x 的单调递增区间为(),1-∞-,单调递减区间为()1,0-,所以()()max 1()11ln ef x f a a =-=-+--.设()()11ln (0)e g x x x x=-+--<,则()2211e 1e e x g x x x x +=+=',当1,e x ∞⎛⎫∈-- ⎪⎝⎭时,()0g x '<,1,0e x ⎛⎫∈- ⎪⎝⎭时,()0g x '>,所以()g x 的单调递减区间为1,e ⎛⎫-∞- ⎪⎝⎭;单调递增区间为1,0e ⎛⎫- ⎪⎝⎭.所以min 1()1e g x g ⎛⎫=-=- ⎪⎝⎭,所以集合(){}1xf x ≥-∣有且只有一个元素时1a e=-.【点睛】方法点睛:对于求不等式成立时的参数范围问题,一般有三个方法:一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件;二是讨论分析法,根据参数取值情况分类讨论;三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.16.(1)()f x 的增区间为(),2∞-,减区间为(2,)+∞(2)1a ≥-【分析】(1)对函数求导,得到121(1))e 2(a x f x x -=-',再求出()0f x '>和()0f x '<对应的x 取值,即可求出结果;(2)令2()()e h x f x a -=+,对()h x 求导,利用导数与函数单调性间的关系,求出()h x 的单调区间,进而得出()h x 在(0,)+∞上取值范围,从而将问题转化成1222e e e a a a ---+≥成立,构造函数12()e e x m x x --=+,再利用()m x 的单调性,即可求出结果.【详解】(1)易知定义域为R ,因为12()ea x f x x -=,所以11122211(1)()e2e e 2a x a x a x x x x f ----=-'=,由()0f x '=,得到2x =,当2x <时,()0f x '>,当2x >时,()0f x '<,所以,函数()f x (),2∞,单调递减区间为()2,∞+.(2)令2()()e h x f x a -=+,则()()h x f x ''=,由(1)知,函数()f x 的单调递增区间为(),2∞-,单调递减区间为()2,∞+,所以()h x 在2x =时取得最大值12(2)2e e a h a --=+,所以当2x >时,1222()e e e (0)a x h x x a a h ---=+>=,当02x <<时,()(0)h x h >,即当,()0x ∈+∞时,(]()(0),(2)h x h h ∈,所以函数122()ee a x g x x a --=+在(0,)+∞存在最大值的充要条件是1222e e e a a a ---+≥,即122122e e e e +e 02a a a a a -----++=≥,令12()e e x m x x --=+,则12()e e 0x m x --'=+>恒成立,所以12()e e x m x x --=+是增函数,又因为22(1)e e 0m ---=-=,所以12()e e 0a m a a --=+≥的充要条件是1a ≥-,所以a 的取值范围为[)1,-+∞.【点睛】关键点点晴:本题的关键在于第(2)问,构造函数122()e e a x h x x a --=+,利用函数单调性得到,()0x ∈+∞时,(]()(0),(2)h x h h ∈,从而将问题转化成1222e e e a a a ---+≥,构造函数12()e e x m x x --=+,再利用()m x 的单调性来解决问题.17.(1)12y =-(2)()12f x a =-极大值,无极小值(3)当12a =时()f x 有一个零点,当112a <≤时()f x 无零点【分析】(1)求出函数的导函数,即可求出切线的斜率,从而求出切线方程;(2)求出函数的定义域与导函数,即可求出函数的单调区间,从而求出极值;(3)依题意可得()1ln 102a x x a -+-=,令()()1ln 12F x a x x a =-+-,则判断()f x 的零点个数,即判断()F x 的零点个数,利用导数说明()F x 的单调性,求出()()max ln 221F x a a a =-+,再令()ln 12xH x x x =-+,[]1,2x ∈,利用导数说明()H x 的单调性,即可求出()max H x ,从而得解.【详解】(1)当1a =时()21ln 2f x x x x =-,则()112f =-,()ln 1f x x x '=+-,所以()10f '=,所以曲线()y f x =在点()()1,1f 处的切线方程为12y =-.(2)函数()f x 的定义域为(0,∞+,且()()ln 1ln 1f x a x a x a a x x '=+-+-=-+,令()()ln 1g x f x a x x '==-+,则()1a a xg x x x-'=-=,因为a<0,所以()0g x '<恒成立,所以()g x 在()0,∞+上单调递减,即()f x '在()0,∞+上单调递减,又()10f '=,所以当01x <<时()0f x ¢>,当1x >时()0f x '<,则()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以()f x 在1x =处取得极大值()12f x a =-极大值,无极小值.(3)令()0f x =,即()21ln 102ax x x a x -+-=,因为0x >,所以()1ln 102a x x a -+-=,令()()1ln 12F x a x x a =-+-,所以判断()f x 的零点个数,即判断()F x 的零点个数,又()1222a a x F x x x -'=-=,112a ≤≤,所以当02x a <<时()0F x '>,当2x a >时()0F x '<,所以()F x 在()0,2a 上单调递增,在()2,a +∞上单调递减,所以()()()max 2ln 221F x F a a a a ==-+,令()ln 12xH x x x =-+,[]1,2x ∈,则()11ln 22H x x '=-,因为[]1,2x ∈,所以()()111ln 2ln 210222H x '≤-=-<,所以()H x 在[]1,2上单调递减,所以()()10H x H ≤=,所以()20F a ≤,当且仅当12a =时等号成立,所以当12a =时()F x 有一个零点,即()f x 有一个零点,当112a <≤时()F x 无零点,即()f x 无零点,综上可得当12a =时()f x 有一个零点,当112a <≤时()f x 无零点.【点睛】关键点点睛:第三问的关键是首先将问题转化为()1ln 102a x x a -+-=,利用导数求出()()max ln 221F x a a a =-+,再构造函数()ln 12xH x x x =-+,[]1,2x ∈.18.(1)y x =(2)见解析(3)证明见解析【分析】(1)根据导数的几何意义,求切线方程;(2)首先求函数的导数,再讨论01a <≤和1a >两种情况求函数的单调性,求函数的最值;(3)首先根据不等式构造函数()e ln 1xg x x x x =---,再利用导数求函数的最小值,即可证明.【详解】(1)()()1e axf x ax '=+,()01f '=,()00f =,所以曲线()y f x =在点()()0,0f 处的切线方程为y x =;(2)()()1e axf x ax '=+,0a >当01a <≤时,()0f x '≥在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以函数()f x 的最小值为()1e axf --=-,最大值为()1e a f =,当1a >时,()0f x '=,得()11,0x a=-∈-,()f x '在区间11,a ⎡⎫--⎪⎢⎣⎭小于0,函数()f x 单调递减,()f x '在区间1,1a ⎡⎤-⎢⎥⎣⎦大于0,函数()f x 单调递增,所以函数()f x 的最小值为11e f a a ⎛⎫-=- ⎪⎝⎭,()1e ax f --=-,()1e a f =,显然()()11f f >-,所以函数()f x 的最大值为()1e a f =,综上可知,当01a <≤时,函数()f x 的最小值为()1e ax f --=-,最大值为()1e af =,当1a >时,函数()f x 的最小值为11e f a a ⎛⎫-=- ⎪⎝⎭,最大值为()1e af =;(3)当1a =时,()e xf x x =,即证明不等式e ln 1x x x x ≥++,设()e ln 1xg x x x x =---,0x >,()()11e ⎛⎫'=+- ⎪⎝⎭x g x x x ,设()1e xh x x =-,0x >,()21e 0xh x x'=+>,所以()h x 在()0,∞+单调递增,并且1202h ⎛⎫=< ⎪⎝⎭,()1e 10h =->,所以函数()h x 在1,12⎛⎫⎪⎝⎭上存在唯一零点0x ,使()0001e 0x h x x =-=,即()00g x '=,则在区间()00,x ,()0x '<,()g x 单调递减,在区间()0,x +∞,()0g x '>,()g x 单调递增,所以()g x 的最小值为()00000e ln 1xg x x x x =---,由()0001e 0xh x x =-=,得001x x e =,且00ln x x =-,所以()00g x =,所以()e ln 10xg x x x x =---≥,即()ln 1f x x x ≥++.19.(1)1y x =+(2)函数()h x 有唯一零点0x =,证明过程见解析(3)2【分析】(1)只需分别求出()()0,0f f '即可得解;(2)首先有()()e ln 121xh x x x =++--,()()1e 211x x x h x x +--'=+,令()()()1e 21,1x m x x x x =+-->-,我们可以通过构造导数来说明()0m x >,即()0h x '>,这表明了()h x 单调递增,注意到()00h =,由此即可进一步得证;(3)首先我们可以连续求导说明函数()f x '在(]1,0-上递减,在[)0,∞+上递增.其次()()()()()000h x f x f x x x f x =---',故()()()0h x f x f x ''-'=.进一步有()()000h x h x '==,然后分000,10x x >-<<两种情况分类讨论即可求解.【详解】(1)当00x =时,()()001f x f ==,而()1e 11x f x x =+-+',所以()01f '=,从而切线方程为10y x -=-,也就是1y x =+.(2)由题意()()()()()()e ln 11e ln 121x xh x f x h x x x x x x =-=++--+=++--,所以()()1e 211e 211x xx x h x x x +--=+-='++,令()()1e 21x m x x x =+--,则()()2e 2xm x x =+-',当10x -<<时,122x <+<,0e 1x <<,所以()2e 2e 212x xx +<<⨯=,即()0m x '<,所以当10x -<<时,()m x 单调递减,()()00m x m >=,当0x >时,22x +>,e 1x >,所以()2e 2e 212x xx +>>⨯=,即()0m x '>,所以当0x >时,()m x 单调递增,()()00m x m >=,综上,()0m x ≥恒成立,也就是()0h x '≥恒成立,所以()h x 在()1,∞-+又因为()00h =,故函数()h x 有唯一零点0x =,且当10x -<<时,()0h x <,当0x >时,()0h x >;因此当10x -<<时,()0xh x >,当0x >时,()0xh x >,故()0xh x ≥;(3)对n 个实数12,,...,n a a a ,定义()12max ,,...,n a a a 和()12min ,,...,n a a a 分别为12,,...,n a a a 中最大的一个和最小的一个.现在,()()e ln 1x f x x x =++-,故()1e 11xf x x =+-+',令()()f x x ϕ'=,再对()x ϕ求导一次得到()()21e 1xx x ϕ=-+'.当10x -<<时,()()()02211e e 110101xx x ϕ=-<-='-=++,()x ϕ单调递减;当0x >时,()()()02211e e 110101xx x ϕ=->-='-=++,()x ϕ单调递增.。

2024届北京市东城区高三下学期综合练习(一模)物理核心考点试题(基础必刷)

2024届北京市东城区高三下学期综合练习(一模)物理核心考点试题(基础必刷)

2024届北京市东城区高三下学期综合练习(一模)物理核心考点试题(基础必刷)学校:_______ 班级:__________姓名:_______ 考号:__________(满分:100分时间:75分钟)总分栏题号一二三四五六七总分得分评卷人得分一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示,质量分别为m和3m的小物块A和B,用劲度系数为k轻质弹簧连接后放在水平地面上,A通过一根水平轻绳连接到墙上。

A、B与地面间的动摩擦因数均为μ,最大静摩擦力等于滑动摩擦力。

用水平拉力将B向右缓慢拉开一段距离,撤去拉力后,B恰好能保持静止,弹簧形变始终在弹性限度内,重力加速度大小为g。

下列判断正确的是( )A.物块B向右移动的最大距离为B.若剪断轻绳,A在随后的运动过程中相对于其初位置的最大位移大小C.若剪断轻绳,A在随后的运动过程中通过的总路程为D.若剪断轻绳,A最终会静止时弹簧处于伸长状态,其伸长量为第(2)题磁感应强度单位表示正确的是( )A.B.C.D.第(3)题北斗三号系统的收官之星是地球静止轨道卫星,则对其描述正确的是( )A.该卫星可经过江苏省扬州市上空B.其运行周期比地球自转周期大C.其角速度等于地球自转角速度D.可停留在离地任意高度处第(4)题乐乐同学在校运动会上,获得百米短跑冠军,是由于他在这百米中()A.某时刻的瞬时速度大B.撞线时的瞬时速度达C.平均速度大D.起跑时的加速度大第(5)题如图,实线表示某静电场中的电场线,过M点的电场线是水平直线,虚线表示该电场中的一条竖直等势线,M、P是电场线上的点,N、Q是等势线上的点。

将一带正电的点电荷由M点静止释放,仅在电场力作用下水平向右运动,则( )A.N、Q两点的电场强度方向相同B.M点电势低于N点电势C.该点电荷一定向右做匀加速运动D.若将该点电荷从P点移到N点,电势能将减小第(6)题北京高能光源是我国首个第四代同步辐射光源,计划于2025年建成。

北京高三各城区一模试卷

北京高三各城区一模试卷

北京高三各城区一模试卷一、试卷基本信息1. 试卷名称:北京高三各城区一模试卷2. 考试科目:语文3. 考试时间:150分钟4. 总分:150分5. 考试日期:2024年4月10日6. 考试地点:各城区指定考点二、试卷结构1. 选择题(共30分)- 单项选择题:10题,每题3分- 多项选择题:5题,每题4分2. 非选择题(共120分)- 阅读理解:3篇,每篇10分,共30分- 古文翻译:2题,每题10分,共20分- 作文:1题,60分三、试卷内容(一)选择题1. 单项选择题- 1. 请选出下列词语中使用正确的一项。

- 2. 请选出下列句子中没有语病的一项。

- ...- 10. 请选出下列成语使用恰当的一项。

2. 多项选择题- 1. 请选出下列句子中使用修辞手法正确的两项。

- 2. 请选出下列成语中使用不恰当的两项。

- ...- 5. 请选出下列词语中使用错误的两项。

(二)非选择题1. 阅读理解- 文章一:(文章内容)- 问题一:请概括文章的主旨大意。

- 问题二:请分析文章中第一段的作用。

- ...- 文章三:(文章内容)- 问题一:请分析文章中作者的观点。

- 问题二:请指出文章中使用的修辞手法。

2. 古文翻译- 1. 请将下列古文翻译成现代汉语。

- 2. 请将下列古文翻译成现代汉语。

3. 作文- 题目:请以“我眼中的北京”为题,写一篇不少于800字的议论文。

四、注意事项1. 请考生在答题卡上正确填写姓名、准考证号等信息。

2. 请考生在指定的答题区域内作答,超出答题区域的答案无效。

3. 请考生保持答题卡的整洁,不要折叠、涂改或损坏答题卡。

4. 请考生在考试结束前5分钟检查答题卡,确保所有答案都已正确填涂。

5. 考试结束后,请考生将试卷和答题卡一并上交。

2024届北京市东城区高三下学期一模试题

2024届北京市东城区高三下学期一模试题

2024届北京市东城区高三下学期一模试题一、单选题 (共6题)第(1)题关于天然放射现象,以下叙述正确的是( )A.衰变所释放的电子是原子核外的电子电离产生的B.在、、这三种射线中,射线的电离能力最强,射线的穿透能力最强C.铀核()衰变为铅核()的过程中,要经过2次衰变和4次衰变D.放射性物质的半衰期随环境温度的升高而变小第(2)题激光武器是用高能的激光对远距离的目标进行精确射击或用于防御导弹等的武器,具有快速、灵活、精确和抗电磁干扰等优异性能,在光电对抗、防空和战略防御中可发挥独特作用。

某激光器每分钟发射的光子数为n,发射激光的波长为,c表示真空中光速,h为普朗克常量,则激光器发射功率为( )A.B.C.D.第(3)题警报器固定于水平面上的A处并持续发出1000Hz的声波,某时刻一观察者经过B处,该观察者接收到的声波频率为1030Hz,则该观察者的运动情况可能是( )A.做匀速直线运动远离AB.做匀速直线运动接近AC.以A为圆心逆时针做匀速圆周运动D.以A为圆心顺时针做匀速圆周运动第(4)题硼中子俘获治疗技术(BNCT)的治疗原理是向患者体内注入含硼药剂,这种药剂对肿瘤细胞有很强的亲和力,当足够浓度的硼元素进入肿瘤细胞后,再用中子束照射肿瘤部位,中子被肿瘤细胞内的硼()俘获后,释放出射线Ⅰ和新的原子核,这种射线能使肿瘤细胞DNA双股螺旋断裂,从而消灭肿瘤细胞,并且射线的穿透距离均小于细胞半径,不会对相邻的正常细胞产生过多影响。

因此,BNCT疗法被认为是治疗肿瘤的新希望。

已知新核是,则射线Ⅰ应该是( )A.射线B.射线C.射线D.X射线第(5)题如图所示,闭合圆形线圈放在范围足够大的匀强磁场中,下列说法正确的是( )A.线圈向右平移,线圈中产生感应电流B.线圈向上平移,线圈中产生感应电流C.线圈以ab为轴转动,线圈中产生感应电流D.线圈以ab为轴转动,线圈中磁通量不变第(6)题实验室常用的弹簧测力计如图甲所示,弹簧一端固定在外壳上,另一端与有挂钩的拉杆相连,外壳上固定一个圆环,可以认为弹簧测力计的总质量主要集中在外壳(重量为G)上,弹簧和拉杆的质量忽略不计。

2023-2024学年北京市西城区九年级一模英语试卷(含详细答案解析)

2023-2024学年北京市西城区九年级一模英语试卷(含详细答案解析)

2023-2024学年北京市西城区九年级一模英语试卷一、单选题:本大题共12小题,共6分。

1.My sister likes drawing and ________ wants to be an artist in the future.A. sheB. heC. itD. they2.I like listening to music while exercising _______ the park.A. onB. underC. inD. to3.—Would you like more pizza, Linda?—No, thanks. The pizza is delicious ________ I'm full.A. ifB. butC. becauseD. or4.—_______ you read the sign across the street, Tom?—No, I can't.A. MustB. CanC. MayD. Mighto She is one of Chinese writers of the twentieth century.A. greatB. greaterC. greatestD. the greatest6.—_________ are you late? —Because I missed the early train.A. WhenB. WhatC. WhyD. Where7.—Where is Mary?—She ________ the teachers with the poster right now.A. is helpingB. helpedC. was helpingD. will help8.The students ________ a lot for the show since last Monday.A. have practicedB. practiceC. were practicingD. practiced9.When my friend called last night, I ________ plans for the May Day holiday.A. am makingB. have madeC. makeD. was making10.I'm on the school football team, and usually we ________ a match on Saturday.A. hadB. haveC. are havingD. have had11.The community library ________ in 2023.A. buildsB. is builtC. builtD. was built12.—Do you know ________? —Next Tuesday afternoon. We are looking forward to it.A. where we will have the school concertB. where will we have the school concertC. when we will have the school concertD. when will we have the school concert二、完形填空:本大题共8小题,共8分。

2024届北京市西城区高三下学期统一测试(一模)高效提分物理试卷(基础必刷)

2024届北京市西城区高三下学期统一测试(一模)高效提分物理试卷(基础必刷)

2024届北京市西城区高三下学期统一测试(一模)高效提分物理试卷(基础必刷)学校:_______ 班级:__________姓名:_______ 考号:__________(满分:100分时间:75分钟)总分栏题号一二三四五六七总分得分评卷人得分一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示,b是理想变压器原线圈的中心抽头,灯泡、的铭牌上均标注“,”字样,电流表为理想电表,从某时刻开始在原线圈c、d两端加上如图所示的交流电,当单刀双掷开关与b连接时,灯泡恰好正常发光,则( )A.理想变压器原副线圈匝数之比为B.1秒内流过灯泡的电流方向改变50次C.当单刀双掷开关与b连接时,向上移动滑片P,两灯泡均变暗D.当单刀双掷开关由b扳向a时,电流表的示数变大第(2)题对如图所示的图片、示意图或实验装置,下列判断准确无误的是( )A.甲图是小孔衍射的图样,也被称为“泊松亮斑”B.乙图是薄膜干涉的应用,用来检测平面的平整程度C.丙图是双缝干涉原理图,若P到、的路程差是半波长的奇数倍,则P处是亮纹D.丁图是薄膜干涉现象的实验装置图,在附有肥皂膜的铁丝圈上,出现竖直干涉条纹第(3)题霍尔元件广泛应用于生产生活中,有的电动自行车上控制速度的转动把手就应用了霍尔元件,这种转动把手称为“霍尔转把”。

“霍尔转把”内部有永久磁铁和霍尔器件等,截面如图。

开启电动自行车的电源时,在霍尔器件的上下面之间就有一个恒定电流,如图。

将“霍尔转把”旋转,永久磁铁也跟着转动,施加在霍尔器件上的磁场就发生变化,霍尔器件就能输出变化的电势差。

这个电势差是控制车速的,电势差与车速的关系如图。

以下叙述正确的是( )A.若霍尔元件的自由电荷是自由电子,则端的电势高于端的电势B.若改变霍尔器件上下面之间的恒定电流的方向,将影响车速控制C.其他条件不变,仅增大恒定电流,可使电动自行车更容易获得最大速度D.按第一张图顺时针均匀转动把手,车速增加得越来越快第(4)题如图1所示,一滑块置于长木板左端,木板放置在水平地面上。

【区级联考】北京市西城区2024届高三下学期4月统一测试(一模)理综高效提分物理试题(基础必刷)

【区级联考】北京市西城区2024届高三下学期4月统一测试(一模)理综高效提分物理试题(基础必刷)

【区级联考】北京市西城区2024届高三下学期4月统一测试(一模)理综高效提分物理试题(基础必刷)学校:_______ 班级:__________姓名:_______ 考号:__________(满分:100分时间:75分钟)总分栏题号一二三四五六七总分得分评卷人得分一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题下列划线上的数字指时间(即时间间隔)的是( )A.午休从11:30开始B.刘翔110米跨栏记录为12.88sC.某中学的作息表上写着,第三节:10:00-10:40D.中央电视台《新闻联播》栏目每天19:00准时播放第(2)题许多科学家在物理学发展过程中做出了重要贡献,下列说法正确的是( )A.亚里士多德认为重的物体与轻的物体下落得一样快B.伽利略认为物体下落的快慢是由它们的重量决定的C.开普勒通过第谷多年的观测数据最早提出了“日心说”D.卡文迪许通过扭秤实验测出了引力常量第(3)题如图所示,理想变压器原、副线圈匝数之比,定值电阻,滑动变阻器R2的最大值为10Ω,阻值恒定的小灯泡L 的规格为“6V 6W”,电流表是理想交流电表,输入端接入的交流电压,下列说法正确的是( )A.通过电流表的电流方向每秒钟改变20次B.小灯泡正常工作时,滑动变阻器的阻值为6ΩC.滑动变阻器阻值为6.5Ω时,变压器输出功率最大且为12.5WD.滑片自上而下滑动时,电流表示数先增大再减小第(4)题如图所示,在竖直平面内,直径为R的光滑半圆轨道和半径为R的光滑四分之一圆轨道水平相切于最低点A,两轨道均被固定,一个质量为m的小球(可视为质点),从A点沿切线向左以某一初速度进入半圆轨道,恰好能通过半圆轨道的最高点M,然后落在四分之一圆轨道上的N点,不计空气阻力,重力加速度大小为g,则下列说法正确的是( )A.M、N两点间的高度差为B.小球进入A点时的加速度大小为3gC.小球从M点到N点的运动轨迹是一段圆弧D.小球到达N点时的水平方向的分速度大于竖直方向的分速度第(5)题下列关于物理学发展史和单位制的说法正确的是()A.物理学家汤姆孙经过多次实验,比较准确地测定了电子的电荷量B.卡文迪许通过扭秤实验测量了静电力常量,并验证了库仑定律C.国际单位制中的七个基本单位是:kg、m、N、A、K、mol、cdD.功的单位可以用 kg·m2/s2 表示第(6)题一定质量的物体,下列说法正确的是( )A.动量变化时,动能可能不变B.动量变化时,速率一定变化C.速度变化时,动能一定变化D.动能变化时,动量可能不变第(7)题2022年2月15日,苏翊鸣在单板滑雪男子大跳台比赛中以总分277.5分夺得冠军,为中国代表团赢得本届冬奥会的第六枚金牌。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012城区一模单选分类练习时态题26. —Has Linda come back from Canada? 朝阳—Yes.She _____ there for eight years.A. has stayedB. staysC. stayedD. had stayed31. —I’m trying to find yesterday’s Beijing Morning Post. Have you seen it?石景山—I’m afraid that I it away. I thought you had finished reading it.A. threwB. had thrownC. throwD. has thrown22. Liu Fang is a company CEO now, but sheas a teacher in a middle school for three years. 石景山A. workedB. has workedC. worksD. had worked21. ---Did you happen to hear the recent news? 西城---Yes, Alice ______ the gold medal in the speech contest, which I find hard to believe.A. winsB.wonC. had wonD. will win27. —That’s a great sweater. I have never seen anything like it be fore. 东城— You think so? My grandmother ______ it for me.A. makesB. madeC. has madeD. had made25. I _____ toward the door to go outside when suddenly Jim opened it unexpectedly. 西城A. walkedB. was walkingC. had walkedD. hadbeen walking32. David ________ a customer when the fire started. 丰台A. servedB. was servingC. had servedD. wouldserve21. ---What happened to Bill? 海淀---He _____ really fast when suddenly he ran headfirst into a parked car.A. had runB. was runningC. has runD. has been running24. ---Do we have to wear our school uniforms tomorrow? 海淀---I think so. We _____ the coming-of-age ceremony in the afternoon.A. will be attendingB. have attendedC. attendD. attended28. —Bob is always complaining about not having any money. 西城-- The problem is that he doesn’t work hard and never ________.A. doesB. hadC. hasD. did31. ––Have you seen my e-mail about our TESLproject? 朝阳––Yes.Luckily I checked my e-mails yesterday. Normally I ______ my e-mailbox for days.A. haven’t openedB. didn’t openC. hadn’t openedD. don’t open32. Most of the telephone lines ______ in the hurricane last night, and so today it’s almost impossibleto get through to anybody. 西城A. destroyedB. had destroyedC. were destroyedD. had been destroyed32. Although the EiffelTower _____ to last for 20 years, it is still standing today. 海淀A. has designedB. had designedC. is designedD. wasdesigned34. Jane was elected chairman of the committee. This is the first time that a woman ______ to the post.朝阳A. has appointedB. had appointedC. has been appointedD. had been appointed24. — What are your rules for carry-on luggage, Madam? 东城— You ______ only one piece of luggage on the plane, Sir.A. allowB. allowedC. are allowedD. were allowed21. Since the end of the war, many of the priceless antiques ________ to their rightful owners. 丰台A. have returnedB. had returnedC. had been returnedD. have been returned25. My brother is tall with curly hair, wearing a pair of glasses. You ______ him very easily. 东城A. recognizedB. have recognizedC. will recognizeD. hadrecognized30. —Jack, do you know anything about Doctor Brown? 东城— I ______ to him for years. I don’t see how anyoneelse could do better.A. wentB.will goC. had goneD. have been going23. I’m sorry you ______ so long, but it’ll still be some time before Jim gets back.丰台A. waitB. waitedC. had waitedD. have been waiting26. —Guess what? I happened to meet Johnson in the street last Friday. 石景山—If my memory serves me correctly, you each other for ages.A. haven’t seenB. hadn’t seenC. didn’t seeD. don’t see27. When she entered the police station, she recognized the man who _____ her at once.丰台A. was attackingB. attackedC. had attackedD.would attack28. Jonny, I can’t believe how much you have changed! You _____ at least one foot! 海淀A. growB. grewC. have grownD. aregrowing23. — I thought you would join in my birthday party tomorrow. 石景山— I would if I to attend an important meeting.A. don’t haveB. didn’t haveC. will not haveD. would not have32. —I don’t think I want to live in the dormitory next year.东城—But check out the cost first. I wouldn’t be surp rised if you ______ your mind.A. changedB. will changeC. have changedD. would have changed30. We shouldn’t have come north for Christmas vacation. If we ______, we wouldn’t be stuck in the snow right now. 西城A. wasn’tB. didn’tC. hadn’tD. weren’t30. —Excuse me, visiting hours are over. It’s time for you to leave.丰台—I’m sorry, I didn’t know the time or I ________ earlier.A. will leaveB. would leaveC. had leftD. would have left23. Thank you so much! But for your text message, I _____ home without my ID card this morning.海淀A. would have leftB. wouldleaveC. had leftD. left28. —The wind is always blowing here.丰台—How I wish it ________ today.A. won’t blowB. didn’t blowC. doesn’t blowD. isn’t blowing非谓语26.Some seemingly harmless blogs might become harmful when _____ on the Internet by millions ofpeople. 海淀A. to readB. readingC. readD. being read25. With the victory at the French Open, Li Na has reached NO. 4 in the world,________ the previous Asian record. 丰台A. equaledB. equalingC. to have equaledD. having equaled25. The heavy snow lasted for a week, _____ a serious traffic confusion in the whole area. 朝阳A. causingB. causedC. having causedD. being caused32. Not with the quality of your goods, I will certainly not advise others to buy them. 石景山A. being impressedB. impressingC. impressedD. having impressed23. Many things such as going abroad and owning a car, _____ impossible in the past, are now verycommon. 西城A. being consideredB. to be consideredC. consideringD. considered28. ______ equal opportunities, both Frank and Billy may accomplish the task. 东城A. GivenB. GivingC. To giveD. To be given27. The tea house situated near platform 6 is now offering free cups of tea to those _____ for theXi’an train. 西城A. waitingB. waitC. to waitD. waited33. Programmes, ________ to bring the old and the young together, are growing inpopularity all over the world.A. designedB. to be designedC. designingD. having designed26. The question ______ at the next meeting will be a hard one. 东城A. to discussB. to be discussedC. discussingD. being discussed28. Prices climbed high in 2011, with the monthly CPI figure an 11-year-high of 6.9 percent inNovember. 石景山A. hitB. to hitC. to have hitD. hitting33. Many of the students who hope to enter the university will be disappointed because only one third______ for admission will be accepted. 东城A. applyB. to applyC. appliedD. applying29. The seats ______ for children and seniors are right at the front of the buses.朝阳A. reservedB. reservingC. to reserveD. having reserved33. Have you ever picked some beautiful vegetables for your dinner saladthat they are extremelybitter? 石景山A. foundB. findingC. to findD. find28. ______ valuable experience, he asked to be sent to remote areas. 朝阳A. To gainB. GainingC. GainedD. Being gained34. ______ the housing price, several measures have been adopted in the last two years. 海淀A. LoweringB. Having loweredC. To lowerD. To have lowered从句25. In English class, our teacher often creates an environment _____ we are given the opportunity tosolve problemsourselves. 海淀A. whenB. whichC. whereD. that30. There are many examples throughout the world ______ talented players are ignored by theirnational managers. 朝阳A. whenB. whereC. whichD. whose27. Huge amounts of oil have been found on the Gulf of Mexico floor, the effects of _____ haven’tdisappeared yet.石景山A. itB. thatC. whichD. whom35. Sam remembered several occasions in the past ______ he had experienced a similar feeling. 东城A.whatB. whichC. whereD. why24. Most people go to the theatre not to see a play _____ plot is complicated, but to listen to brilliantdialogues between actors. 西城A. whereB. whatC. whichD. whose26. Our usual walk is to or from the subway, ________ is how we get to work.丰台A. whichB. whereC. asD. that23. Several times Kelly heard her name called but when she turned around to see ______ it was, no one was in the room. 东城A. whoB. whereC. whyD. what26. ______ made things worse, he said, was that his roommate never took part in any of the cleaningwork. 西城A. WhatB. WhichC. ThatD. Who31. In order to assess ______ the treatment will fit your lifestyle, please take a moment to answer afew questions about yourself. 西城A. whatB. howC. whyD. where22. In college, you will discover ________ learning is about, from teacher-taught to self-learner. 丰台A. whichB. thatC. whatD. where33. He is quite strange, for everything he does is opposite to ___ is considered normal behavior. 朝阳A. whetherB. thatC. whatD. which29. Once in the forest, you ought to remain you are waiting for help. 石景山A. losing。

相关文档
最新文档