水源热泵系统
水源热泵工作原理

水源热泵工作原理水源热泵是一种利用地下水、湖泊、河流或者地表水等水源作为热源或者冷源的热泵系统。
它可以将水源中的热能转移到室内空间供暖或者制冷使用。
水源热泵系统由室内机组、水泵、水源井、水源侧换热器、蒸发器、压缩机、冷凝器、膨胀阀等组成。
工作原理如下:1. 蒸发器:水源热泵系统中的蒸发器是热泵循环的起始点。
在蒸发器中,制冷剂(普通为制冷剂R410A)吸收室外水源的热能,使水源的温度下降,同时制冷剂变成低温低压气体。
2. 压缩机:低温低压气体经过蒸发器后进入压缩机,压缩机将气体压缩成高温高压气体。
3. 冷凝器:高温高压气体进入冷凝器,在冷凝器中与室内空气进行换热,释放出热量。
制冷剂从高温高压气体转变为高温高压液体。
4. 膨胀阀:高温高压液体通过膨胀阀进入水源侧换热器,膨胀阀的作用是降低制冷剂的压力和温度,使制冷剂变成低温低压液体。
5. 换热器:水源侧换热器是将水源中的热能传递给制冷剂的部份。
低温低压液体经过换热器与水源进行换热,吸收水源的热能,使水源的温度上升,同时制冷剂变成低温低压气体。
6. 室内机组:低温低压气体再次进入蒸发器,与室内空气进行换热,释放出热量,供暖或者制冷室内空间。
水源热泵工作原理的关键在于制冷剂的循环。
通过压缩机的工作,制冷剂在高温高压状态下能够吸收和释放热量,实现热能的转移。
同时,通过膨胀阀的作用,制冷剂的压力和温度得到降低,使其能够吸收更多的热能。
水源热泵系统的优势在于可以利用水源中丰富的热能,具有高效节能、环保、稳定可靠的特点。
它可以在冬季供暖、夏季制冷,并且在运行过程中不产生烟尘和废气,对环境污染较小。
此外,由于水源的稳定性,水源热泵系统的运行效果也较为稳定可靠。
需要注意的是,水源热泵系统的安装和运行需要一定的技术要求和设备投资。
对于不同地区的水源条件和室内空间需求,需要进行合理的设计和选择,以达到最佳的使用效果。
总结起来,水源热泵系统利用水源作为热源或者冷源,通过制冷剂的循环工作原理,将水源中的热能转移到室内空间供暖或者制冷使用。
水源热泵工作原理

水源热泵工作原理
水源热泵(Water Source Heat Pump)是一种利用水作为热源
或冷源的热泵系统。
它运用了热泵的基本工作原理,通过循环流体介质来提取、传递和释放热能,以达到供暖、供冷或制热水的目的。
水源热泵的工作原理可分为以下几个步骤:
1. 水循环供热:当需要供热时,水源热泵通过水循环系统将地下水或其他水源抽取上来。
这些水源通常具有较为稳定的温度,可以作为热源供给。
抽取的水进入热泵室外机。
2. 热交换:在室外机内,水与热泵回路中的循环制冷剂进行热交换。
循环制冷剂的特性使其在低温下从液态转变为气态,吸收热量。
这使得水的温度上升,并将热能传递到水中。
3. 循环制冷剂冷却:经过热交换后,循环制冷剂气态化为低温高压气体。
该气体被压缩机压缩成高温高压气体。
4. 室内传热:高温高压气体通过室内机中的热交换器,与需要供热的空气进行热交换。
热交换器将热能传递给室内空气。
5. 制冷循环:当需要制冷时,水源热泵两个室内机互为功能与室外机的功能交换。
通过以上的工作原理,水源热泵可以在冬季提供供暖,通过将热能从水中提取到室内空气;而在夏季则可以提供空调效果,
通过将热能从室内空气释放到水中。
该系统具有高效、环保、节能的特点,能够为用户提供舒适的室内环境。
水源热泵工作原理

水源热泵工作原理水源热泵是一种利用地下水、湖泊、河流等水源作为热源或者冷源的热泵系统。
它通过能量转换的方式,将水源中的热能转移到室内供暖或者制冷。
工作原理如下:1. 蒸发器:水源热泵系统中的蒸发器是热交换器的一部份,它通过与水源接触,吸收水源中的热能。
当水源中的热量传递到蒸发器中的制冷剂(普通为制冷剂R410A)时,制冷剂从液态变为气态。
2. 压缩机:气态的制冷剂被压缩机吸入,压缩机将制冷剂压缩,使其温度和压力升高。
这个过程需要耗费一定的能量,通常使用电能来驱动压缩机。
3. 冷凝器:压缩机将高温高压的制冷剂送入冷凝器,冷凝器是另一个热交换器,通过与室内空气或者水接触,将制冷剂中的热量传递给室内环境。
制冷剂从气态变为液态。
4. 膨胀阀:冷凝器中的液态制冷剂通过膨胀阀进入蒸发器,膨胀阀的作用是降低制冷剂的压力和温度,使其能够再次吸收水源中的热能。
5. 室内热交换:经过膨胀阀后,制冷剂再次进入蒸发器,与室内空气或者水接触,吸收室内的热量。
这样循环往复,实现了室内的供暖或者制冷。
水源热泵系统的工作原理可以简单概括为热能的吸收、压缩、释放和膨胀的过程。
通过这个过程,系统能够从水源中吸收热能,将其转移到室内,实现室内的舒适温度控制。
水源热泵系统的优势包括:1. 高效节能:水源热泵系统利用地下水或者湖泊等水源的稳定温度,无需像空气源热泵那样受到气温波动的影响,能够更稳定地提供热量或者冷量,从而实现高效节能。
2. 环保可持续:水源热泵系统不产生直接的燃烧排放物,减少了对环境的污染。
同时,由于水源的温度相对稳定,系统的运行效果也更加稳定可靠。
3. 多功能运行:水源热泵系统既可以提供供暖,也可以提供制冷,满足不同季节和不同地区的需求。
4. 长寿命稳定性:水源热泵系统的主要设备寿命较长,且运行稳定可靠。
水源热泵系统的设计寿命普通可达20年以上。
需要注意的是,水源热泵系统的性能和效果受到水源的温度、水质、水量等因素的影响。
水源热泵工作原理

水源热泵工作原理水源热泵是一种利用水源进行热能交换的热泵系统,它可以在冬季提供供暖,夏季提供制冷,并且具有高效节能的特点。
下面将详细介绍水源热泵的工作原理。
1. 工作原理概述水源热泵系统由室内机、室外机、水源和管道系统组成。
室外机通过水源进行热能交换,将水源中的热能吸收或者释放到室内机中,从而实现供暖或者制冷的目的。
2. 热泵循环过程水源热泵系统的工作过程可以分为四个步骤:蒸发、压缩、冷凝和膨胀。
2.1 蒸发在蒸发器中,制冷剂(一种特殊的工质)从液态转变为气态,吸收室内机内的热能。
室内机中的制冷剂与室内空气接触,通过吸热的方式将室内空气的热量吸收。
2.2 压缩蒸发后的气态制冷剂被压缩机抽入,压缩机对气体进行压缩,使其温度和压力升高。
这个过程需要消耗一定的功率,但同时也使制冷剂携带的热量增加。
2.3 冷凝高温高压的气态制冷剂进入冷凝器,通过与水源进行热交换,将热量释放到水源中。
冷凝器中的制冷剂冷却并凝结成液态。
2.4 膨胀冷凝后的液态制冷剂通过膨胀阀进入蒸发器,压力降低,使得制冷剂重新变为低温低压的气态,循环过程重新开始。
3. 水源热泵的热能交换过程水源热泵通过水源进行热能交换,实现室内空气的供暖或者制冷。
水源可以是地下水、湖泊、河流等。
3.1 地下水源热泵地下水源热泵系统通过井水进行热能交换。
在供暖季节,地下水中的热能被吸收到室内机中,提供供暖;在制冷季节,室内机中的热能通过地下水释放,实现制冷。
3.2 湖泊或者河流水源热泵湖泊或者河流水源热泵系统通过水体中的热能进行热能交换。
类似地下水源热泵,供暖季节时,水体中的热能被吸收到室内机中;制冷季节时,室内机中的热能通过水体释放。
4. 水源热泵的优势水源热泵相比传统的供暖和制冷系统具有以下优势:4.1 高效节能水源热泵利用水源中的热能进行热能交换,不需要燃烧燃料,因此能够大幅度降低能源消耗,节约能源。
4.2 环保水源热泵不会产生废气、废水和噪音污染,对环境友好。
水源热泵系统介绍

INTEODUCTION TO W ATER-SOUECE HEAT PUMP SYSTEM一、水源热泵技术的概念和工作原理水源热泵技术是利用地球表面浅层水源如地下水、河流和湖泊中吸收的太阳能和地热能而形成的低位热能资源,并采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移的一种技术。
地球表面浅层水源如深度在1000米以内的地下水,地表的河流和湖泊和海洋中,吸收了太阳进入地球的相当的辐射能量,并且水源的温度一般都十分稳定。
水源热泵机组工作原理就是在夏季将建筑物中的热量转移到水源中,由于水源温度低,所以可以高效地带走热量,而冬季,则从水源中提取能量,由热泵原理通过空气或水作为载冷剂提升温度后送到建筑物中。
通常水源热泵消耗1KW的能量,用户可以得到4KW以上的热量或冷量。
水源热泵机组工作的原理示图如下:水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。
闭式系统是指在水侧为一组闭式特循环的换热套管,该组套管一般水平或垂直埋于地下或湖水海水中,通过与地壤或海水换热来实现能量转移。
(其中埋于土壤中的系统又称土壤源热泵,埋于海水中的系统又称海水源热泵)。
开式系统是指从地下抽水或地表抽水后经过换热器直接排放的系统。
与锅炉(电、燃料)和空气源热泵的供热系统相比,水源热泵具明显的优势。
锅炉供热只能将90%~98%的电能或70~90%的燃料内能转化为热量,供用户使用,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量,由于水源热泵的热源温度全年较为稳定,一般为10~25℃,其制冷、制热系数可达3.5~4.4,与传统的空气热源泵相比,要高出40%左右,其运行费用为普通中央空调的50~60%,因此,近十几年来,尤其是近五年来,水源热泵空调系统在北美如美国、加拿大及中北欧如瑞士、瑞典等国家取得了较快的发展,中国的水源热泵市场也日趋活跃,可以预计,该项技术将会成为21世纪最有效的供热和供冷空调技术。
水源热泵工作原理

水源热泵工作原理水源热泵是一种利用水源作为热源或冷源的热泵系统,通过循环利用水源中的热能或冷能来实现供暖或制冷的目的。
水源热泵工作原理是一种环保、节能的供暖制冷技术,下面将详细介绍水源热泵的工作原理。
一、水源热泵的基本原理1.1 蒸发器:水源热泵系统中的蒸发器是将水源中的热能吸收到制冷剂中的关键部件。
1.2 压缩机:压缩机将蒸发器中吸收到的热能加热,使其升温、升压,成为高温高压的气态制冷剂。
1.3 冷凝器:冷凝器将高温高压的气态制冷剂释放热量,使其冷却、凝结成为液态制冷剂。
二、水源热泵的循环过程2.1 蒸发器吸收水源中的热能,制冷剂蒸发成为低温低压的气态制冷剂。
2.2 压缩机将低温低压的气态制冷剂压缩成为高温高压的气态制冷剂。
2.3 冷凝器释放高温高压的气态制冷剂的热量,使其冷却、凝结成为液态制冷剂。
三、水源热泵的供暖原理3.1 利用水源中的地热能源,通过水源热泵系统,将地热能源转化为热水供暖。
3.2 通过水源热泵系统中的蒸发器、压缩机、冷凝器循环过程,实现对室内空气的供暖效果。
3.3 水源热泵系统具有高效节能、环保无污染等优点,逐渐成为供暖领域的主流技术。
四、水源热泵的制冷原理4.1 利用水源中的冷能源,通过水源热泵系统,将冷能源转化为制冷效果。
4.2 通过水源热泵系统中的蒸发器、压缩机、冷凝器循环过程,实现对室内空气的制冷效果。
4.3 水源热泵系统在制冷领域也有广泛应用,具有高效节能、环保无污染等优点。
五、水源热泵的应用领域5.1 住宅供暖:水源热泵系统适用于家庭住宅的供暖,取代传统的锅炉供暖系统。
5.2 商业建筑:水源热泵系统适用于商业建筑的供暖、制冷,满足大面积建筑的需求。
5.3 工业应用:水源热泵系统可以应用于工业生产中的供暖、制冷,满足工业生产的需求。
综上所述,水源热泵系统通过循环利用水源中的热能或冷能,实现供暖或制冷的目的,具有高效节能、环保无污染等优点,逐渐成为供暖制冷领域的主流技术。
水源热泵系统

水源热泵系统
水源热泵系统是一种利用地下水、湖水、江河水等水源进
行能量交换的热泵系统。
其工作原理是通过水源热泵将水
源中的低温热能吸收并利用,提供供暖、制冷、热水等功能。
水源热泵系统由水源热泵机组、水源井或水池、水泵及管
道等组成。
水源热泵机组通过水泵将水源中的水抽入机组,然后通过换热器将水源中的低温热能转移到制冷剂上。
制
冷剂在压缩机的作用下被压缩、升温,释放高温热能,然
后通过换热器将热能传递给供暖或制冷系统。
水源热泵系统的优点包括高效节能、环保、可调节性强等。
由于水源热泵系统利用了地下水、湖水、江河水等水源中
的低温热能,能够在较低的外界温度下工作,同时因为水
的热容量较大,导热性好,传热效果较好,因此能效比较高。
另外,水源热泵系统不需要燃烧能源,不产生废气、
废水、废温等污染物,具有较好的环保性。
同时,水源热
泵系统还具有较强的可调节性,可以根据需求随时调节供
暖或制冷的温度和风量。
但水源热泵系统也存在一些限制和挑战。
首先,对于一些地区没有适合的水源供给的情况下,无法采用水源热泵系统。
其次,水源热泵系统的安装需要较大的空间和一定的建设投资。
最后,水源热泵系统在运行过程中需要注重水源的保护和管理,避免污染和水源的枯竭。
总的来说,水源热泵系统是一种有效的利用水源热能的热泵系统,可以提供高效节能的供暖、制冷、热水等服务,具有较好的环保性和可调节性。
然而,其安装和运行也需要考虑一些限制和挑战。
水源热泵工作原理

水源热泵工作原理水源热泵是一种利用水体作为热源或者热汇的热泵系统,通过循环工作介质在水源热泵系统中的蒸发、压缩、冷凝和膨胀等过程,实现热能的转移和利用。
其工作原理主要包括四个步骤:蒸发、压缩、冷凝和膨胀。
1. 蒸发:水源热泵系统中的工作介质(普通为制冷剂)从液态转变为气态,吸收水体中的热量。
这一过程发生在蒸发器中,蒸发器通过与水体直接接触,将水体中的热量传递给工作介质。
2. 压缩:蒸发后的气态工作介质被压缩机吸入,并在压缩机内被压缩成高温高压气体。
压缩机的工作需要消耗电能,将气体压缩使其温度升高。
3. 冷凝:高温高压气体进入冷凝器,在冷凝器中与水体进行热交换。
冷凝器中的水体吸收了工作介质的热量,使其冷却并转变为液态。
同时,工作介质由气态转变为液态。
4. 膨胀:液态工作介质通过膨胀阀进入蒸发器,压力降低,温度下降。
在蒸发器中,液态工作介质再次蒸发,吸收水体中的热量,从而完成一个循环。
水源热泵的工作原理可以通过一个闭合的热力循环来解释。
通过不断循环的过程,水源热泵系统能够将低温水体中的热量转移到高温的热汇(如供暖系统),从而实现能量的转移和利用。
水源热泵系统的热源可以是地下水、湖泊、河流等水体,而热汇可以是供暖系统、热水系统等。
水源热泵系统的优势在于其高效节能和环保性能。
相较于传统的供暖方式,水源热泵系统能够利用水体中的低温热量,通过循环工作介质的方式将其转化为高温热量,从而实现供暖和热水的需求。
与传统的燃煤、燃气等供暖方式相比,水源热泵系统减少了对化石燃料的依赖,减少了温室气体的排放,具有显著的环保效益。
此外,水源热泵系统还具有稳定可靠、运行安全、寿命长等优点。
通过合理设计和运行维护,水源热泵系统能够稳定地提供热能,满足不同季节和不同地区的供暖和热水需求。
总结起来,水源热泵的工作原理是通过循环工作介质在蒸发、压缩、冷凝和膨胀等过程中,实现热能的转移和利用。
它利用水体作为热源或者热汇,通过热力循环将水体中的低温热量转移到高温的热汇,实现供暖和热水的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水源热泵系统1)、作为最佳的中央空调系统方案——水源中央空调系统,在具体的工程项目中能否合理地应用,主要取决电源条件和水源条件。
2)、一般来说:水源条件取决四个因素:(1)、水源水的获取(2)、水量(3)、水温(4)、水质3)、水源水的获取:(1)、对于地表水、湖水、海水、江河水、城市废水、工业废水等水源的利用,政府一般不进行干预,有的水源水(如城市污水、工业废水)政府还有鼓励利用的优惠政策。
(2)、对于地下水,作为国家的资源之一,政府对开采与使用有各种限制政策和法规。
要获取地下水时,要通过有关政府主管部门的批准方可。
水资源管理部门各地设置不同,大体上有如下部门进行管理:规划局、市政局、地矿局、节水办等。
4)、水源水量:水源水量是否满足具体工程的要求,与建筑物冷(热)负荷的大小、空调系统的运行方式、空调系统设计方案(例如是否采用蓄水池、是否采用辅助加热或辅助冷却方式)和水源水的温度等因素有关应通过全面的分析、精确的计算和合理设计解决。
5)、水源水温:一般来讲,水源中央空调系统对水源水温度要求的范围是;制冷情况下,进蒸发器的水温为10~22℃;制冷情况下,进冷凝器的水温为18-40℃。
6)、水质:对于水源中央空调系统主机而言,进入其冷凝器、蒸发器的水质有较高要求,如果水源水质达不到要求时,可采取各种处理手段来满足水源中央空调主机对水质的要求。
因此,一般来讲,水源水质不是影响水源中央空调系统应用的主要因素。
2、水井工艺在地下水取水构筑物中最常见的型式是管井,一般由出井孔、井壁管、滤水管、沉砂管组成。
图3-2为浅井井身结构的示意图。
井孔用钻机钻成,井壁管安装在非含水层处,用以支撑井孔孔壁,防止坍塌,井管与孔口周围用粘土或水泥等不透水材料封闭,防止地面污水渗入:滤水管安装在含水层处,除有井壁管作用外其主要作用是滤水挡砂;井管最底部为沉砂管,用以沉积水泥沙,延长管井使用寿命。
地下水取水构筑物的形式及适用范围表3-11)、井口装置、井泵和泵房(1)、井口装置管井竣工后要安装井口装置,装置一般固定在浇注的混凝土基础上。
井口装置可以自行焊制,也可向有关水泵厂家购买。
(2)、井泵管井所用水泵有两种类型:深井泵和潜水泵。
深井泵的电动机在地面,井内有一个长传动轴,因而对井筒垂直度要求高,转速大多在1440r/min;潜水泵底部安装有绝缘防水电动机,浸没于井水之中。
潜水泵对井筒垂直度要求低。
其转速较高,2850r/min。
在同样安装条件下,潜水泵扬程比深井泵高得多。
同一扬程下,潜水泵体积比深井泵小。
潜水泵价格高,但深井泵安装和维修工作量大。
目前,大多数管井采用潜水泵。
潜水泵下放深度应在动水位之下5米处,安装要平稳,泵体应居中。
一般依据井管内径、流量和扬程要求,按照生产厂家提供的样本选配适合的水泵,再根据所需电功率选择电机、配套电缆。
水泵扬程应包括井内动水位到机房地面高度、管道阻力、水泵管道阻力和设备扬程。
(3)、泵房为保护管井,一般在管井井处建筑泵房。
泵房可建成地面泵房,也可建成地下泵房。
后者不占用地面空间,便于地面绿化美化。
第四节水源系统设计和施工中应注意的问题2)、供水水源的可行性研究既拟采用水源中央空调系统时,应先调查了解工程场地的供水水源条件,或向当地水资源管理部门咨询,或请专业队伍进行必要的水文地质调查或水文地球物理勘察,了解是否有可利用的水源,通过可行性研究,确定利用地表水或是地下水的供水水源方案。
3)、地表水源工程设计与施工拟选择地表水水源时,要考虑季节性水温变化因素对机组制冷量和制热量的影响,水源对水源中央空调系统需水量的保证率。
设计修建取水构筑物时,应注意取水构筑物标高与洪水季节(或枯水季节)水源水位变动的关系。
供水管和排水管可直埋于同一管沟之中,两管间距应大干10厘米。
如水源水经机组换热后仍排回水源处(如河流),排水口位置应置于取水口的下游处。
4)、管井工程的设计拟选择地下水源和管并取水方案时,对于规模较大的工程所涉及的抽水井和回灌井井位、井距、井数、井径、井深和井身结构等要素,应根据所需水量和地下水回灌需要,结合场地环境和水文地质条件,因地制宜地设计确定。
井位布置要合理,井距控制在制冷(或采暖)期间不产生地下水井间干扰。
井深要大于变温带深度,以保证冬季水源水温度>8℃。
为防止回灌井堵塞,确保水源系统长期稳定供水,抽水井和回灌井要互相切换使用,因而要求各个井的井深和井身结构相近。
井中滤水管和滤网应有一定强度,能承受往复水流的变换压力。
5)、管井施工质量必须十分重视管井施工质量问题,应找专业队伍施工,做好每一工艺环节,建成优质井,才能获得较大出水量和优质水。
一口优质井可以使用二十多年。
成井质量不好,不仅影响井的寿命,还影响到该井的取水和回灌效果,最终影响到水源中央空调系统能否正常工作和制热或制冷效率。
甲方应参与最后阶段的抽水试验工作,认定可信和准确的结果数据。
管井竣工后,应由甲方、施工单位和行政主管部门或监理会同到现场,按合同规定的水量、水温和水质要求进行工程质量验收。
7、水质处理与节水技术1)、水处理技术如果水源的水质不适宜水源中央空调机组使用时,可以采取相应的技术措施进行水质处理,使其符合机组要求。
在水源系统中经常采用的水处理技术有以下几种:(1)、除砂器与沉淀池当水源水中含砂量较高时,可在水系统中加装旋流除砂器,降低水中含砂量,避免机组和管网遭受磨损。
国产旋流除砂器占地面积较小,有不同规格,可按标准处理流量选配型号和台数。
如果工程场地面积较大,也可修建沉淀池除砂。
沉淀池费用比除砂器低,但占地面积大。
(2)、冷水过有些水源,特别是地表水浑浊度较大,用于回灌时容易造成管井滤水管和含水层堵塞,影响供水系统的稳定性和使用寿命。
对浑浊度大的水源,可以安装净水器进行过滤。
(3)、电子水处理仪在水源中央空调系统运行过程中,冷凝器中的循环水温度较高,特别是在冬季制热工况下。
水温常常在50℃以上,水中的钙、镁离子容易析出结垢,影响换热效果。
通常在冷凝器循环水管路中安装电子水处理仪,防止管路结垢。
同时,还可利用电子水处理议处理藻类或细菌。
(4)、板式换热器有些水源水矿化度较高,对金属的腐蚀性较强,如直接进入机组会因腐蚀作用减少机组使用寿命。
如果通过水处理的办法减少矿化度,费用很大。
通常采用加装板式换热器中间换热的方式,把水源水与机组隔离开,使机组彻底避免了水源水可能产生的腐蚀作用。
当水源水的矿化度小于350mg/L、含砂最小于1/百万时,水源系统可以不加换热器,采用直供连接。
当水源水矿化度为 350-500l mg/L时,可以安装不锈钢板式换热器。
当水源水矿化度>500 mg/L时,应安装抗腐蚀性强的钛合金板式换热器。
如水源水温度不宜直接进机组时,也可应用换热器将水温调节为适用于进机组的温度。
如果机房面积大,也可安装容积式换热器,费用比换热器少。
(5)、除铁设备水源中央空调系统也可以用来供应生活热水。
但有时水源水中含铁较多,虽然对制热没有影响,洗浴时对人体健康也不会造成损害,但溶于水中的铁容易生成氢氧化铁沉积在卫生洁具上,形成有损视觉感官的黄褐色污渍。
因此,当水中含铁量>0.33mg/L时,应在水系统中安装除铁处理设备。
2)、节电技术水资源费和井泵运行费往往是水源中央空调系统运行费的最大开支,节约电费与合理开采地下水以保护水资源,是水源系统设计的重要内容之一。
应用混水器和变频器是常用的节水节电措施。
(1)、混水器为了节约水源水用量,可在系统中安装混水设备,一般采用容积式混水器,也可采用射流式混水器,前者体积大费用低,后者体积小费用高。
(2)、变频调控器为了节约水源用水量和用电量,可以安装变频调控器控制水源水泵,以取得减少耗水量和耗电量的效果。
一般首先按井泵电机容量确定变频器大小由变频器、压力或温度传感器和P.I.D控制器等部件组成恒压闭环境控制方式,在预先设定供水压力工况下运行。
可以按照白天或夜晚平均气温变化分段改变频率,调节水泵抽水量,也可用温度参数控制变频器,改变水泵转数调节泵量。
8、井水回灌1)、人工回灌及其目的为保证水源中央空调系统长期安全运厅,需要稳定的地下水源供给。
为此,通常借助某种工程措施,将地面水注入地下含水层中去,即所谓地下水人工补给(回灌)。
这样做可以补充地下水源,调节水位,维持储量平衡:可以回灌储能,提供冷热源,如冬灌夏川,夏灌冬用;可以保持含水层水头压力,防止地面沉降。
所以,为了保护地下水资源,确保水源中央空调系统长期可靠地运行,水源中央空调系统工程中,一般应采取回灌措施。
2)、回灌水的水质目前,尚无回灌水水质的国家标准,各地区和各部门制定的标准不尽相同。
应注意的原则是:回灌水水质要好于或等于原地下水水质,回灌后不会引起区域性地下水水质污染。
实际,水源水经过机组后,只是交换了热量,水质几乎没有发生变化,回灌不会引起地下水污染。
3)、回灌类型根据工程场地的实际情况,可采用地面渗入补给、诱导补给和注入补给。
注入式回灌一般利用管井进行,常采用无压(自流)、负压(真空)和加压(正压)回灌等方法。
无压自流回灌适于含水层渗透性好,井中有回灌水位和静止水位差。
真空负压回灌适于地下水位埋藏深(防水位埋深在10米以下),含水层渗透性好.加压回灌适用于地下水位高,透水性差的地层。
对于抽灌两用井,为防止井间互相干扰,应控制合理井距。
4)、回灌量回灌量的大小与水文地质条件、管井质量、回灌方法等有关,其中水文地质条件是影响回灌量的主要因素。
一般说,出水量大的井回灌量也大。
在基岩裂隙含水层和岩溶含水层中回灌,在一个回灌年度内,回灌水位和单位回灌量变化都不大;在砾卵石含水层中,单位回灌量约为单位出水量的80%以上。
在粗砂含水层中,单位回灌量约为单位出水量的50-70%。
中细砂含水层中,单位回灌量约为单位出水量的30~50%。
抽灌水量之比是确定抽灌井数的主要依据。
5)、回扬预防和处理井管堵塞主要采用回扬的方法,即在回灌井中开泵抽排水中的堵塞物。
为清除堵塞含水层和井管的杂质,在进行回灌后必须经常进行回扬。
每口回灌井回扬次数和回扬持续时间主要由含水层颗粒大小和渗透性而定。
在岩溶裂隙含水层进行管井回灌,长期不回扬,回灌能力仍能维持现状。
在松散粗大颗粒含水层进行管井回灌,回扬时间约一周l~2次;在中、细颗粒含水层里进行管井回灌,回扬间隔时间应进一步缩短。
对细颗粒含水层来说,这一点尤为重要。
通过实验证实:在几次回灌之间进行回扬与连续回灌不进行回扬相比,前者能恢复回灌水位,保证回灌井正常工作。
在回灌过程中,掌握适当回扬次数和时间,才能获得好的回灌效果,如果怕回扬多占时间,少回扬甚至不回扬,结果管井和含水层受堵,反而得不偿失。
回扬持续时间以浑水出完,见到清水为止。