正比例函数2

合集下载

《正比例函数》2

《正比例函数》2

2, 2,
所以k=-2.
课后练习
1.一般地,形如____y_=__k_x____(k 是常数,k≠0)的函数,叫做正 比例函数,其中___k___叫做比例系数.
2.(2019·梧州)下列函数中,正比例函数是( A )
A.y=-8x
B.y=8x
C.y=8x2
D.y=8x-4
3.已知函数 y=(m+2)x|m|-1 是正比例函数,则 m 的值为( B ) A.-2 B.2 C.1 D.-1
合作探究
知识点 1 正比例函数的定义
问题 京沪高速铁路全长1 318 km.设列车的平均速度为
300 km/h考虑以下问题: (1)乘京沪高铁列车,从始发站北京南站到终点站上海虹
桥 站,约需多少小时(结果保留小数点后一位)? (2)京沪高铁列车的行程y(单位:km)与运行时间t (单位:
h) 之间有何数量关系? (3)京沪高铁列车从北京南站出发2.5 h后,是否已经过了
3 一个正比例函数的图象过点(2,-3),它的解析
式为( A )
A.y=-.y=
2 3
x
D.y=-
2 3
x
归纳新知
1 知识小结
1.理解正比例函数的定义时应注意三点: (1)自变量x的指数为1; (2)比例系数k不等于0; (3)函数解析式等号右边的式子为整式.
2.求正比例函数解析式的步骤: (1)设函数解析式为y=kx(k≠0); (2)把已知条件代入函数解析式,列方程求出k的值; (3)将求得的待定系数k的值代回所设的函数解析式.
上面问题中,表示变量之间关系的函数解析式分别为:
5下c列m问,题高中为,x c变3m量,之体【间积的为中对yc应m考关3.系·是上函数海关系】吗?下如列y关于x的函数中,是正比例函数

18.2正比例函数2

18.2正比例函数2

18.2 正比例函数(一)正比例函数的概念学习目标:理解正比例、正比例函数的概念;掌握正比例函数图像的作法;掌握正比例函数的性质。

会建正比例函数模型解决相关应用问题。

学习过程:一、知识梳理1、正比例:如果两个变量的每一组对应值的比是一个常数(不等于0),就说这两个变量成正比例。

用x,y表示两个变量,就是yx=k,或表示为y=kx。

其中k是不等于零的常数。

2、正比例函数:解析式为形如y=kx(k是不等于零的常数)的函数叫正比例·函数。

其中k叫比例系数。

其定义域是一切实数。

求出了k的值就求出了正比例函数解析式。

二、例题精选例1、判断下列函数是否为正比例函数,如果是,比例系数是多少?○1y=-13x ○2y=2x-3 ○3y=2x3○4y=3x○5y=x2○6y=ax(a为常数)例2、(1)已知y=(2-3t)x4+3t是正比例函数,求函数解析式;并求x=1-2时函数y的值。

(2)已知y=((a+2)x+a2-4是正比例函数,求a的值。

点评:正比例函数y=kx中,比例系数k是不等于零的常数;x的次数为一次。

例3、y与x-1成正比例,当x=4时,y=-12.写出y与x间的函数关系式;并求y=20时x 的值。

练习一1、 正比例函数y=kx 中y=-2,则k=_____;2、若f (x )=(m-3)x 是正比例函数,则m 的取值应满足条件_________;3、已知正比例函数满足x=2时,y=-6.,求,(1)函数解析式;(2)x=-2、0时,求y 的值;(3)y=-3,0,时,求x 的值。

4、已知y=(k+2)2k -3x 是正比例函数,求(1)函数解析式;(2)当-12≤y ≤6时,x 的范围。

5、已知f (x )=(k-2)2k +k-1x +k+2是正比例函数,求k 的值和函数解析式。

6、已知y=12y -y ,且21y x 与成正比例,y 2与x+1成正比例;当x=-3时,y=19,当x=-1时y=2。

课件4:19.2.1正比例函数(2)

课件4:19.2.1正比例函数(2)

则m的取值范围是( B)
A. m 1 B. m 1
2. 函数 y 5x , y 2 x ,
C.
y
m
x,
1
y
D.1
m 1
x 中,
7
y随x的增大而增大的是 y 5x , y x

y随x的增大而减小的是 y 2x ,
y 1 x 7
.
3.已知正比例函数 y kx (k 2 2) 的图像,
例1:用“两点法”画出函数y 3x 和 y 3x
的图像,并回答下列问题。
图像
(1)函数 y 3x的图像过点(0, 0 )和
( 2 ,6),且 y 随x 的增大而 增大 ;
(2)函数 y 3x 的图像过第__二__、__四____象限,
且 y随 x的增大而 减小 。
练习:
1.正比例函数 y (m 1)x 的图象经过一、三象限,
第 十 九 章


次 函

y 随 x 的增大而减小,求 k 的值。 解:由正比例函数的定义可知:k 2 2 0, k 2
又y 随 x 的增大而减小,故 k<0 所以 k 2 4. 已知正比例函数 y (m 1) x|m|的图象过第
二、四象限,求m的值。 解:由正比例函数的定义可知: | m | 1, m 1
又图像过第二、四象限,故 m 1 0, m 1 所以 m 1
画出正比例函数 y 2x和 y 2x 的图像
画图
解析式
y kx(k 0)
k 0
k 0
图像
图像恒过原点
(0, 0)
性质
⑴图像过一、三象限
⑵ y随 x的增大而
增大(上升趋势)
⑴图像过二、四象限

正比例函数2(应用)

正比例函数2(应用)

正比例函数2(应用)一.解答题(共40小题)1.如图,已知正比例函数y=kx的图象经过点A,点A在第四象限,过A作AH ⊥x轴,垂足为H,点A的横坐标为4,且△AOH的面积为6.(1)求正比例函数的解析式.(2)在x轴上是否存在一点P,使△AOP的面积为9?若存在,求出点P的坐标;若不存在,请说明理由.2.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.3.已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.4.已知某正比例函数的图象经过点A (1,3),求此正比例函数的解析式.5.定义运算“※”为:a※b=(1)计算:3※4;(2)画出函数y=2※x的图象.6.已知y=y1+y2,其中y1与x成正比例,y2与x﹣2成正比例.当x=﹣1时,y=2;当x=3时,y=﹣2.求y与x的函数关系式,并画出该函数的图象.7.已知正比例函数图象上一个点A在x轴的下侧,y轴的右侧,距离x轴4个单位长度,距离y轴2个单位长度,求该正比例函数的表达式.8.已知y与x成正比例,且x=﹣2时y=4,(1)求y与x之间的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a.9.已知正比例函数y=(3k﹣1)x,若y随x的增大而增大,求k的取值范围.10.一个正比例函数的图象经过点A(﹣2,3),点B(a,﹣3),求a的值.11.已知y与x+1成正比例关系,当x=2时,y=1,求:当x=﹣3时y的值.12.已知两个正比例函数y1=k1x与y2=k2x,当x=2时,y1+y2=﹣1;当x=3时,y1﹣y2=12.(1)求这两个正比例函数的解析式;(2)当x=4时,求的值.13.①y与x成正比例,且x=﹣2时y=12,求此函数解析式.②x、y是变量,且函数y=(k+1)x|k|是正比例函数,求K的值.14.已知正比例函数经过点,求此函数的解析式.15.若y与x+2成正比例,且x=5时,y=﹣21,求:(1)y与x之间的函数关系式.(2)它的截距.16.已知点(,1)在函数y=(3m﹣1)x的图象上,(1)求m的值,(2)求这个函数的解析式.17.已知y+4和x成正比例,且x=3时y=1求x=﹣5时y的值.18.已知:如图,正比例函数的图象经过点P和点Q(﹣m,m+3),求m的值.19.当k为何值时,y=(k2+2k)x是正比例函数.20.已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.21.已知函数,当k为何值时,正比例函数y随x的增大而减小?22.已知y与x成正比例,若y随x的增大而减小,且其图象经过点A(1,﹣m)和B(m,﹣1),请写出y与x之间的函数关系式.23.正比例函数y=kx的图象经过点P,如图所示,求这个正比例函数的解析式.24.已知正比例函数的图象经过点(﹣3,6).(1)求这个正比例函数的解析式;(2)若这个图象还经过点A(a,8),求点A的坐标.25.已知y与x成正比例,且x=6时,y=﹣3,求y与x的关系式.26.已知正比例函数y=kx经过点(﹣1,2),求这个正比例函数的解析式.27.已知y﹣1与x+2成正比,且当x=1时,y=7,求当x=﹣1时y的值.28.正比例函数y=kx中,当x增加2时,y增加3,求该正比例函数的解析式.29.若正比例函数y=(a﹣1)的图象经过点(﹣2,b2+5),求a,b的值.30.设有三个变量x、y,z,其中y是x的正比例函数,z是y的正比例函数,(1)求证:z是x的正比例函数;(2)如果z=1时,x=4,求出z关于x的函数关系式.31.已知y是x的正比例函数,当x=﹣3时,y=12.(1)求y关于x的函数解析式;(2)当时的函数值.32.当k为何值时,函数y=(k2+2k)是正比例函数?33.正比例函数的图象经过点(2,﹣4)、(a,4),求这个函数的解析式和a的值.34.在平面直角坐标系中,点A坐标为(1,0),在直线y=x上取点P,使△OPA是等腰三角形,求所有满足条件的点P坐标.35.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.36.当m为何值时函数y=(m+2)是正比例函数.37.已知y是x的正比例函数,且函数图象经过点A(﹣3,6).(1)求y与x的函数关系式;(2)当x=﹣6时,求对应的函数值y;(3)当x取何值时,y=.38.已知正比例函数y=kx(k≠0)的图象经过第一、三象限,且过点(k,k+2),求这个正比例函数的解析式.39.在物理学中,重力的表达关系式是G=mg(G代表重力,g代表重力常数10,m代表物体的质量)(1)在这个正比例函数表达式中,是自变量,是因变量.(2)若一个物体的重力为100N,它的质量是kg(3)若甲乙两个物体总质量为9kg,乙的质量是甲的2倍,那么甲物体受到的重力是多少?40.已知y与x﹣3成正比例,当x=4时,y=3.①求这个函数解析式.②求当x=3时y的值.正比例函数2(应用)参考答案与试题解析一.解答题(共40小题)1.如图,已知正比例函数y=kx的图象经过点A,点A在第四象限,过A作AH ⊥x轴,垂足为H,点A的横坐标为4,且△AOH的面积为6.(1)求正比例函数的解析式.(2)在x轴上是否存在一点P,使△AOP的面积为9?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)先利用三角形面积公式求出AH得到A点坐标,然后利用待定系数法求正比例函数解析式;(2)设P(t,0),利用三角形面积公式得到•|t|•3=9,然后解关于t的绝对值方程即可.【解答】解:(1)∵点A的横坐标为4,且△AOH的面积为6,∴•4•AH=6,解得AH=3,∴A(4,﹣3),把A(4,﹣3)代入y=kx得4k=﹣3,解得k=﹣,∴正比例函数解析式为y=﹣x;(2)存在.设P(t,0),∵△AOP的面积为9,∴•|t|•3=9,∴t=6或t=﹣6,∴P点坐标为(6,0)或(﹣6,0).【点评】本题考查了待定系数法求正比例函数的解析式:设正比例函数解析式为y=kx,然后把函数图象上一个已知点的坐标代入求出k即可得到正比例函数解析式.也考查了三角形面积公式.2.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.【分析】(1)根据题意求得点A的坐标,然后利用待定系数法求得正比例函数的解析式;(2)利用三角形的面积公式求得OP=5,然后根据坐标与图形的性质求得点P的坐标.【解答】解:(1)∵点A的横坐标为3,且△AOH的面积为3∴点A的纵坐标为﹣2,点A的坐标为(3,﹣2),∵正比例函数y=kx经过点A,∴3k=﹣2解得,∴正比例函数的解析式是;(2)∵△AOP的面积为5,点A的坐标为(3,﹣2),∴OP=5,∴点P的坐标为(5,0)或(﹣5,0).【点评】本题考查了正比例函数图象的性质、待定系数法求正比例函数的解析式.注意点P的坐标有两个.3.已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.【分析】依据正比例函数的定义得到|m+2|=1且m+3≠0,求得m的值即可.【解答】解:依题意有|m+2|=1且m+3≠0,解得m=﹣1.故m的值是﹣1.【点评】本题主要考查的是正比例函数的定义,依据正比例函数的定义列出方程组是解题的关键.4.已知某正比例函数的图象经过点A (1,3),求此正比例函数的解析式.【分析】设这个正比例函数的解析式是y=kx,再将A (1,3)代入求得k即可.【解答】解:设正比例函数的函数解析式是y=kx,∵A(1,3)在y=kx上,则k=3,∴这个函数解析式是y=3x.【点评】此题主要考查了用待定系数法求正比例函数的解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.5.定义运算“※”为:a※b=(1)计算:3※4;(2)画出函数y=2※x的图象.【分析】(1)根据新运算法则得出3※4的值;(2)分类讨论:当x≥0时和x<0时,分别写出y与x的关系式,再画出图象.【解答】解:(1)∵4≥0,∴3※4=3×4=12;(2)当x≥0时,y与x的关系式为y=2x;当x<0时,y与x的关系式为y=﹣2x;列表如下:x…﹣2﹣1012…y…42024…描点、连线,如图所示.【点评】本题考查了正比例函数的图象,解题的关键是:(1)读清题意,掌握新运算法则;(2)分x≥0和x<0找出y与x的关系式.6.已知y=y1+y2,其中y1与x成正比例,y2与x﹣2成正比例.当x=﹣1时,y=2;当x=3时,y=﹣2.求y与x的函数关系式,并画出该函数的图象.【分析】根据题意分别设出y1,y2,代入y=y1+y2,表示出y与x的解析式,将已知两对值代入求出k与b的值,确定出解析式.【解答】解:根据题意设y1=k1x,y2=k2(x﹣2),即y=y1+y2=k1x+k2(x﹣2),将x=﹣1时,y=2;x=3时,y=﹣2分别代入得:,解得:k1=﹣,k2=﹣,则y=﹣x﹣(x﹣2)=﹣x+1.即y与x的函数关系式为y=﹣x+1;画出该函数的图象为【点评】此题考查了待定系数法求正比例函数解析式,熟练掌握待定系数法是解本题的关键.7.已知正比例函数图象上一个点A在x轴的下侧,y轴的右侧,距离x轴4个单位长度,距离y轴2个单位长度,求该正比例函数的表达式.【分析】由点A所在的位置即可得出点A的坐标,再利用待定系数法即可求出正比例函数的表达式,此题得解.【解答】解:∵点A在x轴的下侧,y轴的右侧,距离x轴4个单位长度,距离y轴2个单位长度,∴点A的坐标为(2,﹣4).设正比例函数的表达式为y=kx(k≠0),将点(2,﹣4)代入y=kx中,﹣4=2k,解得:k=﹣2,∴该正比例函数的表达式为y=﹣2x.【点评】本题考查了待定系数法求正比例函数的解析式以及点的坐标,根据点的坐标利用待定系数法求出正比例函数的表达式是解题的关键.8.已知y与x成正比例,且x=﹣2时y=4,(1)求y与x之间的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a.【分析】(1)根据题意可设y=kx,再把当x=﹣2时,y=4代入可得k的值,进而得到函数解析式;(2)将点的坐标代入正比例函数的解析式求得a的值即可.【解答】解:(1)∵y与x成正比例,∴设y=kx,∵当x=﹣2时,y=4,∴4=﹣2k,k=﹣2,∴y与x的函数关系式为y=﹣2x,(2)∵点(a,﹣2)在函数关系式为y=﹣2x的图象上,∴﹣2a=﹣2,∴a=1.【点评】本题考查了待定系数法求正比例函数解析式,关键是正确掌握正比例函数的定义:y=kx(k≠0).9.已知正比例函数y=(3k﹣1)x,若y随x的增大而增大,求k的取值范围.【分析】根据正比例函数图象的增减性可求出k的取值范围.【解答】解:根据y随x的增大而增大,知:3k﹣1>0,解得k>.故k的取值范围为k>.【点评】考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.10.一个正比例函数的图象经过点A(﹣2,3),点B(a,﹣3),求a的值.【分析】设正比例函数解析式为y=kx,把A坐标代入求出k的值,确定出解析式,再将B坐标代入求出a的值即可.【解答】解:设y=kx,把A(﹣2,3)代入﹣2k=3,解得:k=﹣1.5,∴y=﹣1.5x,把B(a,﹣3)代入y=﹣1.5x,解得:a=2.【点评】此题考查了待定系数法求正比例函数解析式,熟练掌握待定系数法是解本题的关键.11.已知y与x+1成正比例关系,当x=2时,y=1,求:当x=﹣3时y的值.【分析】设y=k(x+1),将x=2,y=1代入可求得k的值,继而可得出函数解析式,再将x=﹣3代入可求出y的值.【解答】解:y=k(x+1),将x=2,y=1代入得:1=3k,解得:k=,∴函数解析式为:y=x+,当x=﹣3时,y=﹣3×+=﹣.【点评】本题考查待定系数法求函数解析式,属于基础题,注意掌握待定系数法的运用.12.已知两个正比例函数y1=k1x与y2=k2x,当x=2时,y1+y2=﹣1;当x=3时,y1﹣y2=12.(1)求这两个正比例函数的解析式;(2)当x=4时,求的值.【分析】(1)利用题意列方程组,然后解方程组求出k1与k2的值,从而得到两个正比例函数的解析式;(2)先计算出自变量为4时所对应的两个函数值,然后计算的值.【解答】解:(1)根据题意得,解得,所以两正比例函数的解析式分别为y1=x,y2=﹣x;(2)当x=4时,y1=x=7,y2=﹣x=﹣9,所以=﹣=.【点评】本题考查了待定系数法求正比例函数的解析式.13.①y与x成正比例,且x=﹣2时y=12,求此函数解析式.②x、y是变量,且函数y=(k+1)x|k|是正比例函数,求K的值.【分析】①利用待定系数法把x=﹣2时y=12代入正比例函数y=kx中计算出k即可得到解析式;②根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,即可得出k的值.【解答】解:①∵正比例函数y=kx中x=﹣2时y=12,∴12=﹣2•k,解得:k=﹣6,∴这个正比例函数的解析式为:y=﹣6x;②解:根据正比例函数的定义可得:k+1≠0,|k|=1,解得;k=1.【点评】本题主要考查了正比例函数的定义及待定系数法确定正比例函数的解析式,难度不大,注意基础概念的掌握.14.已知正比例函数经过点,求此函数的解析式.【分析】直接设正比例函数的解析式为:y=kx,将点,代入求出即可.【解答】解:设正比例函数的解析式为:y=kx,(k>0),∵正比例函数过点,∴,解得:,∴正比例函数的解析式为:y=6x.【点评】此题主要考查了待定系数法求正比例函数解析式,利用图象上点的性质得出是解题关键.15.若y与x+2成正比例,且x=5时,y=﹣21,求:(1)y与x之间的函数关系式.(2)它的截距.【分析】(1)设y=k(x+2),将x=5,y=﹣21,代入可得出y与x之间的函数关系式.(2)令x=0可得出截距.【解答】解:(1)设y=k(x+2),x=5,y=﹣21代入得:﹣21=7k,解得:k=﹣3,∴y与x之间的函数关系式为:y=﹣3x﹣6;(2)令x=0,解得:y=﹣6,∴截距为﹣6.【点评】本题考查待定系数法求函数解析式,难度不大,注意掌握截距的概念.16.已知点(,1)在函数y=(3m﹣1)x的图象上,(1)求m的值,(2)求这个函数的解析式.【分析】(1)根据图象上点的坐标性质,将点(,1)代入正比例函数y=(3m ﹣1)x,求得m值即可;(2)根据m的值,即可得出这个函数的解析式;【解答】(1)解:∵点(,1)在函数y=(3m﹣1)x的图象上,∴将点(,1)代入正比例函数y=(3m﹣1)x,即:1=(3m﹣1)×,整理得:3m=3,解得:m=1;∴m的值为1;(2)解:∵m的值为1;∴代入y=(3m﹣1)x,即可求出,y=(3×1﹣1)x=2x,∴这个函数的解析式为:y=2x.【点评】此题考查了待定系数法求正比例函数的解析式以及正比例函数图象上点的坐标都满足该函数的解析式,此题比较简单作题时一定要认真仔细不要犯错.17.已知y+4和x成正比例,且x=3时y=1求x=﹣5时y的值.【分析】先根据题意设出关系式,将x=3时y=1代入,求得k的值,然后把x=﹣5代入,求出y的值.【解答】解:∵y+4和x成正比例,∴y+4=kx(k≠0),∵x=3时,y=1,∴1+4=3k,k=,∴y=x﹣4.当x=﹣5时,∴y=×(﹣5)﹣4=﹣.【点评】本题考查了正比例函数的定义,已知自变量的值求得函数的值.18.已知:如图,正比例函数的图象经过点P和点Q(﹣m,m+3),求m的值.【分析】首先利用待定系数法求得正比例函数的解析式为y=﹣2x.然后将点Q 的坐标代入该函数的解析式,列出关于m的方程,通过解方程来求m的值.【解答】解:设正比例函数的解析式为y=kx(k≠0).∵它图象经过点P(﹣1,2),∴2=﹣k,即k=﹣2.∴正比例函数的解析式为y=﹣2x.又∵它图象经过点Q(﹣m,m+3),∴m+3=2m.∴m=3.【点评】此类题目考查了灵活运用待定系数法建立函数解析式,然后将点Q的坐标代入解析式,利用方程解决问题.19.当k为何值时,y=(k2+2k)x是正比例函数.【分析】根据正比例函数的系数≠0,且自变量的次数为1解答.【解答】解:根据题意得:k2﹣3=1①,k2+2k≠0②.由①得:k=±2.当k=﹣2时,k2+2k=0,y不是正比例函数;当k=2时,k2+2k=8,即y=8x是正比例函数,∴当k=2时,函数y=(k2+2k)是正比例函数.【点评】解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.20.已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.【分析】设y1=kx2,y2=a(x﹣2),得出y=kx2+a(x﹣2),把x=1,y=5和x=﹣1,y=11代入得出方程组,求出方程组的解即可,把x=2代入函数解析式,即可得出答案.【解答】解:设y1=kx2,y2=a(x﹣2),则y=kx2+a(x﹣2),把x=1,y=5和x=﹣1,y=11代入得:,k=2,a=﹣3,∴y与x之间的函数表达式是y=2x2﹣3(x﹣2),把x=2代入得:y=2×22﹣3×(2﹣2)=8.【点评】本题考查了用待定系数法求出正比例函数的解析式的应用,主要考查学生的计算能力.21.已知函数,当k为何值时,正比例函数y随x的增大而减小?【分析】先根据正比例函数的定义列出关于k的不等式组,求出k取值范围,再根据此正比例函数y随x的增大而减小即可求出k的值.【解答】解:∵此函数是正比例函数,∴,解得k=±2,∵此正比例函数y随x的增大而减小,∴k﹣1<0,∴k<1,∴k=﹣2.【点评】本题考查的是正比例函数的定义及性质,根据正比例函数的定义列出关于k的不等式组是解答此题的关键.22.已知y与x成正比例,若y随x的增大而减小,且其图象经过点A(1,﹣m)和B(m,﹣1),请写出y与x之间的函数关系式y=﹣x.【分析】因为y与x成正比例,y随x的增大而减小,所以可设y=kx(k<0),又因其图象经过点A(1,﹣m)和B(m,﹣1),所以有﹣m=k,﹣1=mk,进而可利用方程求出m、k,最终解决问题.【解答】解:∵y与x成正比例,y随x的增大而减小,∴设y=kx(k<0),∵其图象经过点A(1,﹣m)和B(m,﹣1),∴﹣m=k且﹣1=mk,∴﹣1=﹣m2,m=1,k=﹣1或m=﹣1,k=1,∵k<0,∴m=1,k=﹣1,∴y与x之间的函数关系式为:y=﹣x.【点评】此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题,但要注意运用y随x的变化规律确定值的取舍.23.正比例函数y=kx的图象经过点P,如图所示,求这个正比例函数的解析式.【分析】把P点坐标代入正比例函数y=kx中,即可得到k的值,进而得到正比例函数的解析式.【解答】解:∵正比例函数y=kx的图象经过点P(2,3)∴3=2k,解得k=,∴正比例函数的解析式为:y=x.【点评】此题主要考查了待定系数法求正比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.24.已知正比例函数的图象经过点(﹣3,6).(1)求这个正比例函数的解析式;(2)若这个图象还经过点A(a,8),求点A的坐标.【分析】(1)设解析式为y=kx,再把(﹣3,6)…代入函数解析式即可算出k的值,进而得到解析式;(2)把(a,8)代入(1)计算出的解析式,即可算出a的值,进而得到点A 的坐标.【解答】解:(1)设解析式为y=kx,∵正比例函数的图象经过点(﹣3,6),∴6=﹣3k,解得k=﹣2,∴y=﹣2x;(2)把(a,8)代入y=﹣2x,得8=﹣2a,解得a=﹣4,故点A的坐标是(﹣4,8).【点评】此题主要考查了待定系数法求正比例函数解析式,关键是掌握凡是图象经过的点,必能满足解析式.25.已知y与x成正比例,且x=6时,y=﹣3,求y与x的关系式.【分析】设函数解析式为y=kx,将x=6时,y=﹣3代入解析式即可求出k的值,从而得到y与x的关系式.【解答】解:设函数解析式为y=kx,将x=6,y=﹣3代入解析式得,﹣3=6k,k=﹣,则函数解析式为y=﹣x.【点评】本题考查了待定系数法求函数解析式,设出正比例函数y=kx是解题的关键.26.已知正比例函数y=kx经过点(﹣1,2),求这个正比例函数的解析式.【分析】利用待定系数法把(﹣1,2)代入正比例函数y=kx中计算出k即可得到解析式.【解答】解:∵正比例函数y=kx经过点(﹣1,2),∴2=﹣1•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x.【点评】此题主要考查了待定系数法求正比例函数解析式,题目比较简单,关键是能正确代入即可.27.已知y﹣1与x+2成正比,且当x=1时,y=7,求当x=﹣1时y的值.【分析】设y﹣1=k(x+2),把x=1,y=7代入,求出k的值,得到y与x的函数关系式,再把x=﹣1代入,即可求出对应的y值.【解答】解:设y﹣1=k(x+2),把x=1,y=7代入,得:7﹣1=k(1+2),解得:k=2.∴y﹣1=2(x+2),即y=2x+5.当x=﹣1时,y=2×(﹣1)+5=3.【点评】先设出满足题目条件的解析式,再运用图象上的点与解析式的关系来确定系数是解决本题的关键.28.正比例函数y=kx中,当x增加2时,y增加3,求该正比例函数的解析式.【分析】根据题意可得y+3=k(x+2),再由y=kx可得3=2k,解方程可得k的值,然后可得正比例函数解析式.【解答】解:∵当x增加2时,y增加3,∴y+3=k(x+2),y+3=kx+2k,∵y=kx,∴3=2k,解得:k=,∴正比例函数解析式为y=x.【点评】此题主要考查了待定系数法求正比例函数的解析式.关键是根据等量关系得到3=2k.29.若正比例函数y=(a﹣1)的图象经过点(﹣2,b2+5),求a,b的值.【分析】首先利用正比例函数的定义求得a的值,从而确定解析式,然后将点的坐标代入求得b值即可.【解答】解:∵y=(a﹣1)是正比例函数,∴a2﹣3=1且a﹣1≠0,解得:a=2或﹣2∵b2+5>0∴点(﹣2,b2+5)在第二象限∴a=﹣2∴解析式y=﹣3x,过点(﹣2,b2+5),∴b2+5=6∴b=±1【点评】本题考查了正比例函数的性质,正比例函数y=kx(k≠0),k>0时,图象在一三象限,呈上升趋势,当k<0时,图象在二四象限,呈下降趋势.30.设有三个变量x、y,z,其中y是x的正比例函数,z是y的正比例函数,(1)求证:z是x的正比例函数;(2)如果z=1时,x=4,求出z关于x的函数关系式.【分析】(1)分别设出两函数解析式,联立即可;(2)将z=1,x=4代入z=knx,求出kn即可.【解答】解:(1)设y=kx(k≠0),z=ny(n≠0),则有z=knx,故z是x的正比例函数;(2)将z=1,x=4代入z=knx得,1=4kn,解得:kn=,则z=x.【点评】本题考查了正比例函数的定义,列出解析式即可解答.31.已知y是x的正比例函数,当x=﹣3时,y=12.(1)求y关于x的函数解析式;(2)当时的函数值.【分析】(1)由题意可设y=kx(k≠0).把x、y的值代入该函数解析式,通过方程来求k的值;(2)把x的值代入(1)中的函数式即可求得相应的y值.【解答】解:(1)由题意可设y=kx(k≠0).则12=﹣3k,解得,k=﹣4,所以y关于x的函数解析式是y=﹣4x;(2)由(1)知,y=﹣4x,当x=﹣时,y=﹣4×(﹣)=2.即当时的函数值是2.【点评】本题考查了待定系数法求正比例函数解析式.此题实际上是利用代入法求得的系数k的值.32.当k为何值时,函数y=(k2+2k)是正比例函数?【分析】根据正比例函数的定义可得k2+k﹣1=1且k2+2k≠0,再解即可.【解答】解:由题意得:k2+k﹣1=1且k2+2k≠0,解得:k=1.【点评】此题主要考查了正比例函数的定义,关键是掌握正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.33.正比例函数的图象经过点(2,﹣4)、(a,4),求这个函数的解析式和a的值.【分析】设正比例函数解析式为y=kx(k≠0),再把点(2,﹣4)代入即可求出k的值,进而得出正比例函数的解析式,把点(a,4)代入正比例函数的解析式,求出a的值即可.【解答】解:设正比例函数解析式为y=kx(k≠0)∵正比例函数的图象经过点(2,﹣4)∴﹣4=2×k,即k=﹣2∴正比例函数解析式为y=﹣2x∵正比例函数的图象经过点(a,4)∴4=﹣2×a,即a=﹣2.【点评】本题考查的是用待定系数法求正比例函数的解析式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.34.在平面直角坐标系中,点A坐标为(1,0),在直线y=x上取点P,使△OPA是等腰三角形,求所有满足条件的点P坐标.【分析】根据等腰三角形的腰长不明确,所以分①OP=OA,②AP=OA,③线段OA的垂直平分线与直线的交点,三种情况进行讨论求解.【解答】解:如图所示①在直线y=x上作OP=OA,可得符合条件的P1、P2点,P1坐标为(﹣,﹣),P2(,),②以A为圆心,1为半径作弧交直线y=x于点P3,点P3符合条件,P3坐标为(,),③线段OA的垂直平分线交直线y=x于点P4,点P4符合条件,P4点坐标为(,).故答案为:P1(﹣,﹣),P2(,),P3(,),P4(,).【点评】本题考查了正比例函数图形的性质与等腰三角形的判定,根据腰长的不确定性,注意分情况进行讨论.35.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.【分析】(1)由点A的纵坐标、点A所在的象限结合△AOH的面积为3,可求出点A的坐标,再根据点A的坐标利用待定系数法,可求出正比例函数的表达式;(2)设点P的坐标为(a,0),根据△AOP的面积为5,即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点A在第四象限,点A的横坐标为3,且△AOH的面积为3.∴点A的纵坐标为﹣2,∴点A的坐标为(3,﹣2).将点A(3,﹣2)代入y=kx,﹣2=3k,解得:k=﹣,∴正比例函数的表达式为y=﹣x.(2)设点P的坐标为(a,0),则S=|a|×|﹣2|=5,△AOP解得:a=±5,∴在x轴上能找到一点P,使△AOP的面积为5,此时点P的坐标为(﹣5,0)或(5,0).【点评】本题考查了待定系数法求正比例函数解析式以及三角形的面积,解题的关键是:(1)根据三角形的面积找出点A的坐标;(2)利用三角形的面积找出关于a的含绝对值符号的一元一次方程.36.当m为何值时函数y=(m+2)是正比例函数.【分析】直接利用正比例函数的定义分析得出即可.【解答】解:根据题意,得:,由①,得:m=2或m=﹣2,由②,得:m≠﹣2,∴m=2,即当m=2时函数y=(m+2)是正比例函数.【点评】此题主要考查了正比例函数的定义,正确得出关于m的等式是解题关键.37.已知y是x的正比例函数,且函数图象经过点A(﹣3,6).(1)求y与x的函数关系式;(2)当x=﹣6时,求对应的函数值y;(3)当x取何值时,y=.【分析】(1)设正比例函数解析式为y=kx,把点的坐标代入计算即可得解;(2)把x=﹣6代入解析式解答即可;(3)把y=代入解析式解答即可.【解答】解:(1)设正比例函数解析式为y=kx,∵图象经过点(﹣3,6),∴﹣3k=6,解得k=﹣2,所以,此函数的关系式是y=﹣2x;(2)把x=﹣6代入解析式可得:y=12;(3)把y=代入解析式可得:x=﹣.【点评】本题考查了待定系数法求正比例函数解析式,是求函数解析式常用的方法,一定要熟练掌握.38.已知正比例函数y=kx(k≠0)的图象经过第一、三象限,且过点(k,k+2),求这个正比例函数的解析式.【分析】根据正比例函数的性质得k>0,再把(k,k+2)代入y=kx得到关于k 的一元二次方程,解此方程确定满足条件的k的值,则可得到正比例函数解析式.【解答】解:∵正比例函数y=kx(k≠0)的图象经过第一、三象限∴k>0,把(k,k+2)代入y=kx得k2=k+2,整理得k2﹣k﹣2=0,解得k1=2,k2=﹣1,∴k=2,∴这个正比例函数的解析式为y=2x.【点评】考查了待定系数法求正比例函数的解析式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.39.在物理学中,重力的表达关系式是G=mg(G代表重力,g代表重力常数10,m代表物体的质量)(1)在这个正比例函数表达式中,m是自变量,G是因变量.(2)若一个物体的重力为100N,它的质量是10kg(3)若甲乙两个物体总质量为9kg,乙的质量是甲的2倍,那么甲物体受到的重力是多少?【分析】(1)根据函数关系式中自变量与因变量的关系就可以得出G是m的函数进而得出m是自变量,G是因变量;(2)将G=100代入关系式G=10m,求出m的值即可;(3)设甲的质量是xkg,则乙的质量为2xkg,建立方程求出甲的质量,在代入解析式G=10m就可以求出结论.【解答】解:由题意,得(1)重力的表达关系式是G=mg,在这个正比例函数表达式中,m是自变量,G 是因变量.故答案为:m,G;(2)∵G=10m.∴G=100时,100=10m,∴m=10kg.故答案为:10;(3)设甲的质量是xkg,则乙的质量为2xkg,由题意,得。

课件3:19.2.1正比例函数(2)

课件3:19.2.1正比例函数(2)
(1)求滑车滑行的路程S(米)和滑行时间t(分) 之间的关系和自变量t取值范围;
(2)画出这个函数的图象
(3)根据图象说明当t 增大时S 随着增大还是减小?
一、今天的收获是什么?
二、有什么疑问的地方?
三、注意: 1、实际问题求出的函数要注意自变量的取值范围 2、画实际问题的函数图象时,两轴的意义如果不 同,单位长度可以不同。



19.2.1正比例函数(2)





1.平面直角坐标系
y
第二象限 第一象限
,
,
第三象限
o
x 第四象限
,
,
坐标轴上 的点不属 于任何象 限
直角坐标平面内任意一点都有唯一确定的坐标(x,y) 与之对应,反过来,以任意给定的一对有序数对(x,y) 为坐标,都可以在直角坐标平面内确定一个点
练 (1)判断下列各点分别在哪个象限. 一 ( 2, 3), (5, 6.8), (a2 1, 4), (b│ , b│) 练 (2( ) 2s 1, 3 s)在第二象限,则
y=2x
x 1 23
请你动手画一画
在同一直角坐标系下作出下列函数图象
y x,
y
xHale Waihona Puke y xy1
01
图象有什么共同点?
yx x
正比例函数y= kx (k≠0) 的图象是一条直线
经过原点(0,0)和点(1,k)的一条直线。 那么,画正比例函数的图象,只要取上述两点就可以 了.
y y= kx (k>0) k
s的取值范围是 ___________
2.解析式形如y=kx(k≠0)的函数叫做正比例函数
例1 画正比例函数 y =2x 的图象

正比例函数(2)

正比例函数(2)

∴2k=-6,
k =-3。
∴函数解析式为y=-3x.
总结
一般地,正比例函数 y=kx (k是常数, k0 ) 的图象是一条经过原点的直线,我们称它为直线 y=kx .当k>0时,直线y=kx经过第 一、三象限,从 左向右上升,即y随x的增大而增大;当k<0时,直 线y=kx经过第二、四象限,从左向右下降,即y随 着x的增大而减小.
14.2 正比例函数(2)
一般地,形如y=kx(k是常数,k≠0)的函数, 叫做正比例函数,其中k叫做比例系数.
比例系数 X的正比例函数
y = k x
自变量
(k≠0的常数)
记住:自变量的指数为1,比例系数 k≠0
画出正比例函数
y 2 x 与y=-2x的图象:
列表:
x
3 2
1
2
2 0
0 0
1
2
-2
2
3
y=2x 6 4
Y=-2x
4
-4
6
-6
6
4
描Байду номын сангаас: 连线:
y 2 x
的图象.
得出结论: 正比例函数 y=kx (k是常数, k≠0 ) 的图象是一条经过原点的直线,我们 称它为直线 y=kx。
怎样画正比例函数的图像最简单?如何描点最方便?
经过原点与(1,k)的直线是正比例函数y=kx (k是常数,k ≠0)的图象, 由于两点确定一条直线,画正比例函数图象时,我们只需描点(0,0)和 点 (1,k ),过这两点做直线即可.
练一练 画出下列函数的图像
y=1/2x y=-1/2x
观察
比较两个函数的相同点与不同点.
归纳

正比例函数(1)(2)

正比例函数(1)(2)

y
k1<k2 <k3 <k4
4
y =k4 x
2
y =k3 x
-4 -2 O 2 4 x
-2
y =k2 x
-4 y =k1 x
• 1.已知 y关于x的正比例函数 y=(2-k)x的图 象经过一、三象限,则 对y关于x的 函数 y=(k-3)x的说法不正确的是( ) A.图象是经过原点的直线 B. y随x的增大而 减小
活动三: 总结性质
(1)当k>0时,y随x的增大而增大,直线 经过一、三象限,从左到右是上升的;
(2)当k<0时,y随x的增大而减小,直线经 过二、四象限,从左到右是下降的.
• 1.为什么k>0时,图象会经过一、三象限?而k<0时,图象 却经过二、四象限?
(1)当k>0时,x为正数,y也是正数,故在第一象限;x=0, y=0,故经过原点;x为负数,y也是负数,故在第三象限;所 以,k>0时,图象经过一、三象限.(2)反之,k<0时,图 象经过二、四象限.
6
4 2
-5
O
-2
y= 1 x 3
y= 1 x
5
x 10
思考2 对应地,当自变量的值增大时,对应的函数
值是随着增大还是减小? y y =4x y =2x y =x
6
4 2
-5
O
-2
y= 1 x 3
y= 1 x
5
x 10
问题2 当k<0 时,正比例函数的图象特征及性质 又怎样呢?
请画出函数y =-3x 和y =-1.5x 的图象,进行研究.
练习
练习1 用你认为最简单的方法画出下列函数的图
象:
(1)y=
3 2

课件1:19.2.1正比例函数(2)

课件1:19.2.1正比例函数(2)

问题2:这种规律对其他正比例函数适用吗? 具有一般性吗?
请同学们在同一坐标系内画出
y 1 x 、y 1 x 进行验证。
2
2
总结
一般地正比例函数的y=kx(k是常数,k≠0)的图 象是一条经过 原点 的直线,我们称它为直线 y=kx.当k>0时,直线y=kx经过第_一__、__三__象限, 从左向右上升,即随着x的增大而__增__大____;当 k<0时,直线y=kx经过第_二__、__四___象限,从左向 右下降,即随着x的增大反而__减__小___.
A.y1>y2 B.y1<y2 C.y1=y2 D.以上都有可能
第 十 九 章


次 函
ห้องสมุดไป่ตู้

问题1:经过原点与点(1,3)的直线是哪 个函数的图象?若经过原点与点(1,-4) 呢?你发现什么?
问题2:画正比例函数的图象时,怎样画最 简单?为什么?
试一试:用你认为最简单的方法画出下列正 比例函数的图象:
(1)y=3x
(2) y=-5x
五、课堂总结,发挥潜能 1.正比例函数y=kx图象的画法:过_原__点___与点 (1,k) 的直线即所求图象. 2.正比例函数的性质.
5、若k=2,则直线y=(k-1)x比例系数k-1 > 0(>或 <)从左到右 上升 (上升或下降)
6,若k=-2,则y=(k-1)x的比例系数k-1 < 0(>或<), 直线y=kx经过第_二__、__四__象限,从左到右 下降 (上 升或下降),即y随x的增大而 减小 (增大或减小)
思考探索
例3:已知正比例函数y=(k-1)x(k是常数,k≠0)
(1)直线y=(k-1)x经过三、一象限,求k的取值范围。 (2)直线y=(k-1)x从左到右上升,求k的取值范围。 (3)直线y=(k-1)x经过二、四象限,求k的取值范围。 (4)直线y=(k-1)x随着x的增大而减小,求k的取值范围。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用怎样的函数来表示?这些函数有什么共同点?
1. 圆的周长L随半径 r 的大小变化而变化. 1.根据圆的周长公式可得:L=2r 2.铁的密度为7.8 g/ cm 3。铁块的质量m(g)随它的体积V( cm 3)的 大小变化而变化. 2.依据密度公式可得:m=7.8v
3.每个练习本的厚度为0.5 cm.一些练习本摞在一起的总厚度 h(cm)随这些练习本的本数n的变化而变化. 3.据题意可知:h=0.5n 4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)
Ⅲ.随堂练习
课本第26页练习; 第35页1、2
y
4 3 2 1
x
1 2 3 4
y=
-2 -1 0 3 2x 12 -3 4 -5
y
y=-3x
5 4 3 2 1
x
1 2 3
-3 -2 -1 0 12 -3 4
Ⅲ.随堂练习
课本第26页练习。
Ⅳ.课时小结
本节课我们通过实例了解了正比例函数解析式的形式及图 象的特征,并掌握图象特征与关系式的联系规律,经过思考、 尝试,知道了正比例函数不同表现形式的转化方法,及图象的 简单画法,为以后学习一次函数奠定了基础.
一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志
环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它. 1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到 10千米)? 25600÷(30×4+7)≈200(km) 2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系? y=200 x (0≤x≤127) 3.这只燕鸥飞行1个半月的行程大约是多少千米? 这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x 的值.即 当x=45时, y=200×45=9000(km)
我们现在已经知道了正比例函数关系式的特点,那么它的 图象有什么特征呢?
Байду номын сангаас动一
画出下列正比例函数的图象,并进行比较,寻找两个函数图
象的相同点与不同点.考虑两个函数的变化规律.
1. y = 2x 2. y = -2x
结论:
3.两个图象的共同点:都是经过原点的直线. 不同点:函数 y=2x 的图象从左向右呈上升状态,即随着x 的增大y也增大;经过第一、三象限.函数y= -2x的图象从左 向右呈下降状态,即随x增大y反而减小;经过第二、四象
随冷冻时间t(分)的变化而变化.
4.据题意可知:T= -2t
L=2 r
m=7.8v
h=0.5n
T= -2t
这些函数有什么共同点?
我们观察这些函数关系式.不难发现这些函数都是
常数与自变量乘积的形式,和y=200 x的形式一样.
一般地,形如 y=kx (k是常数,x≠0)的函数。叫做正比例 函数(proportional functIon),其中k叫做比例系数。
过原点的直线.当k>0时,图象经过一、三象限,从左向 右上升,即随x的增大y也增大;当k<0时,图象经过二、 四象限,从左向右下降,即随x增大y反而减小.
正是由于正比例函数 y=kx (k是常数,k≠0)的 图象是一条直线,我们可以称它为直线 y=kx。
活动二 y=kx的图象是不是经过原点的直线? 是否一定经过原点和点(1,k) (2,2k) (3,3k) ? 两点确定一条直线! 你是否由此受到启发:画正比例函数的图象时,有没 有简单的方法? 有!两点法:原点和另一点。
以上我们用 y=200x 对燕鸥在4个月零1周的飞行路程问题进 行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与 时间的对应规律的一个模型. 类似于 y=200x 这种形式的函数在现实世界中还有很多.它 们都具备什么样的持征呢?我们这节课就来学习.
ⅱ.导入新课
首先我们来思考这样一些问题,看看变量之间的对应规律可
尝试练习:
1、课本第25页练习。
2、比较两图像的相同点与不同点。
y
5 4 3 2 1
1 y x 2
-5 -4 -3 -2 -1 0 1234-
1 2 3 4 5
x
1 y x 2
就以上活动及练习的结果,大家可否总结归纳出正比例函数 y=kx 的图象特征?
正比例函数 y=kx (k是常数,k≠0) 的图象是一条经
一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志
环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.
1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到 10千米)? 25600÷(30×4+7)≈200(km)
2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系? 假设这只燕鸥每天飞行的路程为200 km,那么它的行程y(千米) 就是飞行时间x(天)的函数.函数解析式为: y=200 x (0≤x≤127)
11.2.1正比例函数
I.提出问题,刨设情境
一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志 环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它. 1.这只百余克重的小鸟大约平均每天飞行多少千米 (精确到10千米)? 我们来共同分析: 一个月按30天计算,这只燕鸥平均每天飞行的路程不少于: 25600÷(30×4+7)≈200(km)
相关文档
最新文档